Thermodynamics Is the Branch of Physics Concerned with Heat and Its Relation to Energy and Work
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physics H190 Spring 2005 Notes 1 Timeline for Nineteenth Century Physics
Physics H190 Spring 2005 Notes 1 Timeline for Nineteenth Century Physics In these notes we give a timeline of major events in 19th century physics, to orient ourselves to the way Planck and other physicists thought about physical problems in the late nineteenth century, and also to understand the open problems that existed at that time. We will start with thermal physics in the nineteenth century, which is most relevant to the story of black body radiation, although toward the end of the century thermal physics becomes mixed with electromagnetic theory. Indeed, the problem of black body radiation was fundamentally one of understanding the thermodynamics of the electromagnetic field. At the beginning of the nineteenth century, the prevailing theory of thermal physics was the caloric theory, in which heat was conceived of as a fluid, called caloric, which presumably permeated all bodies. A given body had more or less caloric, depending on its temperature. The theory gave a satisfactory accounting of a certain range of experimental data, including quantitative issues. For example, one could define a certain quantity of heat (the calorie) as the amount of heat (caloric) needed to heat one gram of water by one degree Centrigrade. If the water later cooled off by contact with colder bodies, one could say that the caloric had flowed out. It is remarkable that Carnot in 1824 gave a formulation of what is now considered the second law of thermodynamics, considering that it was based on the (defective) caloric the- ory. Of course, Carnot did not call it the second law, since the first law of thermodynamics was not known yet. -
1 3.1 What Is Heat?
Last revised 30/03/2021 3.1 What is heat? Curriculum links ACSSU155 Energy appears in different forms, including movement (kinetic energy), heat and potential energy, and energy transformations and transfers cause change within systems. KEY IDEAS • Energy isn’t stuff. • Energy looks different in different situations – it can be transferred from one object to another. • The temperature of an object can be raised by doing work on it (e.g. friction). • Temperature is related to the movement (kinetic energy) of the particles in a substance. ACSHE226 Science knowledge can develop through collaboration across the disciplines of science and the contributions of people from a range of cultures. Lesson outcomes At the end of this activity students will be able to: • describe how Count Rumford’s observations provided evidence against the caloric theory of heat. What ideas might your students already have? • Students will have a general understanding that heat flows from hot objects to cold. This will be covered in Activity 3.3. The common use of the word flow is unfortunate, as it suggests a fluid. Key vocabulary Heat Teacher content information It is not the most desirable approach to introduce weapons of war as teaching tools, but this particular experiment was a fundamental and famous one, which transformed our understanding of heat and energy. Cannons originated in ancient China along with the gun powder required to fire them. They were important in warfare for many centuries and modern artillery guns are simply a later modification. Only recently have powered missiles replaced modern artillery. Cannons were traditionally made by casting in solid metal, usually bronze or iron. -
Lectures 7-8 Thurs 23.Iv.09 HAS 222D Introduction to Energy
Lectures 7-8 Thurs 23.iv.09 HAS 222d Introduction to energy & environment Atmosphere-ocean: circulation The atmosphere/ocean system is a ‘heat engine’ largely driven by the sun…that is, a contraption in which heated fluid (air or water) expands and, under gravity, becomes buoyant and rises. The ‘input and output’ temperatures differ by very roughly 300C and so the heat engine cannot convert more than about 10% of the heat flow to the Earth into mechanical energy of the circulation (10% is from the Carnot efficiency, (T -T )/T using 300K and 270K as the absolute temperatures 1 2 1 meet: Benjamin Thompson (Count Rumford) 1753-1814 http://www.rumford.com/Rumford.html determining the conversion of mechanical energy into thermal energy (‘heat’) A cannon barrel is bored from solid iron by a pair of horses connected to an auger...(drill)…Rumford built a box around the barrel, filled it with water and kept track of the rising water temperature. This established he equivalence of thermal energy and a known about of mechanical energy (exerted at a rate of 2 horsepower!) Rumford Company - Baking Powder - 10 oz by Rumford Company Buy new: $2.39 In Stock (3) Grocery: See all 4 items The origin of the Rumford brand name is traced to Count Rumford (Benjamin “James” Thompson of Woburn, Massachusetts), a gifted inventor and scientist. Thompson, who is said to have bootlegged physics courses at Harvard when still a poor boy, became one of the discoverers of the Law of Conservation of Energy, and left the endowment for the Rumford Professorship in 1814. -
Biography: Sir Benjamin Thompson, Count Rumford
Biography: Sir Benjamin Thompson, Count Rumford Much of what we know today about heat began with the ideas of Count Rumford which he developed in the late eighteenth century in Munich, Germany. That, how- ever, is not all for which Rumford is famous. He originated the study of human nutri- tion and the insulating properties of clothing, created the soup kitchen, and invented thermal underwear, the coffee percolator, the kitchen oven, and central heating, to mention but a few of his many innovations. Rumford was not born with that name and not in Germany. In 1753, in the town of Woburn, Massachusetts, USA, Ruth and Benjamin Thompson became the proud parents of a baby boy, whom they named Benjamin. This biography is about Benjamin who, at the age of 39, became Count Rumford of the Holy Roman Empire. Benjamin’s father died when the child was only two mation to the British. Local activist groups fighting years old. His mother’s hasty remarriage provided Ben- against British rule accused him of being a British spy jamin with a stepfather whom he disliked. Fortunately, and pursued him. When an angry mob came to his unlike most other children his age, Benjamin was sent home, he was already well on his way to Boston. Soon, to grammar school at age eight. By age 13, having ac- it grew too risky for British loyalists to remain in Amer- quired a mastery of advanced algebra, geometry, as- ica, and, in April of 1776, Thomson was evacuated to tronomy, and even higher mathematics, he left school London, England. -
Guides to the Royal Institution of Great Britain: 1 HISTORY
Guides to the Royal Institution of Great Britain: 1 HISTORY Theo James presenting a bouquet to HM The Queen on the occasion of her bicentenary visit, 7 December 1999. by Frank A.J.L. James The Director, Susan Greenfield, looks on Front page: Façade of the Royal Institution added in 1837. Watercolour by T.H. Shepherd or more than two hundred years the Royal Institution of Great The Royal Institution was founded at a meeting on 7 March 1799 at FBritain has been at the centre of scientific research and the the Soho Square house of the President of the Royal Society, Joseph popularisation of science in this country. Within its walls some of the Banks (1743-1820). A list of fifty-eight names was read of gentlemen major scientific discoveries of the last two centuries have been made. who had agreed to contribute fifty guineas each to be a Proprietor of Chemists and physicists - such as Humphry Davy, Michael Faraday, a new John Tyndall, James Dewar, Lord Rayleigh, William Henry Bragg, INSTITUTION FOR DIFFUSING THE KNOWLEDGE, AND FACILITATING Henry Dale, Eric Rideal, William Lawrence Bragg and George Porter THE GENERAL INTRODUCTION, OF USEFUL MECHANICAL - carried out much of their major research here. The technological INVENTIONS AND IMPROVEMENTS; AND FOR TEACHING, BY COURSES applications of some of this research has transformed the way we OF PHILOSOPHICAL LECTURES AND EXPERIMENTS, THE APPLICATION live. Furthermore, most of these scientists were first rate OF SCIENCE TO THE COMMON PURPOSES OF LIFE. communicators who were able to inspire their audiences with an appreciation of science. -
Chapter IX Atoms, Caloric, and the Kinetic Theory of Heat
Chapter IX Atoms, Caloric, and the Kinetic Theory of Heat It troubled me as once I was, For I was once a child, Concluding how an Atom fell, And yet the Heavens held. The Heavens weighed the most by far, Yet Blue and solid stood, Without a bolt that I could prove. Would Giants understand? - Emily Dickinson The idea that there is an indivisible unit of matter, an atom, dates back to the Greeks. It was advocated by Leucippus and Democritus, and ridiculed by Aristotle. The modern theory got going around 1785-1803 with the experiments and interpretations of Lavoisier, Dalton, and Proust (Joseph the chemist, not Marcel the writer). The most important result was that chemical reactions always involved different substances in definite proportions – which Dalton interpreted as arising from the pairing of elements to form molecules, in definite proportions (1:1, 1:2, etc.) This didn't persuade many physicists, however; it was one fairly complex hypothesis to explain one type of experimental result. In addition, the postulated atoms had a size and mass smaller than anything that can be directly observed. Not observable... this sounded suspicious. Meanwhile, there was a fierce debate raging in physics about the nature of heat. Lying in a hot bath, or at the side of a hot fire, or under the hot Sun, one gets a strong impression that heat is a fluid. The fluid received an official name – caloric – and many books were written exploring the properties of caloric. For one thing, it's self-repellent – that's why heat always spreads to its - 2 - adjacent surroundings. -
Physics, Chapter 15: Heat and Work
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Robert Katz Publications Research Papers in Physics and Astronomy 1-1958 Physics, Chapter 15: Heat and Work Henry Semat City College of New York Robert Katz University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicskatz Part of the Physics Commons Semat, Henry and Katz, Robert, "Physics, Chapter 15: Heat and Work" (1958). Robert Katz Publications. 167. https://digitalcommons.unl.edu/physicskatz/167 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Robert Katz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 15 Heat and Work 15-1 The Nature of Heat Until about 1750 the concepts of heat and temperature were not clearly distinguished. The two concepts were thought to be equivalent in the sense that bodies at equal temperatures were thought to "contain" equal amounts of heat. Joseph Black (1728-1799) was the first to make a clear distinction between heat and temperature. Black believed that heat was a form of matter, which subsequently came to be called caloric, and that the change in temperature of a body when caloric was added to it was associated with a property of the body which he called the capacity. Later investigators endowed caloric with additional properties. The caloric fluid was thought to embody a kind of universal repulsive force. When added to a body, the repulsive force of the caloric fluid caused the body to expand. -
EIGHTEENTH CENTURY HUMANITARIANISM: Collaboration "Between Surope and ^America HE Growth of a Humanitarian Spirit Is Clearly in Evidence in the Eighteenth Century
EIGHTEENTH CENTURY HUMANITARIANISM: Collaboration "Between Surope and ^America HE growth of a humanitarian spirit is clearly in evidence in the eighteenth century. Much of its literature inspired it, as well Tas reflected it, and a number of organizations aimed to ame- liorate the sad lot of mankind. One of the hardest fights was against Negro slavery and the slave trade, and the most forceful campaigners in this struggle were the Quakers of England and America. The spirit and the letter of legislation affecting bonded whites was also affected by eighteenth century rationalism and humanity. But even before their influence was felt, a new world community that valued the life of man more highly than the old world demanded less fre- quently the ultimate penalty. Subject as it naturally was to English precedents, the colonial code reduced the great many offences still punishable by death in England to eleven in Massachusetts. These New England Puritans were more humane, too, in drawing up laws protecting women, children, strangers, servants, and dumb animals. Almost alone among the seventeenth century legislators, Preserved Smith notes, "the Massachusetts General Court forbade any man to exercise any tyranny or cruelty toward any brute creature which are usually kept for man's use."1 More fundamental changes in the character of the laws did not come until after the epoch-making works of Montesquieu and Bec- caria. Stemming from these sources there accumulated a number of plans and discussions that called for a reconsideration of legal systems, particularly with reference to crime and punishment. Jefferson made a careful study of William Eden's "Principles of Venal J^aw (London, 1772), and into his Common Vlace "Book the young Virginian copied long passages from On Qrimes and Punishments and extracts from Montesquieu. -
A Dynamical Systems Theory of Thermodynamics
© Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. Chapter One Introduction 1.1 An Overview of Classical Thermodynamics Energy is a concept that underlies our understanding of all physical phenomena and is a measure of the ability of a dynamical system to produce changes (motion) in its own system state as well as changes in the system states of its surroundings. Thermodynamics is a physical branch of science that deals with laws governing energy flow from one body to another and energy transformations from one form to another. These energy flow laws are captured by the fundamental principles known as the first and second laws of thermodynamics. The first law of thermodynamics gives a precise formulation of the equivalence between heat (i.e., the transferring of energy via temperature gradients) and work (i.e., the transferring of energy into coherent motion) and states that, among all system transformations, the net system energy is conserved. Hence, energy cannot be created out of nothing and cannot be destroyed; it can merely be transferred from one form to another. The law of conservation of energy is not a mathematical truth, but rather the consequence of an immeasurable culmination of observations over the chronicle of our civilization and is a fundamental axiom of the science of heat. The first law does not tell us whether any particular process can actually occur, that is, it does not restrict the ability to convert work into heat or heat into work, except that energy must be conserved in the process. -
Kyle F. Zelner
Curriculum Vitae Kyle F. Zelner School of Humanities-History University of Southern Mississippi Phone: (601) 266-6196 118 College Drive, Box #5047 Email: [email protected] Hattiesburg, MS 39406-0001 Current Position: Associate Professor of History (Tenured), The University of Southern Mississippi, Hattiesburg, MS, July 1, 2013–Present. Education: 2003 Ph.D. in American History, The College of William & Mary, Williamsburg, VA Dissertation: "The Flower and Rabble of Essex County: A Social History of the Massachusetts Bay Militia and Militiamen during King Philip’s War, 1675–1676.” Committee: James P. Whittenburg (Chair), James Axtell, Philip Daileader, John Shy (Professor Emeritus, University of Michigan–Outside Reader) 1993 M.A. in American History, Wayne State University, Detroit, MI 1990 B.A. in History and Political Science with High Distinction, University of Michigan-Dearborn, Dearborn, MI Publications: Monograph: A Rabble in Arms: Massachusetts Towns and Militiamen during King Philip’s War. (The Warfare and Culture Series). New York: New York University Press, 2009. https://nyupress.org/books/9780814797341/ (Paperback edition released 2010) Reviewed in the Journal of American History, Choice, Connecticut History, “H-War” on H-Net, the Journal of Military History, Journal of America’s Military Past, and the New England Quarterly Refereed Journal Article: “Essex County’s Two Militias: The Social Composition of Offensive and Defensive Militia during King Philip's War, 1675–1676” The New England Quarterly 72, no. 4 (December 1999): 577-593. http://www.jstor.org/stable/366829 Book Chapters: “North American Colonial Warfare in the 17th Century” Chapter 1 in The Routledge Handbook of American Military and Diplomatic History, the Colonial Period to 1877 edited by Antonio Thompson and Christos Frentzos. -
DO WE KNOW WHAT the TEMPERATURE IS? Jiří J
DO WE KNOW WHAT THE TEMPERATURE IS? Jiří J. Mareš1 Institute of Physics of the ASCR, v. v. i., Cukrovarnická 10, 162 00, Prague 6, Czech Republic Abstract: Temperature, the central concept of thermal physics, is one of the most frequently employed physical quantities in common practice. Even though the operative methods of the temperature measurement are described in detail in various practical instructions and textbooks, the rigorous treatment of this concept is almost lacking in the current literature. As a result, the answer to a simple question of “what the temperature is” is by no means trivial and unambiguous. There is especially an appreciable gap between the temperature as introduced in the frame of statistical theory and the only experimentally observable quantity related to this concept, phenomenological temperature. Just the logical and epistemological analysis of the present concept of phenomenological temperature is the kernel of the contribution. Keywords: thermodynamics, temperature scales, hotness, Mach’s postulates, Carnot’s principle, Kelvin’s proposition Introduction What does the temperature mean? It is a classically simple question astonishingly lacking an appropriate answer. The answers, namely, which can be found in the textbooks on thermodynamics, are often hardly acceptable without serious objections. For illustration, let us give a few typical examples here, the reader can easily find others in the current literature by himself. To the most hand-waving belong the statements such as “the temperature is known from the basic courses of physics” or even “temperature is known intuitively”. More frankly sounds the widely used operative definition “the temperature is reading on the scale of thermometer”. -
The Object of History: 18Th-Century Treasures from the Collections of the Massachusetts Historical Society
The Object of History: 18th-Century Treasures from the Collections of the Massachusetts Historical Society Exhibition Checklist The exhibition takes its arrangement from a letter that John Adams wrote to Abigail from France in May 1780: I must study Politicks and War that my sons may have liberty to study Mathematicks and Philosophy. My sons ought to study Mathematicks and Philosophy, Geography, natural History, Naval Architecture, navigation, Commerce and Agriculture, in order to give their Children a right to study Painting Poetry Musick, Architecture, Statuary, Tapestry and Porcelaine. This letter is on display on the second-floor stairwell landing in the Society’s Presidential Gallery as part of an exhibition of letters that John and Abigail Adams exchanged about the education of their children—and more generally about education. The Object of History begins in the Hamilton Room, the round receiving room to the left at the top of the stairs. There, “Politics and War” tells the political and military history of 18th-century America through paint- ings, artifacts, and a map. The second and third sections of the exhibition, “Mathematicks and Philosophy” and “Painting Poetry … and Porcelaine,” continue through the doorway to the Oliver Room. “Politicks and War” Jacob Gay. Powder horn belonging to Ephraim Moors, Cambridge, 1775 Edward Truman. Thomas Hutchinson, 1741 Gift of Samuel Clarke, 1876 Gift of Peter Wainwright, 1835 Cassaignard of Nantes. Brace of flintlock pistols, Nantes, France, ca. 1775-1780 Harbottle Dorr. Annotated copy of The Boston Owned by Commodore Edward Preble Evening-Post, June 26, 1769 Gift of Penelope Levi (Lincoln) Canfield, 1891 From the Annotated Newspapers of Harbottle Dorr, Jr.