An Analysis of Aquaculture As a Vector for Introduced Marine and Estuarine Species in California
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differentiating Successful and Failed Molluscan Invaders in Estuarine Ecosystems
MARINE ECOLOGY PROGRESS SERIES Vol. 332: 41–51, 2007 Published March 5 Mar Ecol Prog Ser Differentiating successful and failed molluscan invaders in estuarine ecosystems A. Whitman Miller1,*, Gregory M. Ruiz1, Mark S. Minton1, Richard F. Ambrose2 1Smithsonian Environmental Research Center, PO Box 28, Edgewater, Maryland 21037, USA 2Environmental Science and Engineering Program, Box 951772, University of California, Los Angeles, California 90095, USA ABSTRACT: Despite mounting evidence of invasive species’ impacts on the environment and society, our ability to predict invasion establishment, spread, and impact are inadequate. Efforts to explain and predict invasion outcomes have been limited primarily to terrestrial and freshwater ecosystems. Invasions are also common in coastal marine ecosystems, yet to date predictive marine invasion mod- els are absent. Here we present a model based on biological attributes associated with invasion suc- cess (establishment) of marine molluscs that compares successful and failed invasions from a group of 93 species introduced to San Francisco Bay (SFB) in association with commercial oyster transfers from eastern North America (ca. 1869 to 1940). A multiple logistic regression model correctly classi- fied 83% of successful and 80% of failed invaders according to their source region abundance at the time of oyster transfers, tolerance of low salinity, and developmental mode. We tested the generality of the SFB invasion model by applying it to 3 coastal locations (2 in North America and 1 in Europe) that received oyster transfers from the same source and during the same time as SFB. The model cor- rectly predicted 100, 75, and 86% of successful invaders in these locations, indicating that abun- dance, environmental tolerance (ability to withstand low salinity), and developmental mode not only explain patterns of invasion success in SFB, but more importantly, predict invasion success in geo- graphically disparate marine ecosystems. -
OLD DOMINION UNIVERSITY Department of Biological Sciences
OLD DOMINION UNIVERSITY Department of Biological Sciences College of Sciences Norfolk, VA 23529-0456 DEVELOPMENT OF DIAGNOSTIC APPROACHES TO DETERMINE SOURCES OF ANTHROPOGENIC STRESS AFFECTING BENTHIC COMMUNITY CONDITION IN THE CHESAPEAKE BAY Final Report Prepared by Principal Investigators: Daniel M. Dauer 1 Michael F. Lane 1 Roberto J. Llansó 2 1 - Department of Biological Sciences Old Dominion University Norfolk, VA 23529-0456 2 - Versar, Inc. 9200 Rumsey Road Columbia, MD 21045 Submitted to: U.S. EPA Chesapeake Bay Program Office 410 Severn Avenue, Suite 109 Annapolis, Maryland 21403 Attn: Ms. Kelly Shenk April 30, 2002 OLD DOMINION UNIVERSITY Department of Biological Sciences College of Sciences Norfolk, VA 23529-0456 DEVELOPMENT OF DIAGNOSTIC APPROACHES TO DETERMINE SOURCES OF ANTHROPOGENIC STRESS AFFECTING BENTHIC COMMUNITY CONDITION IN THE CHESAPEAKE BAY Final Report Prepared by Principal Investigators: Daniel M. Dauer 1 Michael F. Lane 1 Roberto J. Llansó 2 1 - Department of Biological Sciences Old Dominion University Norfolk, VA 23529-0456 2 - Versar, Inc. 9200 Rumsey Road Columbia, MD 21045 Submitted to: U.S. EPA Chesapeake Bay Program Office 410 Severn Avenue, Suite 109 Annapolis, Maryland 21403 Attn: Ms. Kelly Shenk April 30, 2002 Table of Contents List of Figures ............................................................... ii List of Tables ............................................................... iii List of Appendices ............................................................v I. Introduction ...........................................................1 -
Chapter Bibliography
VU Research Portal Pacific oysters and parasites Goedknegt, M.A. 2017 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Goedknegt, M. A. (2017). Pacific oysters and parasites: Species invasions and their impact on parasite-host interactions. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 02. Oct. 2021 Bibliography Bibliography A Abrams, P. A. (1995) Implications of dynamically variable traits for identifying, classifying and measuring direct and indirect effects in ecological communities. The American Naturalist 146:112-134. Aguirre-Macedo, M. L., Kennedy, C. R. (1999) Diversity of metazoan parasites of the introduced oyster species Crassostrea gigas in the Exe estuary. Journal of the Marine Biological Association of the UK 79:57-63. Aguirre-Macedo, M. L., Vidal-Martinez, V. -
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans
Molecular Species Delimitation and Biogeography of Canadian Marine Planktonic Crustaceans by Robert George Young A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © Robert George Young, March, 2016 ABSTRACT MOLECULAR SPECIES DELIMITATION AND BIOGEOGRAPHY OF CANADIAN MARINE PLANKTONIC CRUSTACEANS Robert George Young Advisors: University of Guelph, 2016 Dr. Sarah Adamowicz Dr. Cathryn Abbott Zooplankton are a major component of the marine environment in both diversity and biomass and are a crucial source of nutrients for organisms at higher trophic levels. Unfortunately, marine zooplankton biodiversity is not well known because of difficult morphological identifications and lack of taxonomic experts for many groups. In addition, the large taxonomic diversity present in plankton and low sampling coverage pose challenges in obtaining a better understanding of true zooplankton diversity. Molecular identification tools, like DNA barcoding, have been successfully used to identify marine planktonic specimens to a species. However, the behaviour of methods for specimen identification and species delimitation remain untested for taxonomically diverse and widely-distributed marine zooplanktonic groups. Using Canadian marine planktonic crustacean collections, I generated a multi-gene data set including COI-5P and 18S-V4 molecular markers of morphologically-identified Copepoda and Thecostraca (Multicrustacea: Hexanauplia) species. I used this data set to assess generalities in the genetic divergence patterns and to determine if a barcode gap exists separating interspecific and intraspecific molecular divergences, which can reliably delimit specimens into species. I then used this information to evaluate the North Pacific, Arctic, and North Atlantic biogeography of marine Calanoida (Hexanauplia: Copepoda) plankton. -
FULL ACCOUNT FOR: Crassostrea Gigas Global Invasive Species Database (GISD) 2021. Species Profile Crassostrea Gigas. Available F
FULL ACCOUNT FOR: Crassostrea gigas Crassostrea gigas System: Marine Kingdom Phylum Class Order Family Animalia Mollusca Bivalvia Ostreoida Ostreidae Common name giant Pacific oyster (English), immigrant oyster (English), giant oyster (English), Japanese oyster (English), Miyagi oyster (English), Pacific oyster (English) Synonym Ostrea gigas , Thunberg, 1793 Ostrea laperousi , Schrenk, 1861 Ostrea talienwhanensis , Crosse, 1862 Similar species Ostrea edulis, Ostrea lurida, Crassostrea virginica Summary The bivalve Crassostrea gigas is a filter feeder. It has been introduced from Asia across the globe. In North America and the Australasia-Pacific regions C. gigas is known to settle into dense aggregations, and exclude native intertidal species. It has been documented destroying habitat and causing eutrophication of the water bodies it invades. view this species on IUCN Red List Species Description C. gigas is a bivalve, epifaunal, suspension/filter feeder that cements itself to rocks and other hard substrata and feeds primarily on phytoplankton and protists (CIESM, 2000; NIMPIS, 2002). CIESM (2000) states that \"C. gigas's shell is extremely variable in shape depending on the substrate. It will have a rounded shape with extensive fluting on hard substrata, an ovate and smooth shell on soft substrata, and a solid shape with irregular margins on mini-reefs. The upper valve (rv) is flattened with a low round umbo. The lower valve (lv) is larger, more convex, and has a more well developed umbo that is much higher than on rv. C. gigas's anterior margin is longer than the posterior margin.\" NIMPIS (2002) reports that, \"C. gigas has a white elongated shell, with an average size of 150-200mm. -
Direct and Indirect Effects of Invasive Parasites on Native Blue Mussels
Direct and indirect effects of invasive parasites on native blue mussels – Mytilicola intestinalis Steuer, 1902 affects its host Mytilus edulis Linnaeus, 1758 and modifies ecological interactions to other species in the Wadden Sea Dissertation zur Erlangung des Doktorgrades doctor rerum naturalium (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Felicitas Demann Kiel, 2018 Erster Gutachter: Dr. Mathias Wegner Zweiter Gutachter: Prof. Dr. Heinz Brendelberger Tag der mündlichen Prüfung: 26.04.2018 „Wenn Du fragst, was rechtes Wissen sei, so antworte ich, das, was zum Handeln befähigt.“ Hermann Ludwig Ferdinand von Helmholtz Contents Contents Zusammenfassung ............................................................................................................... - 5 - Summary .............................................................................................................................. - 7 - I. Introduction ................................................................................................................. - 9 - 1. Invasions in the German Wadden Sea & anthropogenic global change .................... - 9 - 2. Parasite-mediated direct and indirect effects of biological invasions ..................... - 11 - 3. The Mytilicola intestinalis – Mytilus edulis parasite-host system ......................... - 12 - 3.1. Bioinvasion of Mytilicola intestinalis .............................................................. - 12 - 3.2. Direct life -
Rediscovery of Mytilicola Orientalis (Copepoda: Mytilicolidae) from Wild Pacific Oysters Crassostrea Gigas in Japan
Neoergasilus japonicus from Candidia sieboldii Biogeography 16. 49–51.Sep. 20, 2014 Rediscovery of Mytilicola orientalis (Copepoda: Mytilicolidae) from wild Pacific oystersCrassostrea gigas in Japan Kazuya Nagasawa* and Masato Nitta Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528 Japan Abstract. Ault females and males of the mytilicolid copepod Mytilicola orientalis Mori, 1935 were found in the intestine of its type host, the Pacific oyster Crassostrea gigas (Thunberg, 1793), collected in the brackish reaches of the Kamo River, Hiroshima Prefecture, western Honshu, Japan. This represents a rediscovery of M. orientalis from wild Pacific oysters in Japan. Key words: Mytilicola orientalis, bivalve parasite, Pacific oyster, Crassostrea gigas The mytilicolid copepod Mytilicola orientalis Elsner et al., 2011; see Bower, 2010 for the earlier Mori, 1935 (Poecilostomatoida) is an intestinal para- literature). Various aspects of the biology of M. ori- site of various marine bivalves (Boxshall, 2013). entalis as an alien parasite have been reviewed by The species was originally described by Mori (1935) Bower (2010). In Japan, the species has never been based on adult females and males from the Pacific found from wild populations of its type host (C. oyster Crassostrea gigas (Thunberg, 1793) (as Os- gigas) for 80 years since the original description. trea gigas) collected at Kusatsu (type locality) and During a survey of parasites of aquatic invertebrates Miyajima Wharf on the coast of Hiroshima Bay, of western Japan, we successfully rediscovered M. the Seto Inland Sea (as the Inland Sea), Hiroshima orientalis from wild individuals of C. gigas in Hiro- Prefecture, western Honshu, Japan. -
Non-Native Marine Species in the Channel Islands: a Review and Assessment
Non-native Marine Species in the Channel Islands - A Review and Assessment - Department of the Environment - 2017 - Non-native Marine Species in the Channel Islands: A Review and Assessment Copyright (C) 2017 States of Jersey Copyright (C) 2017 images and illustrations as credited All rights reserved. No part of this report may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the States of Jersey. A printed paperback copy of this report has been commercially published by the Société Jersiaise (ISBN 978 0 901897 13 8). To obtain a copy contact the Société Jersiaise or order via high street and online bookshops. Contents Preface 7 1 - Background 1.1 - Non-native Species: A Definition 11 1.2 - Methods of Introduction 12 1.4 - Threats Posed by Non-Native Species 17 1.5 - Management and Legislation 19 2 – Survey Area and Methodology 2.1 - Survey Area 23 2.2 - Information Sources: Channel Islands 26 2.3 - Information Sources: Regional 28 2.4 –Threat Assessment 29 3 - Results and Discussion 3.1 - Taxonomic Diversity 33 3.2 - Habitat Preference 36 3.3 – Date of First Observation 40 3.4 – Region of Origin 42 3.5 – Transport Vectors 44 3.6 - Threat Scores and Horizon Scanning 46 4 - Marine Non-native Animal Species 51 5 - Marine Non-native Plant Species 146 3 6 - Summary and Recommendations 6.1 - Hotspots and Hubs 199 6.2 - Data Coordination and Dissemination 201 6.3 - Monitoring and Reporting 202 6.4 - Economic, Social and Environmental Impact 204 6.5 - Conclusion 206 7 - -
FULL ACCOUNT FOR: Boonea Bisuturalis Global Invasive Species Database (GISD) 2021. Species Profile Boonea Bisuturalis. Available
FULL ACCOUNT FOR: Boonea bisuturalis Boonea bisuturalis System: Marine Kingdom Phylum Class Order Family Animalia Mollusca Gastropoda Heterostropha Pyrmidellidae Common name two-groove odostome (English) Synonym Odostimia bisuturalis , (Say, 1822) Turritella bisuturalis , (Say, 1822) Similar species Summary Boonea bisuturalis is native to the St. Lawrence River and the northwest Atlantic coast. It primarily feeds on other molluscs and grasses. It is an extoparisitic species and feeds on internal parts of its prey. It can be found under rocks at the line of low tide. B. bisuturalis has been introduced further south to the Gulf of Mexico and San Francisco. This species has been introduced to Califonia through contaminated oyster stock. view this species on IUCN Red List Species Description Boonea bisuturalis has a small shell that is ovate and conical. The shell is whitish with a single revolving line between the suture. The surface is smooth with five or six whorls and a distinct line revolves just before the suture. The whorl at the bottom is larger than the other whorls; it makes up about half the shell's length. B. bisuturalis has a bluish-white pillar lip that is smooth and rounded. Within the shell there is a lip that is turned outwards, which produces an umbililcal chink. The length is 5.08mm and the width is 2.54mm (Gould, 1870). Notes Boonea bisuturalis is an ectoparasitic snail (Ray, 2005), which means that it lives outside its hosts body and feeds on its internal fluids and tissue. Habitat Description Boonea bisuturalis is most commonly found \"below the line of low tide, adhered to rocks\" (García-Cubas et al. -
Copepod (Mytilicola Orientalis Mori, 1935) in Blue Mussels (Mytilus Spp.) of the Baltic Sea
BioInvasions Records (2019) Volume 8, Issue 3: 623–632 CORRECTED PROOF Rapid Communication First record of the parasitic copepod (Mytilicola orientalis Mori, 1935) in blue mussels (Mytilus spp.) of the Baltic Sea Matthias Brenner1,*, Jona Schulze2, Johanna Fischer2 and K. Mathias Wegner2 1Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany 2Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Waddenseastation Sylt, Hafenstrasse 43, 25992 List/Sylt, Germany *Corresponding author E-mail: [email protected] Citation: Brenner M, Schulze J, Fischer J, Wegner KM (2019) First record of the Abstract parasitic copepod (Mytilicola orientalis Mori, 1935) in blue mussels (Mytilus spp.) The parasitic copepod Mytilicola orientalis infesting mussels and oysters was so far of the Baltic Sea. BioInvasions Records only described in saline waters – such as the North Sea. In April 2018, it was 8(3): 623–632, https://doi.org/10.3391/bir. recorded for the first time at a low salinity location in the Kiel Bight, Baltic Sea. 2019.8.3.19 Two mature females of M. orientalis were found in two separate individuals of Received: 24 August 2018 Baltic blue mussels (Mytilus spp.). Prevalence of parasites in the whole sample was Accepted: 8 April 2019 low (3.6%), and no males or eggs were detected. In a second sample from October Published: 24 May 2019 2018, another adult female was found indicating spread over larger areas and longer time periods. The findings of this study further indicated that larvae from Handling editor: Thomas Therriault introduced M. orientalis adults can hatch under low saline conditions of Kiel Fjord Thematic editor: April Blakeslee and are able to infest and to develop within tissues of Baltic blue mussels. -
Thesis (9.945Mb)
ECOLOGICAL INTERACTIONS AND GEOLOGICAL IMPLICATIONS OF FORAMINIFERA AND ASSOCIATED MEIOFAUNA IN TEMPERATE SALT MARSHES OF EASTERN CANADA by Jennifer Lena Frail-Gauthier Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia January, 2018 © Copyright by Jennifer Lena Frail-Gauthier, 2018 This is for you, Dave. Without you, I would have never discovered the treasures in the mud. ii TABLE OF CONTENTS List of Tables......................................................................................................................x List of Figures..................................................................................................................xii Abstract.............................................................................................................................xv List of Abbreviations and Symbols Used .....................................................................xvi Acknowledgements…………………………………..….………………………...…..xvii Chapter 1: Introduction…………………………………………………………………1 1.1 General Introduction .....................................................................................................1 1.2 Study Location and Evolution of Thesis........................................................................8 1.3 Chapter Outlines and Objectives.................................................................................11 1.3.1 Chapter 2: Development of a Salt Marsh Mesocosm to Study Spatio-Temporal Dynamics of Benthic -
A Manual of Previously Recorded Non-Indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States
A Manual of Previously Recorded Non- indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States NOAA Technical Memorandum NOS NCCOS 77 ii Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States government. Citation for this report: Megan O’Connor, Christopher Hawkins and David K. Loomis. 2008. A Manual of Previously Recorded Non-indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States. NOAA Technical Memorandum NOS NCCOS 77, 82 pp. iii A Manual of Previously Recorded Non- indigenous Invasive and Native Transplanted Animal Species of the Laurentian Great Lakes and Coastal United States. Megan O’Connor, Christopher Hawkins and David K. Loomis. Human Dimensions Research Unit Department of Natural Resources Conservation University of Massachusetts-Amherst Amherst, MA 01003 NOAA Technical Memorandum NOS NCCOS 77 June 2008 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Carlos M. Gutierrez Conrad C. Lautenbacher, Jr. John H. Dunnigan Secretary Administrator Assistant Administrator i TABLE OF CONTENTS SECTION PAGE Manual Description ii A List of Websites Providing Extensive 1 Information on Aquatic Invasive Species Major Taxonomic Groups of Invasive 4 Exotic and Native Transplanted Species, And General Socio-Economic Impacts Caused By Their Invasion Non-Indigenous and Native Transplanted 7 Species by Geographic Region: Description of Tables Table 1. Invasive Aquatic Animals Located 10 In The Great Lakes Region Table 2. Invasive Marine and Estuarine 19 Aquatic Animals Located From Maine To Virginia Table 3. Invasive Marine and Estuarine 23 Aquatic Animals Located From North Carolina to Texas Table 4.