Immunoreactivity for Thymosin Beta 4 and Thymosin Beta

Total Page:16

File Type:pdf, Size:1020Kb

Immunoreactivity for Thymosin Beta 4 and Thymosin Beta European Journal of Histochemistry 2013; volume 57:e17 Immunoreactivity for thymosin Introduction Correspondence: Sonia Nemolato, Istituto di beta 4 and thymosin beta 10 Anatomia Patologica, Dipartimento di Scienze in the adult rat oro-gastro- Beta thymosins are a versatile family of Chirurgiche, PO S. Giovanni di Dio, Università di intestinal tract small peptides expressed in multiple tissues in Cagliari, via Università 60, 09124 Cagliari, Italy. mammals, that show many intracellular and Tel. +39.070.6092370 - Fax: +39.070.657882. extracellular activities.1,2 These peptides are E-mail: [email protected] S. Nemolato,1 J. Ekstrom,2 T. Cabras,3 named thymosins after their first isolation in C. Gerosa,1 D. Fanni,1 E. Di Felice,1 Key words: rats, thymosin beta 4, thymosin beta the calf thymus.3 Fifteen highly homologous 1 3 4 10, immunohistochemistry, gastrointestinal tract. A. Locci, I. Messana, M. Castagnola, beta thymosin variants, containing 40 to 44 G. Faa1 4 amino acid residues, have been described. Contributions: SN, GF, research design and man- 1Istituto di Anatomia Patologica, Among beta thymosins, thymosin beta 4 uscript writing; JE, CM, IM, critical review; TC, 5,6 7 Dipartimento di Scienze Chirurgiche, PO (Tβ4) and thymosin beta 10 (Tβ10) are the CG, DF, EDF, AL, data analysis and research per- 8 forming. S. Giovanni di Dio, Università di Cagliari, most abundant in human cells and rat tissues. During the years, beta thymosins have been Italy; 2Division of Pharmacology, Institute detected inside of cells of different organs,9-14 Conflict of interests: the authors declare no con- of Neuroscience and Physiology, as well as in human blood,15 in human saliva,16 flict of interests. Sahlgrenska Academy, University in tears17 and in wound fluid after abdominal Acknowledgments: this work has been supported of Gothenburg, Sweden; 18 surgery. Many physiological properties and by “Fondazione Banco di Sardegna”. The authors 3Dipartimento di Scienze della Vita e cellular functions are connected to Tβ4: G- would like to thank Mr. Ignazio Ferru for the sec- dell’Ambiente, Università di Cagliari, actin-sequestering,1 promotion of cell migra- retarial assistance. The authors also gratefully Italy; 4Istituto di Biochimica e Biochimica tion,8 angiogenesis,9,19 stem cell differentia- acknowledge the Sardinia Regional Government Clinica, Facoltà di Medicina, Università tion,11 modulation of cytokines and for the financial support (P.O.R. Sardegna F.S.E. 20 Cattolica di Roma, Italy chemokines. This peptide is also involved in Operational Programme of the Autonomous lesion-induced neuroplasticity through Region of Sardinia, European Social Fund 2007- microglia upregulation and it participates in 2013 - Axis IV Human Resources, Objective l.3, the growth of neuronal processes.21 Therefore, Line of Activity l.3.1 Avviso di chiamata per il finanziamento di Assegni di Ricerca). Abstract the mRNA encoding for Tβ4 is expressed in mouse embryonic stem cells and in mesoder- Received for publication: 21 January 2013. 22 mal-like cells (cardiac and skeletal muscle). Accepted for publication: 5 April 2013. Thymosin beta 4 (Tβ4) and thymosin beta Moreover, recent studies demonstrated a role 10 (T 10) are two members of the -thymosin This work is licensed under a Creative Commons β β of Tβ4 in inducing the expression of the vascu- family, involved in multiple cellular activities lar endothelial growth factor (VEGF) in colon Attribution NonCommercial 3.0 License (CC BY- in different organs in multiple animal species. 19 NC 3.0). cancer cells in experimental models. Tβ4 also Here we report the expression pattern of T 4 β partecipates to the modulation of human ©Copyright S. Nemolato et al., 2013 23 and Tβ10 in rat tissues, in the gut and in colonic immune system probably through Licensee PAGEPress, Italy annexed glands. The two peptide were differ- degranulation of mucosal mast cells.24 European Journal of Histochemistry 2013; 57:e17 ently expressed: Tβ4 was absent in salivary Contrasting results have been published on doi:10.4081/ejh.2013.e17 glands whereas Tβ10 was expressed in parotid the role of Tβ10 in tumour progression. On and in submandibular glands. Tβ4 was mildly one hand, Tβ10 diminishes tumor growth, 25 expressed in the tongue and in the esophagus, angiogenesis and proliferation and Tβ10 over-expression has been related to the where Tβ10 was absent. A similar expression was found in the stomach, ileum and colon increase of apoptosis in human ovarian cancer Materials and Methods cells.25 On the other hand, T 10 has been asso- mucosa. In pancreas Tβ4 reactivity was β restricted to the Langerhans islet cells; T 4 ciated to the progression of papillary thyroid In order to test Tβ4 and Tβ10 immunoreac- β 26 was also detected in the exocrine cells. Both carcinoma and over-expression of the peptide tivity in animals, 20 male wistar rats were the object of our study, divided into 10 male and 10 peptide were not expressed in liver cells. When has been observed in non-small cell lung can- cer27 and in pancreatic cancer. 28 The recent female. Tissues were obtained from each ani- the rat expression pattern in rat organs was report by our group of a strong expression for mal including samples from tongue, esopha- compared to reactivity for T 4 and T 10 in β β T 10 in the human salivary glands during gus, stomach, ileum, colon, parotid gland, sub- humans, marked differences were found. Our β development,29 induced us to better analyse mandibular gland, sublingual gland, liver and data clearly indicate a species-specific expres- the protein expression pattern for Tβ10 in the pancreas. All samples were fixed in 10% forma- sion of Tβ4 and Tβ10, characterized by the oro-gastro-intestinal tract in adult rats, in lin, paraffin-embedded and routinely processed. actual unpredictability of the expression of order to show if T 10 is expressed in the gas- Paraffin sections were immunostained with these peptides in different cells and tissues. β trointestinal tract in adulthood, and to com- anti-Tβ4 and anti-Tβ10 antibodies, using the The common high expression of Tβ4 in mast pare the expression of this peptide with that labeled streptavidin-biotin complex system cells, both in humans and in rats, represents reported in the human digestive tract and in (LSAB2, Dako, Cytomation, Carpinteria, CA, one of the few similarities between these two annexed glands.24,30,31 Moreover, rat tissues USA) in a Dako Autostainer (Dako). Briefly, species. were immunostained for Tβ4, with the aim of samples were deparaffinized, rehydrated, and verifying the reciprocal interactions of Tβ4 endogenous peroxidase activity was quenced and Tβ10 in the oro-gastrointestinal tract. (30 min) by 0.3% hydrogen peroxide in [page 106] [European Journal of Histochemistry 2013; 57:e17] Original Paper methanol. Slides were then subjected to heat- Table 1. Immunoreactivity for thymosin beta 4 (Tβ4) and thymosin beta 10 (Tβ10) in induced antigen retrieval by steaming rat tissues and humans. unstained sections in a Target Retrieval Organ Tβ4 Rat Tβ10 Rat Tβ4 Human Tβ10 Human Solution (Dako TRS pH 6.1) for 30 min. Slides were then incubated with 10% normal goat Parothyd - +++ ++ serum in phosphate-buffered saline (PBS) for Submandibular gland - +++ ++ 60 min to block non-specific binding, followed Sublingual gland --++ by incubation (60 min at room temperature) Tongue +-+++ with a monoclonal anti-Thymosin Beta 4 anti- Oesofagus --+- body (Bachem-Peninsula Lab, San Carlos, CA, Stomach +++- USA) and with a monoclonal anti-Thymosin Ileum +++- Beta 10, respectively diluted 1:600 and 1:500 in Colon ++++ - the blocking solution. Slides were extensively washed with PBS containing 0.01% Triton X- Pancreas + ++ ++ + 100 and incubated with a secondary reagent Liver --+++ +++ Figure 1. Parotid. a) No immunoreactivity for T 4 is detected in Figure 2. Submandibular glands. a) T 4 is not expressed in the the parotid gland; scattered mast cells are stronglyβ immunoreac- structures of the submandibular glands;β only a fine positivity tive for the peptide; OM 250x. b) A granular and diffuse positiv- could be detectable in the surrounding stroma; mast cells show a ity for T 10 is observed in all the acinar structures; ductal cells strong granular cytoplasmic positivity (yellow arrows); OM 400x. show an βapical and homogeneous reactivity for the peptide; OM b) Coarse granules of T 10 are observed in the acini of the sub- 400x. mandibular gland (yellowβ arrows); ductal cells present a fine cyto- plasmic immunoreactivity for the peptide mainly localized in the lumen (red arrows); OM 400x. [European Journal of Histochemistry 2013; 57:e17] [page 107] Original Paper (En Vision kit) according with the manufactur- er instructions (Dako, Glostrup, Denmark). Diaminobenzidine (DAB) was used as chro- mogen. After additional washes, colour was developed using the AEC reagent (Dako), sec- tions were counterstained with Mayer’s hema- toxylin and mounted. Sections of reactive lymph nodes with Tβ4-immunoreactive histio- cytes were utilized as a positive control. As a negative control, the same procedure was applied omitting the primary antibody. Results Parotid Tβ4 immunoreactivity was completely Figure 3. Tongue. A weak immunoreactivity for T 4 is observed only in the superficial absent both in acini and in ducts (Figure 1a). layers of the tongue’s epithelium; a weak immunostainingβ for the peptide was observed in cell membranes of muscle cells (see inset, yellow arrows); OM 250x. Tβ10 was expressed both in acinar serous Figure 4. Stomach. a) Immunoreactivity for T 4 is expressed in Figure 5. Ileum. a,b) T 4 and T 10 are detected in the surface scattered foveolar cells (see inset, yellow arrows)β and in the lumi- epithelium of enterocytesβ coveringβ the villi of the ileum (see nal surface of the stomach; OM 400x. b) T 10 is mainly localized inset, black arrows); OM 400x.
Recommended publications
  • Identification of Molecules Relevant for the Invasiveness of Fibrosarcomas and Melanomas
    Helsinki University Biomedical Dissertations No. 148 IDENTIFICATION OF MOLECULES RELEVANT FOR THE INVASIVENESS OF FIBROSARCOMAS AND MELANOMAS Pirjo Nummela Department of Pathology Haartman Institute Faculty of Medicine and Division of Biochemistry Department of Biosciences Faculty of Biological and Environmental Sciences University of Helsinki Finland Academic dissertation To be presented for public examination with the permission of the Faculty of Biological and Environmental Sciences of the University of Helsinki in the Lecture Hall 2 of Haartman Institute (Haartmaninkatu 3, Helsinki), on 13.5.2011 at 12 o’clock noon. Helsinki 2011 Supervisor Docent Erkki Hölttä, M.D., Ph.D. Department of Pathology Haartman Institute University of Helsinki Thesis committee Docent Jouko Lohi, M.D., Ph.D. Department of Pathology Haartman Institute University of Helsinki and Pirjo Nikula-Ijäs, Ph.D. Division of Biochemistry Department of Biosciences University of Helsinki Reviewers Professor Veli-Matti Kähäri, M.D., Ph.D. Department of Dermatology University of Turku and Turku University Hospital and Docent Jouko Lohi, M.D., Ph.D. Opponent Professor Jyrki Heino, M.D., Ph.D. Department of Biochemistry and Food Chemistry University of Turku Custos Professor Kari Keinänen, Ph.D. Division of Biochemistry Department of Biosciences University of Helsinki ISBN 978-952-92-8821-2 (paperback) ISBN 978-952-10-6924-6 (PDF) ISSN 1457-8433 http://ethesis.helsinki.fi Helsinki University Print Helsinki 2011 To Juha, Joona, and Joel TABLE OF CONTENTS LIST OF ORIGINAL PUBLICATIONS
    [Show full text]
  • Targeting the Phosphatidylinositide-3 Kinase Pathway and the Mitogen
    Targeting the Phosphatidylinositide-3 Kinase Pathway and the Mitogen-Activated-Protein Kinase Pathway through Thymosin-β4, Exercise, and Negative Regulators to Promote Retinal Ganglion Cell Survival or Regeneration by Mark Magharious A thesis submitted in conformity with the requirements for the degree of Master of Science Rehabilitation Sciences Institute University of Toronto © Copyright by Mark Magharious 2015 Targeting the Phosphatidylinositide-3 Kinase Pathway and the Mitogen-Activated-Protein Kinase Pathway through Thymosin-β4, Exercise, and Negative Regulators to Promote Retinal Ganglion Cell Survival or Regeneration Mark Magharious Master of Science Rehabilitation Sciences Institute University of Toronto 2015 Abstract The phosphatidylinositide-3 kinase (PI3K) and mitogen-activated-protein kinase (MAPK) pathways mediate cellular survival in the presence of apoptotic stimuli. These pathways are known to promote the survival of injured retinal ganglion cells (RGCs), central nervous system neurons that project visual information from the retina to the brain. Injury to the optic nerve triggers apoptosis of RGCs. This work demonstrates that Thymosin-β4, a peptide involved in actin sequestration, both enhances RGC survival after injury and increases axonal regeneration. Moreover, Thymosin-β4 modulates the PI3K and MAPK pathways. In addition, this study demonstrates that exercise reduces apoptosis of injured RGCs, and explores the function of the PI3K and MAPK pathways in this process. Finally, small peptides are used to interfere with the functions of PTEN, a negative regulator of the PI3K pathway, as well as Erbin and BCR, negative regulators in the MAPK pathway. These peptides enhance RGC survival and axonal regeneration after injury. ii Acknowledgments I would like to take this opportunity to recognize all those who helped me through the process of researching and writing this thesis.
    [Show full text]
  • Sized Neuropeptides
    M ETHODS IN MOLECULAR BIOLOGY™ Series Editor John M. Walker School of Life Sciences University of Hertfordshire Hatfield, Hertfordshire, AL10 9AB, UK For further volumes: http://www.springer.com/series/7651 Neuropeptides Methods and Protocols Edited by Adalberto Merighi Dipartimento di Morfofisiologia Veterinaria, Università degli Studi di Torino, Grugliasco, TO, Italy; Istituto Nazionale di Neuroscienze (INN), Università degli Studi di Torino, Grugliasco, TO, Italy Editor Adalberto Merighi Dipartimento di Morfofisiologia Veterinaria Università degli Studi di Torino and Istituto Nazionale di Neuroscienze (INN) Università degli Studi di Torino Grugliasco, TO, Italy [email protected] Please note that additional material for this book can be downloaded from http://extras.springer.com ISSN 1064-3745 e-ISSN 1940-6029 ISBN 978-1-61779-309-7 e-ISBN 978-1-61779-310-3 DOI 10.1007/978-1-61779-310-3 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011936011 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Humana Press, c/o Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.
    [Show full text]
  • Deer Thymosin Beta 10 Functions As a Novel Factor for Angiogenesis And
    Zhang et al. Stem Cell Research & Therapy (2018) 9:166 https://doi.org/10.1186/s13287-018-0917-y RESEARCH Open Access Deer thymosin beta 10 functions as a novel factor for angiogenesis and chondrogenesis during antler growth and regeneration Wei Zhang1,2†, Wenhui Chu1,2†, Qingxiu Liu1,2†, Dawn Coates3, Yudong Shang1,2 and Chunyi Li1,2* Abstract Background: Deer antlers are the only known mammalian organ with vascularized cartilage that can completely regenerate. Antlers are of real significance as a model of mammalian stem cell-based regeneration with particular relevance to the fields of chondrogenesis, angiogenesis, and regenerative medicine. Recent research found that thymosin beta 10 (TMSB10) is highly expressed in the growth centers of growing antlers. The present study reports here the expression, functions, and molecular interactions of deer TMSB10. Methods: The TMSB10 expression level in both tissue and cells in the antler growth center was measured. The effects of both exogenous (synthetic protein) and endogenous deer TMSB10 (lentivirus-based overexpression) on antlerogenic periosteal cells (APCs; nonactivated antler stem cells with no basal expression of TMSB10) and human umbilical vein endothelial cells (HUVECs; endothelial cells with no basal expression of TMSB10) were evaluated to determine whether TMSB10 functions on chondrogenesis and angiogenesis. Differences in deer and human TMSB10 in angiogenesis and molecular structure were determined using animal models and molecular dynamics simulation, respectively. The molecular mechanisms underlying deer TMSB10 in promoting angiogenesis were also explored. Results: Deer TMSB10 was identified as a novel proangiogenic factor both in vitro and in vivo. Immunohistochemistry revealed that TMSB10 was widely expressed in the antler growth center in situ, with the highest expression in the reserve mesenchyme, precartilage, and transitional zones.
    [Show full text]
  • Maccarrone-G.Pdf
    Journal of Chromatography B, 1047 (2017) 131–140 Contents lists available at ScienceDirect Journal of Chromatography B jou rnal homepage: www.elsevier.com/locate/chromb MALDI imaging mass spectrometry analysis—A new approach for protein mapping in multiple sclerosis brain lesions a,b,1 a,1 c Giuseppina Maccarrone , Sandra Nischwitz , Sören-Oliver Deininger , a d,e d Joachim Hornung , Fatima Barbara König , Christine Stadelmann , b,1 a,f,∗,1 Christoph W. Turck , Frank Weber a Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany b Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Germany c Bruker Daltonik GmbH, Fahrenheitstr. 4, 28359 Bremen, Germany d Institute of Neuropathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany e Institut für Pathologie, Klinikum Kassel, Mönchebergstr. 41-43, 34125 Kassel, Germany f Medical Park Bad Camberg, Obertorstr. 100-102, 65520 Bad Camberg, Germany a r t i c l e i n f o a b s t r a c t Article history: Multiple sclerosis is a disease of the central nervous system characterized by recurrent inflammatory Received 21 February 2016 demyelinating lesions in the early disease stage. Lesion formation and mechanisms leading to lesion Accepted 1 July 2016 remyelination are not fully understood. Matrix Assisted Laser Desorption Ionisation Mass Spectrom- Available online 1 July 2016 etry imaging (MALDI–IMS) is a technology which analyses proteins and peptides in tissue, preserves their spatial localization, and generates molecular maps within the tissue section. In a pilot study we Keywords: employed MALDI imaging mass spectrometry to profile and identify peptides and proteins expressed in MALDI imaging mass spectrometry normal-appearing white matter, grey matter and multiple sclerosis brain lesions with different extents LC–ESI–MS/MS of remyelination.
    [Show full text]
  • Echinoderm Antimicrobial Peptides to Contrast Human Pathogens
    s Chemis ct try u d & Schillaci and Arizza, Nat Prod Chem Res 2013, 1:2 o r R P e s l e a r a r u DOI: 10.4172/2329-6836.1000109 t c h a N Natural Products Chemistry & Research ISSN: 2329-6836 Review article Open Access Echinoderm Antimicrobial Peptides to Contrast Human Pathogens Domenico Schillaci1* and Vincenzo Arizza1,2 1Dip. STEBICEF, Università degli Studi di Palermo, Via Archirafi 18, - 90123 Palermo, Ital 2Istituto Euromediterraneo di Scienza e Biotecnologia - 90139 Palermo, Italy Abstract Increased attention has been focused in marine invertebrates as a source of bioactive molecules for biomedical applications. Many bioactive molecules are part of the innate immune system. Some more recently isolated compounds, mainly from sea urchin and sea cucumber are antimicrobial peptides (AMP) active against Gram positive, Gram negative and fungi. In this review we described the most recent studies on AMP isolated from echinoderms. The AMP are little peptides <10 kDa with cationic charge and amphipathic structure. Recently, it was demonstrated that in the coelomocyte lysates of Paracentrotus. lividus and Holothuria tubulosa AMP are present with activity against staphylococcal and Pseudomonas aeruginosa antibiofilm. The data show the great potential of application of AMPs in biotechnology for developing novel therapeutic agents and as complements to conventional antibiotic therapy to combat the multi - resistant bacterial strains. Keywords: Antimicrobial peptides; Therapeutic agents; Antibiotic nucleic acids and/or enzymatic proteins, leading to bacterial cell death therapy [10-14]. Moreover, it appears that many AMPs may be multifunctional microbicides, acting simultaneously at the cell membrane and internal Introduction sites [11].
    [Show full text]
  • Views of the NIDA, NINDS Or the National Summed Across the Three Auditory Forebrain Lobule Sec- Institutes of Health
    Xie et al. BMC Biology 2010, 8:28 http://www.biomedcentral.com/1741-7007/8/28 RESEARCH ARTICLE Open Access The zebra finch neuropeptidome: prediction, detection and expression Fang Xie1, Sarah E London2,6, Bruce R Southey1,3, Suresh P Annangudi1,6, Andinet Amare1, Sandra L Rodriguez-Zas2,3,5, David F Clayton2,4,5,6, Jonathan V Sweedler1,2,5,6* Abstract Background: Among songbirds, the zebra finch (Taeniopygia guttata) is an excellent model system for investigating the neural mechanisms underlying complex behaviours such as vocal communication, learning and social interactions. Neuropeptides and peptide hormones are cell-to-cell signalling molecules known to mediate similar behaviours in other animals. However, in the zebra finch, this information is limited. With the newly-released zebra finch genome as a foundation, we combined bioinformatics, mass-spectrometry (MS)-enabled peptidomics and molecular techniques to identify the complete suite of neuropeptide prohormones and final peptide products and their distributions. Results: Complementary bioinformatic resources were integrated to survey the zebra finch genome, identifying 70 putative prohormones. Ninety peptides derived from 24 predicted prohormones were characterized using several MS platforms; tandem MS confirmed a majority of the sequences. Most of the peptides described here were not known in the zebra finch or other avian species, although homologous prohormones exist in the chicken genome. Among the zebra finch peptides discovered were several unique vasoactive intestinal and adenylate cyclase activating polypeptide 1 peptides created by cleavage at sites previously unreported in mammalian prohormones. MS-based profiling of brain areas required for singing detected 13 peptides within one brain nucleus, HVC; in situ hybridization detected 13 of the 15 prohormone genes examined within at least one major song control nucleus.
    [Show full text]
  • FONDS VOOR WETENSCHAPPELIJK ONDERZOEK Vlaanderen 2003
    Boeken zonder publiciteit FONDS VOOR WETENSCHAPPELIJK ONDERZOEK Vlaanderen NATIONAAL FONDS VOOR WETENSCHAPPELIJK ONDERZOEK Interuniversitair Instituut voor Kernwetenschappen Fonds voor Geneeskundig Wetenschappelijk Onderzoek 2003 Lijst der kredietgenieters (Met opgave van hun onderzoeksprogramma en onthaalinstelling) Egmontstraat 5 1000 BRUSSEL Tel. (02) 512.91.10 With English Summary and Abstracts FONDS VOOR WETENSCHAPPELIJK ONDERZOEK Vlaanderen NATIONAAL FONDS VOOR WETENSCHAPPELIJK ONDERZOEK Interuniversitair Instituut voor Kernwetenschappen Fonds voor Geneeskundig Wetenschappelijk Onderzoek 2003 Lijst der kredietgenieters (Met opgave van hun onderzoeksprogramma en onthaalinstelling) Egmontstraat 5 1000 BRUSSEL Tel. (02) 512.91.10 AFKORTINGEN A.R.A. : Algemeen Rijksarchief en K.M.I. : Koninklijk Meteorologisch Rijksarchief in de Provinciën Instituut van België B.I.R.A. : Belgisch Instituut voor K.M.K.G. : Koninklijke Musea voor Ruimte-Aëronomie Kunst en Geschiedenis B.R. : Bibliothèque Royale Albert K.M.M.A. : Koninklijk Museum voor Ier Midden-Afrika C.E.G.E.S. : Centre d’Etudes et de Docu- K.M.S. : Koninklijke Militaire mentation Guerre et Sociétés School contemporaines K.M.S.K.B. : Koninklijke Musea voor C.L.O.Gent: Centrum voor Landbouwkun- Schone Kunsten van België dig Onderzoek - Gent K.S.B. : Koninklijke Sterrenwacht C.O.D.A. : Centrum voor Onderzoek in van België Diergeneeskunde en Agro- K.U.Brussel: Katholieke Universiteit chemie Brussel E.R.M. : Ecole Royale Militaire K.U.Leuven : Katholieke Universiteit E.S.K.E. : Egyptologische Stichting Leuven Koningin Elisabeth L.U.C. : Limburgs Universitair Cen- F.N.R.S. Fonds National de la Recher- trum che Scientifique M.R.A.C. : Musée Royal de l'Afrique F.P.Ms : Faculté Polytechnique de Centrale Mons N.F.W.O.
    [Show full text]
  • \\Win1\Jp\Rapport 2004\Mand2004.3.Wpd
    FONDS VOOR WETENSCHAPPELIJK ONDERZOEK Vlaanderen NATIONAAL FONDS VOOR WETENSCHAPPELIJK ONDERZOEK Interuniversitair Instituut voor Kernwetenschappen Fonds voor Geneeskundig Wetenschappelijk Onderzoek 2004 Lijst der kredietgenieters Egmontstraat 5 Boeken zonder publiciteit 1000 BRUSSEL Tel. (02) 512.91.10 FONDS VOOR WETENSCHAPPELIJK ONDERZOEK Vlaanderen NATIONAAL FONDS VOOR WETENSCHAPPELIJK ONDERZOEK Interuniversitair Instituut voor Kernwetenschappen Fonds voor Geneeskundig Wetenschappelijk Onderzoek 2004 Lijst der kredietgenieters Egmontstraat 5 With English Abstracts 1000 BRUSSEL Tel. (02) 512.91.10 AFKORTINGEN A.R.A. : Algemeen Rijksarchief en Rijksarchief in de Provinciën B.I.R.A. : Belgisch Instituut voor Ruimte-Aëronomie B.R. : Bibliothèque Royale Albert Ier C.E.G.E.S. : Centre d’Etudes et de Documentation Guerre et Sociétés contemporaines C.L.O.Gent : Centrum voor Landbouwkundig Onderzoek - Gent C.O.D.A. : Centrum voor Onderzoek in Diergeneeskunde en Agrochemie E.R.M. : Ecole Royale Militaire E.S.K.E. : Egyptologische Stichting Koningin Elisabeth FNRS : Fonds National de la Recherche Scientifique F.P.Ms : Faculté Polytechnique de Mons F.U.C.A.M. : Faculté Universitaire Catholique de Mons F.U.S.A.Gx : Faculté Universitaire des Sciences Agronomiques de Gembloux F.U.N.D.P. : Facultés Universitaires Notre-Dame de la Paix à Namur F.U.S.L. : Facultés Universitaires Saint-Louis à Bruxelles FWO : Fonds voor Wetenschappelijk Onderzoek - Vlaanderen I.A.P. : Instituut voor het Archeologisch Patrimonium I.B.W. : Instituut voor Bosbouw en Wildbeheer IIKW : Interuniversitair Instituut voor Kernwetenschappen I.M.E.C. : Interuniversitair Micro-elektronica Centrum v.z.w. I.N. : Instituut voor Natuurbehoud I.P.B. : Institu(u)t Pasteur van/du Brussel/Bruxelles I.R.M.
    [Show full text]
  • Number 12 December 2010
    VolumeVolume 14 1 - -Number Number 12 1 MayDecember - September 2010 1997 Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Scope The Atlas of Genetics and Cytogenetics in Oncology and Haematology is a peer reviewed on-line journal in open access, devoted to genes, cytogenetics, and clinical entities in cancer, and cancer-prone diseases. It presents structured review articles ("cards") on genes, leukaemias, solid tumours, cancer-prone diseases, more traditional review articles on these and also on surrounding topics ("deep insights"), case reports in hematology, and educational items in the various related topics for students in Medicine and in Sciences. Editorial correspondance Jean-Loup Huret Genetics, Department of Medical Information, University Hospital F-86021 Poitiers, France tel +33 5 49 44 45 46 or +33 5 49 45 47 67 [email protected] or [email protected] Staff Mohammad Ahmad, Mélanie Arsaban, Houa Delabrousse, Marie-Christine Jacquemot-Perbal, Maureen Labarussias, Vanessa Le Berre, Anne Malo, Catherine Morel-Pair, Laurent Rassinoux, Sylvie Yau Chun Wan - Senon, Alain Zasadzinski. Philippe Dessen is the Database Director, and Alain Bernheim the Chairman of the on-line version (Gustave Roussy Institute – Villejuif – France). The Atlas of Genetics and Cytogenetics in Oncology and Haematology (ISSN 1768-3262) is published 12 times a year by ARMGHM, a non profit organisation, and by the INstitute for Scientific and Technical Information of the French
    [Show full text]
  • Ac-SDKP) and Renal Hemodynamics on Obesity Related Renal Damage" (2018)
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2018 Role of N-acetyl-seryl-aspartyl-lysyl-proline (Ac- SDKP) and renal hemodynamics on obesity related renal damage Mani Maheshwari [email protected] Follow this and additional works at: https://mds.marshall.edu/etd Part of the Biochemical Phenomena, Metabolism, and Nutrition Commons, Medical Pharmacology Commons, and the Nutritional and Metabolic Diseases Commons Recommended Citation Maheshwari, Mani, "Role of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) and renal hemodynamics on obesity related renal damage" (2018). Theses, Dissertations and Capstones. 1195. https://mds.marshall.edu/etd/1195 This Dissertation is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. ROLE OF N-ACETYL-SERYL-ASPARTYL-LYSYL-PROLINE (Ac-SDKP) AND RENAL HEMODYNAMICS ON OBESITY RELATED RENAL DAMAGE A dissertation submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biomedical Sciences by Mani Maheshwari Approved by Dr. Richard Egleton, Committee Chairperson Dr. Oscar Carretero Dr. Todd L. Green Dr. Elsa I. Mangiarua Dr. Travis Salisbury Marshall University August 2018 © 2018 Mani Maheshwari ALL RIGHTS RESERVED iii DEDICATION I would like to dedicate my work to my parents, Mukesh Maheshwari and Madhuri Maheshwari for their unconditional love, motivation, and encouragement. Their untiring support and unfailing trust in me are the reason of what I become today.
    [Show full text]
  • Thymosins Participate in Antibacterial Immunity of Kuruma Shrimp, T Marsupenaeus Japonicus ∗ Xiao-Wu Feng, Li-Jie Huo, Ming-Chong Yang, Jin-Xing Wang, Xiu-Zhen Shi
    Fish and Shellfish Immunology 84 (2019) 244–251 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Thymosins participate in antibacterial immunity of kuruma shrimp, T Marsupenaeus japonicus ∗ Xiao-Wu Feng, Li-Jie Huo, Ming-Chong Yang, Jin-Xing Wang, Xiu-Zhen Shi Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China ARTICLE INFO ABSTRACT Keywords: Thymosins β are actin-binding proteins that play a variety of different functions in inflammatory responses, Thymosin wound healing, cell migration, angiogenesis, and stem cell recruitment and differentiation. In crayfish, thy- Antibacterial mosins participate in antiviral immunology. However, the roles of thymosin during bacterial infection in shrimp Bacterial clearance remain unclear. In the present study, four thymosins were identified from kuruma shrimp, Marsupenaeus japo- Survival nicus, and named as Mjthymosin2, Mjthymosin3, Mjthymosin4, and Mjthymosin5 according the number of their thymosin beta actin-binding motifs. Mjthymosin3 was selected for further study because its expression level was the highest in hemocytes. Expression analysis showed that Mjthymosin3 was upregulated in hemocytes after challenged by Vibrio anguillarum or Staphylococcus aureus. The recombinant Mjthymosin3 protein could inhibit the growth of certain bacteria in an in vitro antibacterial test. Mjthymosins could facilitate external
    [Show full text]