Climate Early Warning System Feasibility Report: Early Warning Systems and Hazard Prediction

Total Page:16

File Type:pdf, Size:1020Kb

Climate Early Warning System Feasibility Report: Early Warning Systems and Hazard Prediction United Nations Environment Programme Climate Early Warning System Feasibility Report: Early Warning Systems and Hazard Prediction March 2012 Dr. Zinta Zommers University of Oxford 1 Table of Contents 1 INTRODUCTION AND PURPOSE ....................................................................................................................... 3 2. METHODOLOGY................................................................................................................................................. 6 3. CURRENT EARLY WARNING SYSTEMS.......................................................................................................... 8 3.1. COMPONENTS OF EWS ...................................................................................................................... 8 3.2. KEY ACTORS IN EWS......................................................................................................................... 9 3.3. EWS BY NATION .............................................................................................................................. 10 3.4. EWS BY HAZARD............................................................................................................................. 15 3.4.1. Drought.......................................................................................................................................... 15 3.4.2. Famine........................................................................................................................................... 20 3.4.3. Fire................................................................................................................................................. 22 3.4.4. Floods ............................................................................................................................................ 26 3.4.5. Cyclones/Hurricanes...................................................................................................................... 30 3.5. EWS EVALUATION ........................................................................................................................... 33 4. HAZARD PREDICATION CAPABILITIES ........................................................................................................ 40 4.1. BACKGROUND ON WEATHER AND CLIMATE FORECASTING TECHNIQUES ........................................... 40 4.1.1. Weather Forecasting ..................................................................................................................... 40 4.1.2. Climate Forecasting....................................................................................................................... 41 4.2. SEASONAL FORECASTS ................................................................................................................... 42 4.2.1. Infrastructure.................................................................................................................................. 42 4.2.2. Standard products ......................................................................................................................... 44 4.2.3. Verification ..................................................................................................................................... 45 4.3. MULTI-YEAR AND DECADAL FORECASTS .......................................................................................... 46 4.4. CONCLUSION ................................................................................................................................... 48 5. STEPS FORWARD............................................................................................................................................ 49 5.1. KEY FINDINGS.................................................................................................................................. 49 5.2. POSSIBLE ACTIONS.......................................................................................................................... 50 5.3. POSSIBLE CLIM-WARN DESIGN...................................................................................................... 52 5.3.1. Biome or ecosystem targeted approach ........................................................................................ 52 5.3.2. Risk assessment rather than warning............................................................................................ 53 5.3.3. Seamless integrated system.......................................................................................................... 53 6. ACRONYMS ...................................................................................................................................................... 55 7. REFERENCES................................................................................................................................................... 56 8. APPENDIX 1. LIST OF INDIVIDUALS CONSULTED....................................................................................... 60 2 1 Introduction and Purpose “No nation, however large or small, wealthy or poor, can escape the impact of climate change. Rising sea levels threaten every coastline. More powerful storms and floods threaten every continent. More frequent drought and crop failures breed hunger and conflict in places where hunger and conflict already thrive. The security and stability of each nation and all peoples…are in jeopardy.” President Barack Obama addressing the United Nations (New York Times 2009) 2012 will be remembered as “the year that winter was cancelled” in Canada”1. It was the year that grass fires raged in the Prairies in mid winter, and farmers already began planting crops in March (Hirtzer 2012). Canadians experienced, on average, temperatures 3.6 degrees oC higher than normal and 18 percent less precipitation (Gulli 2012). Around the world these trends are not uncommon. The International Panel on Climate Change has concluded that, “warming of the climate system is unequivocal” (IPCC 2007). In addition to changes in temperature, observations since 1950 indicate increases in extreme weather events (IPCC 2011). The recent IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC SREX) predicts further increases in extreme events in the 21st century, including a growing frequency of heat waves, rising wind speed of tropical cyclones, and increasing intensity of droughts. A one-in- 20 years “hottest day” event is likely to occur every other year by the end of the 21st century. Heavy precipitation events are also on the rise, potentially impacting the frequency of floods and almost certainly affecting landslides (IPCC 2011). These trends have significant impacts on human lives, national economies and even on national identities (Figure 1). For example, winter, and the extreme cold, have been embraced in Canada as something distinctive to the country (Gulli 2012). Canada without winter may shake national identity to the core (Gulli 2012). For First nations communities in the Canadian North, “warm winters are a tragedy, a catastrophe,” writes Adam Gopnik. As the World Conference on Disaster Reduction (A/CONF.206/6) concluded, “Disaster loss has grave consequences for the survival, dignity and livelihoods of individuals, particularly the poor, and hard-won development gains.” Over the period 1991-2005 3,470 million people were affected by disasters globally, 960,000 people died, and economic losses totalled US$ 1,193 billion (UNISDR 2008). Losses from extreme weather are expected to continue to increase in future (IPCC 2012). However regions differ in vulnerability. Total economic losses from natural disasters are greatest in developed countries, while deaths from natural disasters are highest in developing countries (IPCC 2011). In fact, from 1970 to 2008, more than 95% of deaths from natural disasters occurred in developing countries (IPCC 2012). Mortality risk is approximately 225 times greater in low-income countries than in OECD countries when similar numbers of people are exposed to tropical cyclones (Peduzzi et al. 2012, from UNISDR 2011). 1 According to David Phillips, senior climatologist at Environment Canada (Gulli 2012). 3 Figure 1. Total number of people affected by disasters of natural origin Nearly all current efforts to cope with climate change focus on either mitigation to reduce emissions or on long-term adaptation to adjust to changes in climate. Although it is imperative to continue with these efforts, the ongoing pace of climate change and the slow international response suggests that a third option is becoming increasingly important: the creation of climate change early warning systems to protect populations against the immediate threat of climate-related extreme events, including heat waves, forest fires, floods and droughts. Already in 2005, United Nations Secretary-General Kofi Annan called for the establishment of a worldwide early warning system (EWS) for all natural hazards (UN 2005). The 2010 Cancun Agreements specifically invite “all Parties to enhance action on adaptation…by…enhancing climate change related disaster risk reduction strategies (such as) early warning systems.” IPCC SREX Report (2012) concludes that, “The implementation of early warning systems does reduce loss of lives and, to a lesser extent, damage to property and was identified by all the extreme event case studies (heat waves, wildfires, drought, cyclones, floods and epidemic disease) as key
Recommended publications
  • Tropical-Cyclone Forecasting: a Worldwide Summary of Techniques
    John L. McBride and Tropical-Cyclone Forecasting: Greg J. Holland Bureau of Meteorology Research Centre, A Worldwide Summary Melbourne 3001, of Techniques and Australia Verification Statistics Abstract basis for discussion at particular sessions planned for the work- shop. Replies to this questionnaire were received from 16 of- Questionnaire replies from forecasters in 16 tropical-cyclone warning fices. These are listed in Table 1, grouped according to their centers are summarized to provide an overview of the current state of ocean basins. Encouraged by the high information content of the science in tropical-cyclone analysis and forecasting. Information is tabulated on the data sources and techniques used, on their role and these responses, the authors sent a second questionnaire on the perceived usefulness, and on the levels of verification and accuracy of analysis and forecasting of cyclone position and motion. Re- cyclone forecasting. plies to this were received from 13 of the listed offices. This paper tabulates and syntheses information provided on the following aspects of tropical-cyclone forecasting: 1) the techniques used; 2) the level of verification; and 3) the level 1. Introduction of accuracy of analyses and forecasts. Separate sections cover forecasting of cyclone formation; analyzing cyclone structure Tropical cyclones are the major severe weather hazard for a and intensity; forecasting structure and intensity; analyzing cy- large "slice" of mankind. The Bangladesh cyclones of 1970 and 1985, Hurricane Camille (USA, 1969) and Cyclone Tracy (Australia, 1974) to name just four, would figure prominently TABLE 1. Forecast offices from which unofficial replies were re- in any list of major natural disasters of this century.
    [Show full text]
  • Chapter 2.1.3, Has Both Unique and Common Features That Relate to TC Internal Structure, Motion, Forecast Difficulty, Frequency, Intensity, Energy, Intensity, Etc
    Chapter Two Charles J. Neumann USNR (Retired) U, S. National Hurricane Center Science Applications International Corporation 2. A Global Tropical Cyclone Climatology 2.1 Introduction and purpose Globally, seven tropical cyclone (TC) basins, four in the Northern Hemisphere (NH) and three in the Southern Hemisphere (SH) can be identified (see Table 1.1). Collectively, these basins annually observe approximately eighty to ninety TCs with maximum winds 63 km h-1 (34 kts). On the average, over half of these TCs (56%) reach or surpass the hurricane/ typhoon/ cyclone surface wind threshold of 118 km h-1 (64 kts). Basin TC activity shows wide variation, the most active being the western North Pacific, with about 30% of the global total, while the North Indian is the least active with about 6%. (These data are based on 1-minute wind averaging. For comparable figures based on 10-minute averaging, see Table 2.6.) Table 2.1. Recommended intensity terminology for WMO groups. Some Panel Countries use somewhat different terminology (WMO 2008b). Western N. Pacific terminology used by the Joint Typhoon Warning Center (JTWC) is also shown. Over the years, many countries subject to these TC events have nurtured the development of government, military, religious and other private groups to study TC structure, to predict future motion/intensity and to mitigate TC effects. As would be expected, these mostly independent efforts have evolved into many different TC related global practices. These would include different observational and forecast procedures, TC terminology, documentation, wind measurement, formats, units of measurement, dissemination, wind/ pressure relationships, etc. Coupled with data uncertainties, these differences confound the task of preparing a global climatology.
    [Show full text]
  • The Madden–Julian Oscillation's Impacts on Worldwide Tropical
    15 MARCH 2014 K L O T Z B A C H 2317 The Madden–Julian Oscillation’s Impacts on Worldwide Tropical Cyclone Activity PHILIP J. KLOTZBACH Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado (Manuscript received 14 August 2013, in final form 20 November 2013) ABSTRACT The 30–60-day Madden–Julian oscillation (MJO) has been documented in previous research to impact tropical cyclone (TC) activity for various tropical cyclone basins around the globe. The MJO modulates large- scale convective activity throughout the tropics, and concomitantly modulates other fields known to impact tropical cyclone activity such as vertical wind shear, midlevel moisture, vertical motion, and sea level pressure. The Atlantic basin typically shows the smallest modulations in most large-scale fields of any tropical cyclone basins; however, it still experiences significant modulations in tropical cyclone activity. The convectively enhanced phases of the MJO and the phases immediately following them are typically associated with above- average tropical cyclone frequency for each of the global TC basins, while the convectively suppressed phases of the MJO are typically associated with below-average tropical cyclone frequency. The number of rapid intensification periods are also shown to increase when the convectively enhanced phase of the MJO is im- pacting a particular tropical cyclone basin. 1. Introduction drivers of increased TC activity in the Atlantic. Klotzbach (2010) and Ventrice et al. (2011) focused on the MJO’s The Madden–Julian oscillation (MJO) (Madden and impacts on Atlantic basin main development region Julian 1972) is a large-scale mode of tropical variability (MDR) TCs, showing that, when convection was en- that propagates around the globe on an approximately hanced in the Indian Ocean, TC activity in the Atlantic 30–60-day time scale.
    [Show full text]
  • 3A.1 Verification of 12 Years of NOAA Seasonal Hurricane Forecasts Eric S
    3A.1 Verification of 12 years of NOAA seasonal hurricane forecasts Eric S. Blake and Richard J. Pasch NOAA/NWS/NCEP/National Hurricane Center, Miami, FL Gerald D. Bell NOAA/NWS/NCEP/Climate Prediction Center, Camp Springs, MD 1. INTRODUCTION TSR, and to the preceding 5-yr mean. In addition, the early August forecasts issued by NOAA were compared to Seasonal hurricane forecasts with varying lead times have the respective early August forecasts issued by CSU, been produced in the Atlantic basin since 1984 (Gray TSR, and the 5-yr mean. Note that only activity that 1984). Partly as a result of the success of those early occurred after 1 August was evaluated in the August forecasts, many different research and operational groups forecasts, and any activity that occurred before 1 August have made seasonal hurricane forecasts and have was deducted from the total seasonal activity forecasts. expanded their use to other tropical cyclone basins. After the large forecast failure of the Gray forecast for the 1997 The parameters examined are the numbers of tropical season, a movement began within the NOAA Climate storms (including subtropical), hurricanes, and major Prediction Center (CPC) to issue seasonal hurricane hurricanes and ACE (Accumulated Cyclone Energy, the predictions. The first seasonal hurricane outlook by NOAA sum of the squares of the maximum wind speeds every six was issued in August 1998, and NOAA has released hours for (sub)tropical storms and hurricanes, [Bell et al seasonal outlooks in May and August for the Atlantic basin 2000]). For the ACE forecast comparisons, the Net since that time.
    [Show full text]
  • Activities of Escap Cooperative Mechanisms on Disaster Risk Reduction: Typhoon Committee
    UNITED NATIONS GENERAL ECONOMIC E/ESCAP/CDR/6 AND 16 December 2008 SOCIAL COUNCIL ORIGINAL: ENGLISH ECONOMIC AND SOCIAL COMMISSION FOR ASIA AND THE PACIFIC Committee on Disaster Risk Reduction First session 25-27 March 2009 Bangkok ACTIVITIES OF ESCAP COOPERATIVE MECHANISMS ON DISASTER RISK REDUCTION: TYPHOON COMMITTEE (Item 6 (a) of the provisional agenda) Note by the secretariat SUMMARY The Typhoon Committee is an ESCAP-affiliated regional institution and a regional body of the Tropical Cyclone Programme of the World Meteorological Organization. It develops activities under three substantive components: Meteorology, Hydrology, and Disaster Prevention and Preparedness, and supports training and research relevant to these areas. In the present document, the secretariat: (a) briefly outlines the historical background of the Typhoon Committee; (b) highlights aspects of the Typhoon Committee’s Strategic Plan 2007-2011 and Annual Operating Plan; and (c) provides an overview of the main activities of the Typhoon Committee since its last annual session (21-26 November 2007). The Committee on Disaster Risk Reduction may wish to provide the Typhoon Committee with guidance on its future course of action, particularly in regard to obtaining the support of international organizations and funding sources, and developing partnerships with other organizations. CONTENTS Page Introduction.............................................................................................................. 2 I. STRATEGIC PLAN OF THE TYPHOON COMMITTEE ............................ 3 II. COMPONENTS OF THE TYPHOON COMMITTEE .................................. 4 III. ACTIVITIES OF THE TYPHOON COMMITTEE SECRETARIAT: TRAINING AND RESEARCH ...................................................................... 6 IV. REQUEST FOR GUIDANCE......................................................................... 6 DMR A2008-000437 TP 280109 DP 290109 DI 300109 CDR_6E. doc E/ESCAP/CDR/6 Page 2 E/ESCAP/CDR/6 Page 3 Introduction 1.
    [Show full text]
  • Full Version of Global Guide to Tropical Cyclone Forecasting
    WMO-No. 1194 © World Meteorological Organization, 2017 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to: Chairperson, Publications Board World Meteorological Organization (WMO) 7 bis, avenue de la Paix P.O. Box 2300 CH-1211 Geneva 2, Switzerland ISBN 978-92-63-11194-4 NOTE The designations employed in WMO publications and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of WMO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products does not imply that they are endorsed or recommended by WMO in preference to others of a similar nature which are not mentioned or advertised. The findings, interpretations and conclusions expressed in WMO publications with named authors are those of the authors alone and do not necessarily reflect those of WMO or its Members. This publication has not been subjected to WMO standard editorial procedures. The views expressed herein do not necessarily have the endorsement of the Organization. Preface Tropical cyclones are amongst the most damaging weather phenomena that directly affect hundreds of millions of people and cause huge economic loss every year. Mitigation and reduction of disasters induced by tropical cyclones and consequential phenomena such as storm surges, floods and high winds have been long-standing objectives and mandates of WMO Members prone to tropical cyclones and their National Meteorological and Hydrometeorological Services.
    [Show full text]
  • A Technique to Determine the Radius of Maximum Wind of a Tropical Cyclone
    OCTOBER 2008 LAJOIEANDWALSH 1007 A Technique to Determine the Radius of Maximum Wind of a Tropical Cyclone FRANCE LAJOIE AND KEVIN WALSH School of Earth Sciences, University of Melbourne, Parkville, Victoria, Australia (Manuscript received 2 October 2007, in final form 22 January 2008) ABSTRACT A simple technique is developed that enables the radius of maximum wind of a tropical cyclone to be estimated from satellite cloud data. It is based on the characteristic cloud and wind structure of the eyewall of a tropical cyclone, after the method developed by Jorgensen more than two decades ago. The radius of maximum wind is shown to be partly dependent on the radius of the eye and partly on the distance from the center to the top of the most developed cumulonimbus nearest to the cyclone center. The technique proposed here involves the analysis of high-resolution IR and microwave satellite imagery to determine these two parameters. To test the technique, the derived radius of maximum wind was compared with high-resolution wind analyses compiled by the U.S. National Hurricane Center and the Atlantic Oceano- graphic and Meteorological Laboratory. The mean difference between the calculated radius of maximum wind and that determined from observations is 2.8 km. Of the 45 cases considered, the difference in 50% of the cases was Յ2 km, for 33% it was between 3 and 4 km, and for 17% it was Ն5 km, with only two large differences of 8.7 and 10 km. 1. Introduction Another sensor on board a polar-orbiting satellite that can produce high-resolution surface wind fields r To determine m, the radius of maximum wind for a over the ocean is the Wind Field Synthetic Aperture tropical cyclone, one needs to analyze the strong sur- Radar (WiSAR).
    [Show full text]
  • A Web Application for Near Real Time Distribution of Tropical Cyclone Heat Potential Estimates
    1A.4 A WEB APPLICATION FOR NEAR REAL TIME DISTRIBUTION OF TROPICAL CYCLONE HEAT POTENTIAL ESTIMATES Joaquin A. Trinanes*1 and Gustavo J. Goni2 1 University of Miami, CIMAS, Miami, FL 2NOAA/AOML, Miami, FL 1. INTRODUCTION pixel resolution. Atmosphere is nearly transparent at microwave frequencies and data from sensors operating This work is part of the hurricane component of in this range are less affected by clouds. This is a clear CBLAST, and consists in estimating the upper ocean advantage over infrared SST. To obtain a nearly heat structure in tropical regions using remote sensing complete coverage of the world ocean, the 3-day procedures. The Tropical Cyclone Heat Potential averaged SST product is used. The NOAA/NCEP/EMC (TCHP), defined here as proportional to the integrated SST product also provides truly complete global vertical temperature from the sea surface to the depth of coverage. SST fields are computed on a weekly basis the 26ºC isotherm, are believed to play a significant role on a regular spatial grid following Reynolds et al. (2002), in the sudden intensification of tropical cyclones and are created by optimal interpolation of AVHRR SST (TC).Near real time availability of this parameter, data that have been adjusted relative to in situ SST from estimated using blended sea height anomaly (SHA) buoy and ship observations. data from the altimeter constellation, sea surface temperature (SST) from infrared and microwave 2.3 Climatologies sensors in combination with climatologies and within a reduced-gravity ocean scheme, are computed and The annual mean depth of the 20º C isotherm and the distributed with the aim to help improving tropical reduced gravity g’ are calculated from the World Ocean cyclone intensity forecasts.
    [Show full text]
  • Tropical Cyclones
    Tropical Cyclones FIU Undergraduate Hurricane Internship Lecture 2 8/14/2013 Objectives • From this lecture you should understand: – Global tracks of TCs and the seasons when they are most common – General circulation of the tropics and the force balances involved – Conditions required for TC formation – Properties of TC of different intensities and a general understanding of the Saffir-Simpson Scale – TC Horizontal and Vertical structure – How the Dvorak Technique is used to estimate TC intensity from satellites 2005 Hurricane Season Video • http://www.youtube.com/watch?v=0woOxPYJ z1U&feature=related • Consider the following while watching video: – General flow pattern of clouds and weather systems – Origin/location of tropical storms in early season compared to later – Where are the most intense hurricanes located? What is a Tropical Cyclone? Defining a Tropical Cyclone (TC) • Warm-core, non-frontal, synoptic scale cyclone • Originates over tropical or subtropical waters • Maintains organized deep convection (banding features, central dense overcast) • Closed surface wind circulation around well- defined center • Maintained by barotropic energy… – Heat extracted from ocean and exported to the upper troposphere • …Not by baroclinic energy – Energy from horizontal temperature contrasts…frontal Tropical Cyclone Basins • 86 globally on average with about a quarter becoming intense • WPAC busiest, followed by EPAC, ATL, SWIO, AU, SPAC, NIO A) July- September B) Jaunary- March Global Circulation Primary driving forces: Heat and Angular Momentum Pole Mid-Latitudes Tropics IR Cooling Turns Westward Turns Eastward Necessary Conditions for TC Formation (Tropical Cyclogenesis) 1. Warm ocean surface (warmer than 26°C) 2. Weakly sheared troposphere ( < 15 m/s or so) 3.
    [Show full text]
  • Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery
    172 WEATHER AND FORECASTING VOLUME 13 Development of an Objective Scheme to Estimate Tropical Cyclone Intensity from Digital Geostationary Satellite Infrared Imagery CHRISTOPHER S. VELDEN AND TIMOTHY L. OLANDER Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin RAYMOND M. ZEHR Regional and Mesoscale Meteorology Branch, NOAA/NESDIS, Fort Collins, Colorado (Manuscript received 17 July 1996, in ®nal form 10 August 1997) ABSTRACT The standard method for estimating the intensity of tropical cyclones is based on satellite observations (Dvorak technique) and is utilized operationally by tropical analysis centers around the world. The technique relies on image pattern recognition along with analyst interpretation of empirically based rules regarding the vigor and organization of convection surrounding the storm center. While this method performs well enough in most cases to be employed operationally, there are situations when analyst judgment can lead to discrepancies between different analysis centers estimating the same storm. In an attempt to eliminate this subjectivity, a computer-based algorithm that operates objectively on digital infrared information has been developed. An original version of this algorithm (engineered primarily by the third author) has been signi®cantly modi®ed and advanced to include selected ``Dvorak rules,'' additional constraints, and a time-averaging scheme. This modi®ed version, the Objective Dvorak Technique (ODT), is applicable to tropical cyclones that have attained tropical storm or hurricane strength. The performance of the ODT is evaluated on cases from the 1995 and 1996 Atlantic hurricane seasons. Reconnaissance aircraft measurements of minimum surface pressure are used to validate the satellite-based estimates. Statistical analysis indicates the technique to be competitive with, and in some cases superior to, the Dvorak-based intensity estimates produced operationally by satellite analysts from tropical analysis centers.
    [Show full text]
  • Tropical Cyclones and Global Climate Change: a Post-IPCC Assessment
    Tropical Cyclones and Global Climate Change: A Post-IPCC Assessment A. Henderson-Sellers,* H. Zhang,+ G. Berz,# K. Emanuel,@ W. Gray,& C. Landsea,** G. Holland,+ J. Lighthill,++ S-L. Shieh,## P. Webster,@@ and K. McGuffie+ ABSTRACT The very limited instrumental record makes extensive analyses of the natural variability of global tropical cyclone activities difficult in most of the tropical cyclone basins. However, in the two regions where reasonably reliable records exist (the North Atlantic and the western North Pacific), substantial multidecadal variability (particularly for intense At- lantic hurricanes) is found, but there is no clear evidence of long-term trends. Efforts have been initiated to use geologi- cal and geomorphological records and analysis of oxygen isotope ratios in rainfall recorded in cave stalactites to establish a paleoclimate of tropical cyclones, but these have not yet produced definitive results. Recent thermodynamical estima- tion of the maximum potential intensities (MPI) of tropical cyclones shows good agreement with observations. Although there are some uncertainties in these MPI approaches, such as their sensitivity to variations in parameters and failure to include some potentially important interactions such as ocean spray feedbacks, the response of upper- oceanic thermal structure, and eye and eyewall dynamics, they do appear to be an objective tool with which to predict present and future maxima of tropical cyclone intensity. Recent studies indicate the MPI of cyclones will remain the same or undergo a modest increase of up to 10%–20%. These predicted changes are small compared with the observed natural variations and fall within the uncertainty range in current studies. Furthermore, the known omissions (ocean spray, momentum restriction, and possibly also surface to 300-hPa lapse rate changes) could all operate to mitigate the pre- dicted intensification.
    [Show full text]
  • Statistical, 5-Day Tropical Cyclone Intensity Forecasts Derived from Climatology and Persistence
    80 WEATHER AND FORECASTING VOLUME 18 NCEP NOTES Statistical, 5-Day Tropical Cyclone Intensity Forecasts Derived from Climatology and Persistence JOHN A. KNAFF CIRA/Colorado State University, Fort Collins, Colorado MARK DEMARIA NOAA/NESDIS, Fort Collins, Colorado CHARLES R. SAMPSON Naval Research Laboratory, Monterey, California JAMES M. GROSS Tropical Prediction Center, Miami, Florida 26 March 2002 and 6 September 2002 ABSTRACT Tropical cyclone track forecasting has improved recently to the point at which extending the of®cial forecasts of both track and intensity to 5 days is being considered at the National Hurricane Center and the Joint Typhoon Warning Center. Current veri®cation procedures at both of these operational centers utilize a suite of control models, derived from the ``climatology'' and ``persistence'' techniques, that make forecasts out to 3 days. To evaluate and verify 5-day forecasts, the current suite of control forecasts needs to be redeveloped to extend the forecasts from 72 to 120 h. This paper describes the development of 5-day tropical cyclone intensity forecast models derived from climatology and persistence for the Atlantic, the eastern North Paci®c, and the western North Paci®c Oceans. Results using independent input data show that these new models possess similar error and bias characteristics when compared with their predecessors in the North Atlantic and eastern North Paci®c but that the west Paci®c model shows a statistically signi®cant improvement when compared with its forerunner. Errors associated with these tropical cyclone intensity forecast models are also shown to level off beyond 3 days in all of the basins studied.
    [Show full text]