Patterns in Teleost Photoreceptor Organization: A

Total Page:16

File Type:pdf, Size:1020Kb

Patterns in Teleost Photoreceptor Organization: A PATTERNS IN TELEOST PHOTORECEPTOR ORGANIZATION: A CHARACTERIZATION OF BASAL BODY POSITIONING IN ZEBRAFISH PHOTORECEPTORS AND VARIATIONS IN SWORDTAIL PHOTORECEPTOR MOSAICS A Dissertation by MICHELLE BRITTANY RAMSEY Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Gil G. Rosenthal Committee Members, Brian D. Perkins Hubert O. Amrein Michael S. Smotherman Head of Department, Thomas D. McKnight May 2014 Major Subject: Biology Copyright 2014 Michelle Brittany Ramsey ABSTRACT Vertebrate vision is enabled by light-sensitive photoreceptors arranged in a plane in the retina. This study investigates two aspects of this arrangement: 1) positioning of basal bodies within photoreceptors, and 2) positioning of photoreceptors themselves. First, the planar cell polarity of basal bodies, and therefore cilia, is often critical for proper cilia function and is controlled by the planar cell polarity (PCP) pathway. Cilia planar positioning in vertebrate photoreceptors, however, has not been characterized. Because zebrafish photoreceptors form an organized, well-characterized mosaic, they are an ideal system to address photoreceptor basal body positioning. Second, swordtail fish are frequently studied to investigate visually-mediated social behaviors such as mate choice and how these influence evolution. However, less is known about the morphology of their photoreceptor mosaic and how this mosaic influences behavior. Therefore, characterization of the swordtail photoreceptor mosaic is an important step in understanding this relationship between physiology and behavior. In this study, immunohistology is used to characterize cryosectioned flatmounted retinas from zebrafish and swordtails with various genetic, behavioral, and environmental backgrounds. The results of this study reveal that in adult zebrafish retinas, the basal bodies of red-, green-, and blue-sensitive cone photoreceptors localize asymmetrically on the cell edge nearest the optic nerve. In contrast, no patterning is in the basal bodies of ultraviolet-sensitive cones, of rod photoreceptors, or of larval cones. Both rod loss and ii UV-light addition do not affect cone basal body patterning. Darkness during development leads to bimodality of basal bodies. These results suggest that, after the transition to the adult mosaic, a cellular mechanism involving cell-cell contact, consistent with the PCP pathway, regulates photoreceptor basal body positioning. The results of this study also reveal that the swordtails Xiphophorus malinche, Xiphophorus birchmanni, and their hybrids exhibit an organized square mosaic, although some variations in this pattern exist, including between males and females. As square mosaics have been correlated with sensitivity to changes in light polarization, this warrants future studies in swordtail polarization vision, which may play an important role in visually-mediated behavior. Also, changes in the photoreceptor mosaic might have explanatory power for changes in visually-mediated behavior. iii ACKNOWLEDGEMENTS I am very grateful for the generous support I have received from Gil Rosenthal and from Brian Perkins during my time at Texas A&M. They have each played an important role in my intellectual development. I am thankful for all the opportunities they have given me and everything I have learned from them. I am also thankful for all the other faculty members at A&M, especially for Hubert Amrein, Mike Smotherman, Bruce Riley, Deb Bell-Pedersen, and Arne Lekven, who have guided me at various stages of my dissertation research. I sincerely appreciate all the assistance I have received from lab members, other graduate students, undergraduate students, and staff at Texas A&M. I am thankful for all I have learned from my peers and from my students. For Chapter II, I thank Brian Perkins for his valuable contributions to study design, to data analysis, and to drafting and revising the manuscript. I thank my committee and anonymous reviewers for their helpful comments. I am very grateful to James Fadool and his group for assistance with observing the photoreceptor mosaic. I also thank James Fadool, Sue Brockerhoff, David Hyde, Ann Morris, and Brian Link for the gifts of animals and reagents. This research was supported by NIH Grant EY017037 to Brian Perkins. For Chapter III, I thank Gil Rosenthal and Brian Perkins for their valuable contributions to study design and analysis, and I thank them and the rest of my committee for their helpful comments for this chapter. I am grateful to Carmen Montaña, Kirk Winemiller, and Kevin Conway for their assistance catching and iv identifying red shiners. This research was supported by NSF Grant IOS-0923825 to Gil Rosenthal and NIH Grant EY017037 to Brian Perkins. For Chapter IV, I thank Gil Rosenthal for his valuable contributions to study design and analysis, and I thank him and the rest of my committee for their helpful comments for this chapter. I thank Rongfeng Cui and Michael Stanley for their work on the behavioral trials. I thank Pablo Declos for assistance with the statistical analysis. I am grateful to Pablo Delclos, Gastón Jofre, Dan Powell, Mattie Squire, and undergraduates from the Rosenthal lab for fish collection and fish care. I thank Brian Perkins for histology supplies and reagents, and I thank Bruce Riley for cryostat use. This research was supported by NSF Grant IOS-0923825 to Gil Rosenthal. My accomplishments at Texas A&M would have been impossible without the previous investments others have made in my life for which I will always be grateful. My past teachers and professors have all contributed in a variety of ways to my intellectual growth. Finally, and most importantly, the unwavering support I have received from my husband, parents, family, and friends has been an irreplaceable encouragement to me. “If I have seen further it is by standing on the shoulders of Giants." Sir Isaac Newton (1676) v NOMENCLATURE 4C12 antibody that labels zebrafish rod photoreceptors AOSLO Adaptive Optics Scanning Laser Ophthalmoscopy CFP cyan fluorescent protein DAPI nuclear stain 4,6-diamidino-2-phenlindole dihydrochloride dfp days post fertilization DMSO dimethyl sulfoxide ERG electroretinogram GFP green fluorescence protein MSP microspectrophotometry OMR optomotor response ON overnight or (in figures) optic nerve ONL outer nuclear layer PBS phosphate buffered solution PBSTD 0.1% TWEEN 20 and 0.1% DMSO in PBS PCP planar cell polarity PFA paraformaldehyde red shiner Cyprinella lutrensis RPE retinal pigment epithelium RT room temperature RT-PCR reverse transcription polymerase chain reaction vi s.d. standard deviation swordtail fish within the genus Xiphophorus TFM tissue freezing medium UV ultraviolet X. birchmanni Xiphophorus birchmanni X. malinche Xiphophorus malinche XOPS-GFP transgenic zebrafish line Tg(XlRho:EGFP)fl1 XOPS-mCFP transgenic zebrafish line Tg(XlRho:gap43-CFP)q13 zebrafish Danio rerio Zpr-1 antibody that labels zebrafish red-/green-sensitive double cones vii TABLE OF CONTENTS Page ABSTRACT .......................................................................................................................ii ACKNOWLEDGEMENTS .............................................................................................. iv NOMENCLATURE .......................................................................................................... vi TABLE OF CONTENTS ............................................................................................... viii LIST OF FIGURES ............................................................................................................ x LIST OF TABLES ......................................................................................................... xiii CHAPTER I INTRODUCTION ...................................................................................... 1 Photoreceptors ................................................................................................................ 1 Planar cell polarity ......................................................................................................... 5 Planar cell polarity defects and ciliopathies ................................................................... 8 Retinomotor movements .............................................................................................. 12 Zebrafish model system ............................................................................................... 14 Teleost photoreceptor mosaics ..................................................................................... 16 Swordtail model system ............................................................................................... 19 Vision in swordtails ...................................................................................................... 22 Hybridization and hybrid breakdown ........................................................................... 23 Sensory dysfunction ..................................................................................................... 24 Summary ...................................................................................................................... 27 CHAPTER II BASAL BODIES EXHIBIT POLARIZED POSITIONING IN ZEBRAFISH CONE PHOTORECEPTORS ................................................................... 28 Overview.....................................................................................................................
Recommended publications
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • Dissolution of Sexual Signal Complexes in a Hybrid Zone Between the Swordtails Xiphophorus Birchmanni and Xiphophorus Malinche (Poeciliidae)
    COPEIA Friday Feb 21 2003 06:25 PM cope 03_210 Mp_299 Allen Press x DTPro System File # 10TQ Copeia, 2003(2), pp. 299±307 Dissolution of Sexual Signal Complexes in a Hybrid Zone between the Swordtails Xiphophorus birchmanni and Xiphophorus malinche (Poeciliidae) GIL G. ROSENTHAL,XOCHITL F. DE LA ROSA REYNA,STEVEN KAZIANIS, MATTHEW J. STEPHENS,DONALD C. MORIZOT,MICHAEL J. RYAN, AND FRANCISCO J. GARCIÂADELEOÂ N The evolution of sexual signaling systems is in¯uenced by natural and sexual selection acting on complex interactions among traits. Natural hybrid zones are ex- cellent systems for assessing ®tness effects on sexual phenotypes. Most documented hybrid zones, however, show little variation in sexual signals. A hybrid zone between the swordtails Xiphophorus birchmanni and Xiphophorus malinche is characterized by numerous recombinants for male sexual traits. Analyses of geographic variation in morphological and isozyme traits in the RõÂo Calnali, Hidalgo, Mexico, reveal an upstream-to-downstream gradient from X. malinche-toX. birchmanni-type traits. A second hybrid zone, likely isolated from the R. Calnali, occurs in the nearby Arroyo Pochutla. Although the presumed female preference for swords predicts the intro- gression of swords from X. malinche-like populations into hybrid populations, the opposite pattern was observed. Swords are reduced in populations otherwise char- acterized by X. malinche traits. Sexually dimorphic traits were poorly correlated with- in individuals, indicating that sexual selection does not act against recombinant phe- notypes. Hybrid males also exhibit trait values outside the range of parental varia- tion. These patterns are consistent with predictions that females are permissive, preferring generally conspicuous males without attending to speci®c features.
    [Show full text]
  • Pheromonal Mechanisms of Reproductive Isolation in Xiphophorus
    PHEROMONAL MECHANISMS OF REPRODUCTIVE ISOLATION IN XIPHOPHORUS AND THEIR HYBRIDS A Dissertation by CHRISTOPHER HOLLAND Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Gil G. Rosenthal Committee Members, Michael Smotherman Kevin W. Conway Jessica L. Yorzinski Head of Department, Thomas McKnight December 2018 Major Subject: Biology Copyright 2018 Christopher Holland ABSTRACT Pheromones play an important role in conspecific mate preference across taxa. While the mechanisms underlying the pheromonal basis of reproductive isolation are well characterized in insects, we know far less about the mechanisms underlying the production and reception of chemical signals in vertebrates. In the genus Xiphophorus, conspecific mate recognition depends on female perception of male urine-borne pheromones. I focused on interspecific differences between the sympatric X. birchmanni and X. malinche, which form natural hybrid zones as a consequence of changes in water chemistry. First, I identify the organ of pheromone production and compounds comprising chemical signals. I localized pheromone production to the testis; testis extract elicited the same conspecific preference as signals generated by displaying males. I used solid phase extraction (SPE) in combination with high performance liquid chromatography (HPLC)/ mass spectrometry (MS) to characterize pheromone chemical composition. Analyzing HPLC/MS readouts for pure peaks with high relative intensity identified two compounds of interest, which were identified according to their fraction pattern and retention times and then individually assayed for their effect on female behavior. The ability to directly measure the pheromones with paired responses of female conspecific mate recognition gives insight into what specific components are important to female mate choice.
    [Show full text]
  • The Role of Social Environment and Genomic Plasticity in the Maintenance of Alternative Mating Strategies in Sailfin Mollies
    Clemson University TigerPrints All Theses Theses 8-2018 The Role of Social Environment and Genomic Plasticity in the Maintenance of Alternative Mating Strategies in Sailfin Mollies Mary Katharine Ramos-Negrete Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Ramos-Negrete, Mary Katharine, "The Role of Social Environment and Genomic Plasticity in the Maintenance of Alternative Mating Strategies in Sailfin Mollies" (2018). All Theses. 3246. https://tigerprints.clemson.edu/all_theses/3246 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE ROLE OF SOCIAL ENVIRONMENT AND GENOMIC PLASTICITY IN THE MAINTENANCE OF ALTERNATIVE MATING STRATEGIES IN SAILFIN MOLLIES A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Biology by Mary Katharine Ramos-Negrete August 2018 Accepted by: Margaret B. Ptacek, Committee Co-Chair Christina E. Wells, Committee Co-Chair Amy L. Lawton-Rauh Matthew W. Turnbull i ABSTRACT Sailfin molly fish, Poecilia latipinna, members of the family Poeciliidae, show extensive polymorphism in male body size, degree of ornamentation and mating behavior repertoires. They are a striking example of a species with alternative male mating strategies that result from an association between life history trait variation and developmental plasticity of mating behaviors. Sailfin molly male body size correlates to their lifelong mating strategy and male size at maturity is fixed and shows a continuous range of male sizes in natural populations.
    [Show full text]
  • (Platyhelminthes) Parasitic in Mexican Aquatic Vertebrates
    Checklist of the Monogenea (Platyhelminthes) parasitic in Mexican aquatic vertebrates Berenit MENDOZA-GARFIAS Luis GARCÍA-PRIETO* Gerardo PÉREZ-PONCE DE LEÓN Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153 CP 04510, México D.F. (México) [email protected] [email protected] (*corresponding author) [email protected] Published on 29 December 2017 urn:lsid:zoobank.org:pub:34C1547A-9A79-489B-9F12-446B604AA57F Mendoza-Garfias B., García-Prieto L. & Pérez-Ponce De León G. 2017. — Checklist of the Monogenea (Platyhel- minthes) parasitic in Mexican aquatic vertebrates. Zoosystema 39 (4): 501-598. https://doi.org/10.5252/z2017n4a5 ABSTRACT 313 nominal species of monogenean parasites of aquatic vertebrates occurring in Mexico are included in this checklist; in addition, records of 54 undetermined taxa are also listed. All the monogeneans registered are associated with 363 vertebrate host taxa, and distributed in 498 localities pertaining to 29 of the 32 states of the Mexican Republic. The checklist contains updated information on their hosts, habitat, and distributional records. We revise the species list according to current schemes of KEY WORDS classification for the group. The checklist also included the published records in the last 11 years, Platyhelminthes, Mexico, since the latest list was made in 2006. We also included taxon mentioned in thesis and informal distribution, literature. As a result of our review, numerous records presented in the list published in 2006 were Actinopterygii, modified since inaccuracies and incomplete data were identified. Even though the inventory of the Elasmobranchii, Anura, monogenean fauna occurring in Mexican vertebrates is far from complete, the data contained in our Testudines.
    [Show full text]
  • MECHANISMS and GENOMIC PATTERNS of REPRODUCTIVE ISOLATION in XIPHOPHORUS FISHES a Dissertation by RONGFENG CUI Submitted To
    MECHANISMS AND GENOMIC PATTERNS OF REPRODUCTIVE ISOLATION IN XIPHOPHORUS FISHES A Dissertation by RONGFENG CUI Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Gil G. Rosenthal Committee Members, Adam G. Jones Michael Smotherman Spencer T. Behmer Head of Department, Thomas McKnight May 2014 Major Subject: Biology Copyright 2014 Rongfeng Cui ABSTRACT Learned mate choice has a fundamental role in population dynamics and speciation. Social learning plays a ubiquitous role in shaping how individuals make decisions. Learning does not act on a blank slate, however, and responses to social experience depend on interactions with genetically-specified substrates – the so-called “instinct to learn”. I develop a new software Admixsimul, which allows forward-time simulations of neutral SNP markers and functional loci, mapped to user-defined genomes with user-specified functions that allow for complex dominance and epistatic effects. Complex natural and sexual selection regimes (including indirect genetic effects) are available through user-defined, arbitrary fitness and mate-choice probability functions. Using simulation, I show that responses to learned stimuli can evolve to opposite extremes in the context of mating decisions, with choosers either preferring or avoiding familiar social stimuli, depending on the relative importance of inbreeding avoidance versus conspecific mate recognition. I also show that under certain scenarios, learned preference is sufficient to maintain reproductive isolation during secondary contact. Two sister species of swordtail fish have evolved such opposite responses to learned social stimuli. The interaction of learned and innate inputs in structuring mate- choice decisions can explain variation in genetic admixture in natural populations.
    [Show full text]
  • The Effects of Habitat Complexity on the Cognitive Performance of Two Fish Species
    THE EFFECTS OF HABITAT COMPLEXITY ON THE COGNITIVE PERFORMANCE OF TWO FISH SPECIES AND THEIR HYBRIDS A Senior Scholars Thesis by HEATHER ANNE CHANCE Submitted to the Office of Undergraduate Research Texas A&M University in partial fulfillment of the requirements for the designed as UNDERGRADUATE RESEARCH SCHOLAR April 2008 Major: Zoology ii THE EFFECTS OF HABITAT COMPLEXITY ON THE COGNITIVE PERFORMANCE OF TWO FISH SPECIES AND THEIR HYBRIDS A Senior Scholars Thesis by HEATHER ANNE CHANCE Submitted to the Office of Undergraduate Research Texas A&M University in partial fulfillment of the requirements for designation as UNDERGRADUATE RESEARCH SCHOLAR Approved by: Research Advisor: Gil Rosenthal Associate Dean for Undergraduate Research: Robert C. Webb April 2008 Major: Zoology iii ABSTRACT The Effects of Habitat Complexity on the Cognitive Performance of Two Fish Species and Their Hybrids (April 2008) Heather Anne Chance Department of Biology Texas A&M University Research Advisor: Dr. Gil G. Rosenthal Department of Biology The complexity of an animal’s habitat plays a significant role in behavior, morphology as well as other life history traits. Habitat complexity may also play a significant role in an animal’s cognitive capabilities such as learning and memory attributes. In the field, I quantified habitat complexity in populations of two species of swordtail fishes – Xiphophorus birchmanni and X. malinche – as well as two populations of naturally occurring X. birchmanni/X. malinche hybrids found in the Rio Calnali, Hidalgo, Mexico. Habitat complexity differed between populations with X. malinche residing in the most complex and X. birchmanni in the least complex. In the laboratory, I tested spatial learning and memory capabilities of X.
    [Show full text]
  • Helminth Parasites of Xiphophorus Birchmanni (Teleostei:Poeciliidae) from Two Localities of the Pánuco River Drainage, Mexico Revista Mexicana De Biodiversidad, Vol
    Revista mexicana de biodiversidad ISSN: 1870-3453 ISSN: 2007-8706 Instituto de Biología Bautista-Hernández, Christian Elizbeth; Pulido- Flores, Griselda; Violante-González, Juan; Monks, Scott Helminth parasites of Xiphophorus birchmanni (Teleostei:Poeciliidae) from two localities of the Pánuco River drainage, Mexico Revista mexicana de biodiversidad, vol. 90, 2019 Instituto de Biología DOI: 10.22201/ib.20078706e.2019.90.1577 Available in: http://www.redalyc.org/articulo.oa?id=42562784011 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Project academic non-profit, developed under the open access initiative Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 90 (2019): e901577 Ecology Helminth parasites of Xiphophorus birchmanni (Teleostei:Poeciliidae) from two localities of the Pánuco River drainage, Mexico Helmintos parásitos de Xiphophorus birchmanni (Teleostei: Poeciliidae) de dos localidades de la cuenca del río Pánuco, México Christian Elizbeth Bautista-Hernández a, Griselda Pulido-Flores a, Juan Violante-González b, Scott Monks a, * a Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Apartado postal 1-10, 42001Pachuca, Hidalgo, Mexico b Laboratorio de Ecología, Unidad Académica de Ecología Marina, Universidad Autónoma de Guerrero, Gran Vía Tropical Núm. 20, Fraccionamiento Las Playas, 39390 Acapulco Guerrero, Mexico *Corresponding author: [email protected] (S. Monks) Received: 21 January 2016; accepted: 23 February 2018 Abstract Specimens of Xiphophorus birchmanni (Teleostei: Poeciliidae) (55 individuals) (Sheepshead swordtail) were collected from 2 localities in the Pánuco River drainage from Hidalgo and Veracruz [at Atlatipa (n = 26) and Benito Juárez (n = 29), respectively], México.
    [Show full text]
  • Variation in Female Mating Preferences in Swordtail Fishes: the Importance of Social
    Variation in Female Mating Preferences in Swordtail Fishes: the Importance of Social Experience, Male Aggression and Genetic Variation A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Donelle M. Robinson August 2011 © 2011 Donelle M. Robinson. All Rights Reserve 2 This dissertation titled Variation in Female Mating Preferences in Swordtail Fishes: the Importance of Social Experience, Male Aggression and Genetic Variation by DONELLE M. ROBINSON has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Molly R. Morris Professor of Biological Sciences Howard Dewald Interim Dean, College of Arts and Sciences 3 ABSTRACT ROBINSON, DONELLE M., Ph.D., August 2011, (Select Program Name from list:) Variation in Female Mating Preferences in Swordtail Fishes: the Importance of Social Experience, Male Aggression and Genetic Variation Director of Dissertation: Molly R. Morris Identifying the different factors that influence female preference is essential to our understanding of the evolution of female preferences. Plastic mate preferences can be favored by natural selection in varying environments, including social environments. In this dissertation, I addressed the following questions in Xiphophorus birchmanni, X. cortezi and X. malinche: 1) What factors affect variation in female preference for vertical bars; 2) Does experience with different male phenotypes affect female preferences for vertical bars; 3) Does female preference contribute to the evolution of the exaggerated dorsal fin; 4) Did the exaggerated dorsal fin evolve to enhance courtship displays; 5) What are the phylogenetic relationships within and across these species? Female preferences for vertical bars in X.
    [Show full text]
  • Dataset on Freshwater Fishes of Hidalgo State( Mexico)
    A peer-reviewed open-access journal ZooKeys 403: 67–109Hidalgo (2014) fishes: Dataset on freshwater fishes of Hidalgo state( Mexico)... 97 doi: 10.3897/zookeys.403.7149 DATA PAPER www.zookeys.org Launched to accelerate biodiversity research Hidalgo Fishes: Dataset on freshwater fishes of Hidalgo state (Mexico) in the MZNA fish collection of the University of Navarra (Spain) David Galicia1, Griselda Pulido-Flores2, Rafael Miranda1, Scott Monks2, Ana Amezcua-Martínez1, María Imas-Lecumberri1, Angel Chaves-Illana1, Arturo H. Ariño1 1 University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain 2 University of the Hidalgo State, Centro de Investigaciones Biológicas, Ciudad del Conocimiento, 42184, Pachuca, Mexico Corresponding author: David Galicia ([email protected]) Academic editor: V. Chavan | Received 27 January 2014 | Accepted 31 March 2014 | Published 17 April 2014 Citation: Galicia D, Pulido-Flores G, Miranda R, Monks S,Amezcua-Martínez A, Imas-Lecumberri M, Chaves-Illana A, Ariño AH (2014) Hidalgo Fishes: Dataset on freshwater fishes of Hidalgo state (Mexico) in the MZNA fish collection of the University of Navarra (Spain). ZooKeys 403: 97–109. doi: 10.3897/zookeys.403.7149 GBIF key: http://gbrds.gbif. org/browse/agent?uuid=28c1c18b-64d8-4691-acdb-73e5653292f8 Resource Citation: University of Navarra (2014) Hidalgo Fishes: Dataset on freshwater fishes of Hidalgo state (Mexico) in the MZNA fish collection of the University of Navarra (Spain). 7403 data records. Contributed by Galicia D, Miranda R, Monks S, Pulido-Flores G, Ariño AH, Amezcua A, Imas M, Chaves A, Escala MC, Alemán-García B, Escorcia- Ignacio R, Vilches A, Bautista-Hernández CE, Leunda PM, Gaspar S and A López-Morales.
    [Show full text]
  • REVIEW PAPER the Evolution of Reproductive and Genomic Diversity in Ray-Finned Fishes: Insights from Phylogeny and Comparative A
    Journal of Fish Biology (2006) 69, 1–27 doi:10.1111/j.1095-8649.2006.01132.x, available online at http://www.blackwell-synergy.com REVIEW PAPER The evolution of reproductive and genomic diversity in ray-finned fishes: insights from phylogeny and comparative analysis J. E. MANK*† AND J. C. AVISE‡ *Department of Genetics, Life Sciences Building, University of Georgia, Athens, GA 30602, U.S.A. and ‡Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, U.S.A. (Received 24 January 2006, Accepted 20 March 2006) Collectively, ray-finned fishes (Actinopterygii) display far more diversity in many reproductive and genomic features than any other major vertebrate group. Recent large-scale comparative phylogenetic analyses have begun to reveal the evolutionary patterns and putative causes for much of this diversity. Several such recent studies have offered clues to how different reproductive syndromes evolved in these fishes, as well as possible physiological and genomic triggers. In many cases, repeated independent origins of complex reproductive strategies have been uncovered, probably reflecting convergent selection operating on common suites of underlying genes and hormonal controls. For example, phylogenetic analyses have uncovered multiple origins and predominant transitional pathways in the evolution of alternative male reproductive tactics, modes of parental care and mechanisms of sex determination. They have also shown that sexual selection in these fishes is repeatedly associated with particular reproductive strategies. Collectively, studies on reproductive and genomic diversity across the Actinopterygii illustrate both the strengths and the limitations of comparative phylogenetic approaches on large taxonomic scales. # 2006 The Authors Journal compilation # 2006 The Fisheries Society of the British Isles Key words: comparative method; genome evolution; mating behaviour; sexual selection; supertree; taxonomic diversification.
    [Show full text]
  • Estudios En Biodiversidad, Volumen I Griselda Pulido-Flores Universidad Autónoma Del Estado De Hidalgo, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Zea E-Books Zea E-Books 11-24-2015 Estudios en Biodiversidad, Volumen I Griselda Pulido-Flores Universidad Autónoma del Estado de Hidalgo, [email protected] Scott onkM s Universidad Autónoma del Estado de Hidalgo, [email protected] Maritza López-Herrera Universidad Autónoma del Estado de Hidalgo Follow this and additional works at: http://digitalcommons.unl.edu/zeabook Part of the Biodiversity Commons, Food Science Commons, Fungi Commons, Marine Biology Commons, Parasitology Commons, Pharmacology, Toxicology and Environmental Health Commons, Population Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Pulido-Flores, Griselda; Monks, Scott; and López-Herrera, Maritza, "Estudios en Biodiversidad, Volumen I" (2015). Zea E-Books. Book 35. http://digitalcommons.unl.edu/zeabook/35 This Book is brought to you for free and open access by the Zea E-Books at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Zea E-Books by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Estudios en Biodiversidad Volumen I Editores Griselda Pulido-Flores, Scott Monks, & Maritza López-Herrera Estudios en Biodiversidad Volumen I Editores Griselda Pulido-Flores Scott Monks Maritza López-Herrera Cuerpo Académico de Uso, Manejo y Conservación de la Biodiversidad Zea Books Lincoln, Nebraska 2015 Cuerpo Académico de Uso, Manejo y Conservación de la Biodiversidad Ciudad del Conocimiento Carretera Pachuca-Tulancingo Km 4.5 s/n C. P. 42184, Mineral de la Reforma, Hidalgo, México Text and illustrations copyright © 2015 by the respective authors. All rights reserved. Texto e ilustraciones de autor © 2015 por los respectivos autores.
    [Show full text]