Tracheid Structure in a Primitive Extant Plant Provides an Evolutionary Link to Earliest Fossil Tracheids

Total Page:16

File Type:pdf, Size:1020Kb

Tracheid Structure in a Primitive Extant Plant Provides an Evolutionary Link to Earliest Fossil Tracheids Int. J. Plant Sci. 159(6):881–890. 1998. ᭧ 1998 by The University of Chicago. All rights reserved. 1058-5893/98/5906-0001$03.00 TRACHEID STRUCTURE IN A PRIMITIVE EXTANT PLANT PROVIDES AN EVOLUTIONARY LINK TO EARLIEST FOSSIL TRACHEIDS Martha E. Cook and William E. Friedman1 Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, Colorado 80309, U.S.A. Most attempts to understand the early evolution of tracheids have centered on fossil Silurian and Devonian vascular plants, and these efforts have led to a wealth of new information on early water-conducting cells. All of these early tracheids appear to possess secondary cell wall thickenings composed of two distinct layers: a layer adjacent to the primary cell wall that is prone to degradation (presumably during the process of fossilization) and a degradation-resistant (possibly lignified) layer next to the cell lumen. Developmental studies of secondary wall formation in tracheary elements of extant vascular plants have been confined to highly derived seed plants, and it is evident that the basic structure of these secondary cell wall thickenings does not correspond well to those of tracheids of the Late Silurian and Early Devonian. Significantly, secondary cell wall thickenings of tracheary elements of seed plants are not known to display the coupled degradation-prone and degradation-resistant layers characteristic of tracheids in early tracheophytes. We report a previously unknown pattern of cell wall formation in the tracheids of a living plant. We show that in Huperzia, one of the most primitive extant vascular plants, secondary cell wall deposition in tracheids includes a first-formed layer of wall material that is degradation-prone (“template layer”) and a later-formed degradation-resistant layer (“resistant layer”). These layers match precisely the pattern of wall thickenings in the tracheids of early fossil vascular plants and provide an evolutionary link between tracheids of living vascular plants and those of their earliest fossil ancestors. Moreover, our developmental data provide the essential information for an explicit model of the early evolution of tracheid secondary wall thickenings. Finally, congruence of tracheid structure in extant Huperzia and Late Silurian and Early Devonian vascular plants supports the hypothesis of a single origin of tracheids in land plants. Introduction Edwards 1993). Recent phylogenetic analyses indicate that tra- cheid-bearing plants (tracheophytes) are monophyletic (Ken- The early evolution of vascular plants (tracheophytes) in the rick and Crane 1991, 1997a) and that diversification among Silurian constitutes the first major diversification of photosyn- early tracheophytes produced three major clades (Banks 1975; thetic life on land (Kenrick and Crane 1997a, 1997b). While Kenrick and Crane 1991, 1997a; fig. 1). The earliest members there is evidence for the establishment of terrestrial plant life of each clade are characterized by a distinctive tracheid type by the end of the Ordovician (Gray et al. 1982; Gray 1993), (Kenrick and Crane 1991, 1997a). the fossil record indicates that land plants remained extremely Rhyniopsida is hypothesized to be an early divergent mon- small and structurally simple until the Late Silurian (Knoll and ophyletic clade (or possibly paraphyletic grade) of primitive Rothwell 1981; Gensel and Andrews 1987; Knoll and Niklas vascular plants that is sister to a monophyletic eutracheophyte 1987; Kenrick and Crane 1997a, 1997b). Among the events clade that includes all extant vascular plants as well as many thought to have been associated with the first burst of struc- of their extinct relatives (Kenrick and Crane 1991, 1997a, and tural diversification among land plants is the evolution of tra- references therein). Members of the Rhyniopsida (all extinct) cheids, complex water-conducting cells defined by the presence are characterized by the presence of S-type tracheids, named of lignified cell wall thickenings (Knoll and Rothwell 1981; after the genus Sennicaulis. S-type tracheids have annular or Gensel and Andrews 1987; Knoll and Niklas 1987). helical thickenings and lateral walls that appear to be made Most attempts to understand the early evolution of tracheids of a spongy or reticulate material that may be partially deg- have centered on fossilized Silurian and Devonian vascular radation-resistant in the fossil record (fig. 2). A very thin deg- plants, and these efforts have led to a wealth of new infor- radation-resistant layer of secondary cell wall material with mation on early water-conducting cells (Grierson 1976; Zdeb- micropores appears to overlie the entire spongy layer of wall ska 1982; Kenrick and Edwards 1988; Li 1990; Kenrick and material (Kenrick and Crane 1991; Kenrick et al. 1991). Crane 1991, 1997a; Kenrick et al. 1991; Edwards et al. 1992; The eutracheophyte clade is recognized by the presence of tracheids with a relatively thicker degradation-resistant layer 1 Author for correspondence and reprints; E-mail ned@ of secondary cell wall (Kenrick and Crane 1991, 1997a). Al- colorado.edu. though much work remains to be done on the more precise Manuscript received March 1998; revised manuscript received April 1998. relationships of basal members of the eutracheophyte clade, 881 This content downloaded from 128.103.149.052 on April 12, 2016 13:08:45 PM All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c). 882 INTERNATIONAL JOURNAL OF PLANT SCIENCES similar to G-type tracheids in possessing secondary cell wall thickenings that appear hollow (fig. 2). Although certain aspects of cell wall patterning differ among Late Silurian and Early Devonian S-, G-, and P-type tracheids, all of these early water-conducting cells possess cell wall thick- enings composed of two distinct layers: a degradation-prone layer adjacent to the primary cell wall and a degradation- resistant (possibly lignified) layer next to the cell lumen (fig. 2; Kenrick and Edwards 1988; Kenrick and Crane 1991; Ken- rick et al. 1991; Edwards 1993). Developmental studies of cell wall structure in tracheary elements of extant vascular plants have been confined to highly derived seed plants (Esau et al. 1963, 1966a, 1966b; Wooding and Northcote 1964; Cron- shaw and Bouck 1965; O’Brien and Thimann 1967; Hepler et al. 1970; Esau 1978; Daniel and Nilsson 1984; Uehara and Hogetsu 1993; Fineran 1997), and it is evident that basic fea- tures of cell wall structure in tracheary elements of seed plants do not correspond well to those of S-, G-, and P-type tracheids of the Late Silurian and Early Devonian. Electron micrographs of tracheary elements in conifers and angiosperms depict cell wall thickenings with a three-layered secondary cell wall (S1, S2, and S3 layers), and these layers of secondary wall are all heavily lignified, differing mostly in the orientation (angle) of Fig. 1 Hypothesis of phylogenetic relationships among the three microfibril deposition (Boudet et al. 1995). Thus, tracheary major vascular plant lineages (Kenrick and Crane 1997a). Rhyniopsida elements of extant seed plants do not exhibit the prominent is sister to the eutracheophytes. Lycophytina, including the extant ly- copsids, is the sister group to Euphyllophytina, which includes all other degradation-prone (possibly unlignified) layer of cell wall ma- extant vascular plants. Huperzia is a basal extant member of the terial that is characteristic of tracheids in early tracheophytes. Lycophytina. A connection between the hollow wall thickenings of early fossil tracheids and a possibly unlignified core in the secondary wall thickenings of basal extant vascular plants (Bierhorst two main lineages have been recognized: the Lycophytina (ly- 1958, 1960) has previously been suggested by several paleo- copsids and their extinct ancestors or close relatives, the zos- botanists (Brauer 1980; Taylor 1986; Kenrick and Edwards terophylls; Niklas and Banks 1990; Gensel 1992), whose ear- 1988; Kenrick and Crane 1991, 1997a; Kenrick et al. 1991). liest members have G-type tracheids, and the Euphyllophytina On the basis of a series of light microscope level studies of (the extinct trimerophytes, ferns, sphenopsids, psilophytes, mature tracheids, Bierhorst (1958, 1960) reported an “unlig- progymnosperms, and seed plants), whose earliest (trimero- nified or very faintly lignified” core in the interior of annular phyte) members have P-type tracheids (Kenrick and Crane or helical thickenings in Lycopodium and other basal extant vascular plants (Equisetum and Osmunda). Bierhorst (1958, 1997a). 1960) was uncertain as to whether these putatively unlignified G-type tracheids, named after the zosterophyll genus Gos- or faintly lignified wall layers consisted of primary or second- slingia, have annular or helical wall thickenings that exhibit ary walls. No photomicrographs of the reported unlignified two layers: a carbonaceous dark layer closest to the cell lumen core in the tracheid walls of primitive vascular plants were and a light layer that appears to represent a mineralized hollow published (Bierhorst 1958, 1960), so it is impossible to eval- core of each thickening (fig. 2; Kenrick and Edwards 1988; uate the specific nature of these observations. Studies of tra- Kenrick and Crane 1991; Kenrick et al. 1991). Between the cheid wall development among seedless vascular plants have spiral thickenings is a degradation-resistant layer of wall ma- not been undertaken in modern times. terial with irregularly shaped holes
Recommended publications
  • RI Equisetopsida and Lycopodiopsida.Indd
    IIntroductionntroduction byby FFrancisrancis UnderwoodUnderwood Rhode Island Equisetopsida, Lycopodiopsida and Isoetopsida Special Th anks to the following for giving permission for the use their images. Robbin Moran New York Botanical Garden George Yatskievych and Ann Larson Missouri Botanical Garden Jan De Laet, plantsystematics.org Th is pdf is a companion publication to Rhode Island Equisetopsida, Lycopodiopsida & Isoetopsida at among-ri-wildfl owers.org Th e Elfi n Press 2016 Introduction Formerly known as fern allies, Horsetails, Club-mosses, Fir-mosses, Spike-mosses and Quillworts are plants that have an alternate generation life-cycle similar to ferns, having both sporophyte and gametophyte stages. Equisetopsida Horsetails date from the Devonian period (416 to 359 million years ago) in earth’s history where they were trees up to 110 feet in height and helped to form the coal deposits of the Carboniferous period. Only one genus has survived to modern times (Equisetum). Horsetails Horsetails (Equisetum) have jointed stems with whorls of thin narrow leaves. In the sporophyte stage, they have a sterile and fertile form. Th ey produce only one type of spore. While the gametophytes produced from the spores appear to be plentiful, the successful reproduction of the sporophyte form is low with most Horsetails reproducing vegetatively. Lycopodiopsida Lycopodiopsida includes the clubmosses (Dendrolycopodium, Diphasiastrum, Lycopodiella, Lycopodium , Spinulum) and Fir-mosses (Huperzia) Clubmosses Clubmosses are evergreen plants that produce only microspores that develop into a gametophyte capable of producing both sperm and egg cells. Club-mosses can produce the spores either in leaf axils or at the top of their stems. Th e spore capsules form in a cone-like structures (strobili) at the top of the plants.
    [Show full text]
  • Huperzine a from Huperzia Species—An Ethnopharmacolgical Review Xiaoqiang Ma A,B, Changheng Tan A, Dayuan Zhu A, David R
    Huperzine A from Huperzia species—An ethnopharmacolgical review Xiaoqiang Ma a,b, Changheng Tan a, Dayuan Zhu a, David R. Gang b, Peigen Xiao c,∗ a State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, PR China b Department of Plant Sciences and BIO5 Institute, The University of Arizona, 303 Forbes Building, Tucson, AZ 85721-0036, USA c Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100094, PR China Abstract Huperzine A (HupA), isolated originally from a traditional Chinese medicine Qiang Ceng Ta, whole plant of Huperzia serrata (Thunb. ex Murray) Trev., a member of the Huperziaceae family, has attracted intense attention since its marked anticholinesterase activity was discovered by Chinese scientists. Several members of the Huperziaceae (Huperzia and Phlegmariurus species) have been used as medicines in China for contusions, strains, swellings, schizophrenia, myasthenia gravis and organophosphate poisoning. HupA has been marketed in China as a new drug for Alzheimer’s disease (AD) treatment and its derivative ZT-1 is being developed as anti-AD new drug candidate both in China and in Europe. A review of the chemistry, bioactivities, toxicology, clinical trials and natural resources of HupA source plants is presented. Keywords: Huperzine A; ZT-1; Alzheimer’s disease; Huperzia serrata; Huperziaceae; Drug discovery; Bioactivities; Clinical trials; Traditional Chinese
    [Show full text]
  • National List of Vascular Plant Species That Occur in Wetlands 1996
    National List of Vascular Plant Species that Occur in Wetlands: 1996 National Summary Indicator by Region and Subregion Scientific Name/ North North Central South Inter- National Subregion Northeast Southeast Central Plains Plains Plains Southwest mountain Northwest California Alaska Caribbean Hawaii Indicator Range Abies amabilis (Dougl. ex Loud.) Dougl. ex Forbes FACU FACU UPL UPL,FACU Abies balsamea (L.) P. Mill. FAC FACW FAC,FACW Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. NI NI NI NI NI UPL UPL Abies fraseri (Pursh) Poir. FACU FACU FACU Abies grandis (Dougl. ex D. Don) Lindl. FACU-* NI FACU-* Abies lasiocarpa (Hook.) Nutt. NI NI FACU+ FACU- FACU FAC UPL UPL,FAC Abies magnifica A. Murr. NI UPL NI FACU UPL,FACU Abildgaardia ovata (Burm. f.) Kral FACW+ FAC+ FAC+,FACW+ Abutilon theophrasti Medik. UPL FACU- FACU- UPL UPL UPL UPL UPL NI NI UPL,FACU- Acacia choriophylla Benth. FAC* FAC* Acacia farnesiana (L.) Willd. FACU NI NI* NI NI FACU Acacia greggii Gray UPL UPL FACU FACU UPL,FACU Acacia macracantha Humb. & Bonpl. ex Willd. NI FAC FAC Acacia minuta ssp. minuta (M.E. Jones) Beauchamp FACU FACU Acaena exigua Gray OBL OBL Acalypha bisetosa Bertol. ex Spreng. FACW FACW Acalypha virginica L. FACU- FACU- FAC- FACU- FACU- FACU* FACU-,FAC- Acalypha virginica var. rhomboidea (Raf.) Cooperrider FACU- FAC- FACU FACU- FACU- FACU* FACU-,FAC- Acanthocereus tetragonus (L.) Humm. FAC* NI NI FAC* Acanthomintha ilicifolia (Gray) Gray FAC* FAC* Acanthus ebracteatus Vahl OBL OBL Acer circinatum Pursh FAC- FAC NI FAC-,FAC Acer glabrum Torr. FAC FAC FAC FACU FACU* FAC FACU FACU*,FAC Acer grandidentatum Nutt.
    [Show full text]
  • Species List For: Labarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey
    Species List for: LaBarque Creek CA 750 Species Jefferson County Date Participants Location 4/19/2006 Nels Holmberg Plant Survey 5/15/2006 Nels Holmberg Plant Survey 5/16/2006 Nels Holmberg, George Yatskievych, and Rex Plant Survey Hill 5/22/2006 Nels Holmberg and WGNSS Botany Group Plant Survey 5/6/2006 Nels Holmberg Plant Survey Multiple Visits Nels Holmberg, John Atwood and Others LaBarque Creek Watershed - Bryophytes Bryophte List compiled by Nels Holmberg Multiple Visits Nels Holmberg and Many WGNSS and MONPS LaBarque Creek Watershed - Vascular Plants visits from 2005 to 2016 Vascular Plant List compiled by Nels Holmberg Species Name (Synonym) Common Name Family COFC COFW Acalypha monococca (A. gracilescens var. monococca) one-seeded mercury Euphorbiaceae 3 5 Acalypha rhomboidea rhombic copperleaf Euphorbiaceae 1 3 Acalypha virginica Virginia copperleaf Euphorbiaceae 2 3 Acer negundo var. undetermined box elder Sapindaceae 1 0 Acer rubrum var. undetermined red maple Sapindaceae 5 0 Acer saccharinum silver maple Sapindaceae 2 -3 Acer saccharum var. undetermined sugar maple Sapindaceae 5 3 Achillea millefolium yarrow Asteraceae/Anthemideae 1 3 Actaea pachypoda white baneberry Ranunculaceae 8 5 Adiantum pedatum var. pedatum northern maidenhair fern Pteridaceae Fern/Ally 6 1 Agalinis gattingeri (Gerardia) rough-stemmed gerardia Orobanchaceae 7 5 Agalinis tenuifolia (Gerardia, A. tenuifolia var. common gerardia Orobanchaceae 4 -3 macrophylla) Ageratina altissima var. altissima (Eupatorium rugosum) white snakeroot Asteraceae/Eupatorieae 2 3 Agrimonia parviflora swamp agrimony Rosaceae 5 -1 Agrimonia pubescens downy agrimony Rosaceae 4 5 Agrimonia rostellata woodland agrimony Rosaceae 4 3 Agrostis elliottiana awned bent grass Poaceae/Aveneae 3 5 * Agrostis gigantea redtop Poaceae/Aveneae 0 -3 Agrostis perennans upland bent Poaceae/Aveneae 3 1 Allium canadense var.
    [Show full text]
  • On the Presence of North American Clubmoss Huperzia Lucidula (Lycopodiaceae) in China: an Intercontinental Disjunction Or Misidentification
    Phytotaxa 219 (3): 243–252 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.219.3.4 On the presence of North American clubmoss Huperzia lucidula (Lycopodiaceae) in China: An intercontinental disjunction or misidentification NAWAL SHRESTHA1,2 & XIAN-CHUN ZHANG1,3 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Corresponding author, email: [email protected] Abstract The North American shining clubmoss, Huperzia lucidula, was originally thought to be endemic to North America. How- ever it was reported from China by Ren Chang Ching in 1981, and hence was believed to have a disjunct distribution in North America and Asia. Since then, in all Chinese literature H. lucidula has been described as a disjunct taxon, although in North American literature it has nearly always only been reported from eastern North America. The studies on the Chinese taxon are at present insufficient to address this taxonomical and biogeographical disparity. In this study we have attempted to unravel this issue using integrative morphological and molecular analyses. Morphological study included a thorough examination of specimens from the entire distribution range of H. lucidula in the USA, Canada and China following field collections. Molecular study included Maximum Likelihood and Bayesian inference phylogenetical analyses of three chlo- roplast markers: the genes rbcL and matK and the psbA-trnH intergenic spacer. The results showed distinct morphological differences between the North American and Chinese taxa, sufficient to recognize them as separate species.
    [Show full text]
  • Floristic Quality Assessment Report
    FLORISTIC QUALITY ASSESSMENT IN INDIANA: THE CONCEPT, USE, AND DEVELOPMENT OF COEFFICIENTS OF CONSERVATISM Tulip poplar (Liriodendron tulipifera) the State tree of Indiana June 2004 Final Report for ARN A305-4-53 EPA Wetland Program Development Grant CD975586-01 Prepared by: Paul E. Rothrock, Ph.D. Taylor University Upland, IN 46989-1001 Introduction Since the early nineteenth century the Indiana landscape has undergone a massive transformation (Jackson 1997). In the pre-settlement period, Indiana was an almost unbroken blanket of forests, prairies, and wetlands. Much of the land was cleared, plowed, or drained for lumber, the raising of crops, and a range of urban and industrial activities. Indiana’s native biota is now restricted to relatively small and often isolated tracts across the State. This fragmentation and reduction of the State’s biological diversity has challenged Hoosiers to look carefully at how to monitor further changes within our remnant natural communities and how to effectively conserve and even restore many of these valuable places within our State. To meet this monitoring, conservation, and restoration challenge, one needs to develop a variety of appropriate analytical tools. Ideally these techniques should be simple to learn and apply, give consistent results between different observers, and be repeatable. Floristic Assessment, which includes metrics such as the Floristic Quality Index (FQI) and Mean C values, has gained wide acceptance among environmental scientists and decision-makers, land stewards, and restoration ecologists in Indiana’s neighboring states and regions: Illinois (Taft et al. 1997), Michigan (Herman et al. 1996), Missouri (Ladd 1996), and Wisconsin (Bernthal 2003) as well as northern Ohio (Andreas 1993) and southern Ontario (Oldham et al.
    [Show full text]
  • The Ferns and Their Relatives (Lycophytes)
    N M D R maidenhair fern Adiantum pedatum sensitive fern Onoclea sensibilis N D N N D D Christmas fern Polystichum acrostichoides bracken fern Pteridium aquilinum N D P P rattlesnake fern (top) Botrychium virginianum ebony spleenwort Asplenium platyneuron walking fern Asplenium rhizophyllum bronze grapefern (bottom) B. dissectum v. obliquum N N D D N N N R D D broad beech fern Phegopteris hexagonoptera royal fern Osmunda regalis N D N D common woodsia Woodsia obtusa scouring rush Equisetum hyemale adder’s tongue fern Ophioglossum vulgatum P P P P N D M R spinulose wood fern (left & inset) Dryopteris carthusiana marginal shield fern (right & inset) Dryopteris marginalis narrow-leaved glade fern Diplazium pycnocarpon M R N N D D purple cliff brake Pellaea atropurpurea shining fir moss Huperzia lucidula cinnamon fern Osmunda cinnamomea M R N M D R Appalachian filmy fern Trichomanes boschianum rock polypody Polypodium virginianum T N J D eastern marsh fern Thelypteris palustris silvery glade fern Deparia acrostichoides southern running pine Diphasiastrum digitatum T N J D T T black-footed quillwort Isoëtes melanopoda J Mexican mosquito fern Azolla mexicana J M R N N P P D D northern lady fern Athyrium felix-femina slender lip fern Cheilanthes feei net-veined chain fern Woodwardia areolata meadow spike moss Selaginella apoda water clover Marsilea quadrifolia Polypodiaceae Polypodium virginanum Dryopteris carthusiana he ferns and their relatives (lycophytes) living today give us a is tree shows a current concept of the Dryopteridaceae Dryopteris marginalis is poster made possible by: { Polystichum acrostichoides T evolutionary relationships among Onocleaceae Onoclea sensibilis glimpse of what the earth’s vegetation looked like hundreds of Blechnaceae Woodwardia areolata Illinois fern ( green ) and lycophyte Thelypteridaceae Phegopteris hexagonoptera millions of years ago when they were the dominant plants.
    [Show full text]
  • Native Plants North Georgia
    Native Plants of North Georgia A photo guide for plant enthusiasts Mickey P. Cummings · The University of Georgia® · College of Agricultural and Environmental Sciences · Cooperative Extension CONTENTS Plants in this guide are arranged by bloom time, and are listed alphabetically within each bloom period. Introduction ................................................................................3 Blood Root .........................................................................5 Common Cinquefoil ...........................................................5 Robin’s-Plantain ..................................................................6 Spring Beauty .....................................................................6 Star Chickweed ..................................................................7 Toothwort ..........................................................................7 Early AprilEarly Trout Lily .............................................................................8 Blue Cohosh .......................................................................9 Carolina Silverbell ...............................................................9 Common Blue Violet .........................................................10 Doll’s Eye, White Baneberry ...............................................10 Dutchman’s Breeches ........................................................11 Dwarf Crested Iris .............................................................11 False Solomon’s Seal .........................................................12
    [Show full text]
  • Lycopodiaceae Clubmoss Family
    Lycopodiaceae Page | 46 clubmoss family Upwards of 15 genera comprise this ancient family. Perennial herbs, they somewhat resemble coarse mosses. The solitary sporangia are borne either in a terminal strobilus or are axillary with leaves. Spores are of equal size. In Nova Scotia we have four genera. A. Rhizomes absent; upright stems clustered; axillary sporangia; spores pitted. Huperzia aa. Rhizomes present; upright shoots alternate; sporangia aggregated into B terminal strobili, spores with netlike pattern. B. Strobili on leafy peduncles; mainly of wetland habitats. Lycopodiella bb. Strobili sessile or on peduncles with remote scant leaves; mainly of C dry upland places. C. Tips of stems 5–12mm in diameter; leaves in 6 ranks or Lycopodium more; leaves bristly, free for most of their length, not scalelike. cc. Distal shoots 2–6mm in diameter; leaves in 4–6 ranks, Diphasiastrum strongly overlapping (scalelike) and appressed along the stem with only tips free. Diphasiastrum Holub There are 15–20 species worldwide; numerous hybrids are possible. Generally these clubmosses are northern or subarctic in distribution. Nova Scotia has four species. Rhizomes bear sparse leaves that are reduced to scales, rooting from the lower surfaces. Upright stems are flattened or angled, with 2–5 branches. Leaves are arranged in four ranks and of two sizes. Sporophylls are smaller than unspecialized leaves. 1-7 Lycopodiaceae Key to species A. Plants < 12 cm tall; strobili sessile. Diphasiastrum sitchense Page | 47 aa. Stems 8–50cm; strobili on peduncles. B B. Branches square or angled, bluish. D. tristachyum bb. Branches flat; green. C C. Lateral branches irregular, annual winter bud constrictions D.
    [Show full text]
  • Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers
    International Journal of Molecular Sciences Article Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers Hyeonah Shim 1, Hyeon Ju Lee 1, Junki Lee 1,2, Hyun-Oh Lee 1,2, Jong-Hwa Kim 3, Tae-Jin Yang 1,* and Nam-Soo Kim 4,* 1 Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; [email protected] (H.S.); [email protected] (H.J.L.); [email protected] (J.L.); [email protected] (H.-O.L.) 2 Phyzen Genomics Institute, Seongnam 13558, Korea 3 Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; [email protected] 4 Department of Molecular Bioscience, Kangwon National University, Chuncheon 24341, Korea * Correspondence: [email protected] (T.-J.Y.); [email protected] (N.-S.K.); Tel.: +82-2-880-4547 (T.-J.Y.); +82-33-250-6472 (N.-S.K.) Abstract: The early vascular plants in the genus Selaginella, which is the sole genus of the Selaginel- laceae family, have an important place in evolutionary history, along with ferns, as such plants are valuable resources for deciphering plant evolution. In this study, we sequenced and assembled the plastid genome (plastome) sequences of two Selaginella tamariscina individuals, as well as Se- laginella stauntoniana and Selaginella involvens. Unlike the inverted repeat (IR) structures typically found in plant plastomes, Selaginella species had direct repeat (DR) structures, which were confirmed by Oxford Nanopore long-read sequence assembly.
    [Show full text]
  • Exploring Lycopodiaceae Endophytes, Dendrolycopodium
    EXPLORING LYCOPODIACEAE ENDOPHYTES, DENDROLYCOPODIUM SYSTEMATICS, AND THE FUTURE OF FERN MODEL SYSTEMS A Thesis Presented to the Faculty of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the Degree of Master of Science By Alaina Rousseau Petlewski May 2020 ©2020 Alaina Rousseau Petlewski i ABSTRACT This thesis consists of three chapters addressing disparate topics in seed-free plant biology. Firstly, I begin to describe the endophyte communities of lycophytes by identifying the culturable endophytes of five Lycopodiaceae species. Microbial endophytes are integral factors in plant evolution, ecology, and physiology. However, the endophyte communities of all major groups of land plants have yet to be characterized. Secondly, I begin to re-evaluate the systematics of a historically perplexing genus, Dendrolycopodium (Lycopodiaceae). Lastly, I assess the status of developing fern model systems and discuss possible future directions for this work. ii BIOGRAPHICAL SKETCH Alaina was born in 1995 near Dallas, TX, but was largely raised in central California. In high school, she developed a love of plants and chemistry. She graduated summa cum laude from Humboldt State University in 2017 with a B.S. in botany and minor in chemistry. After graduating from Cornell, she plans to move back to the West Coast. She aspires to find a way to combine her love of plants and admiration for the arts, have a garden, be kind, share her knowledge, and raise poodles with her partner. iii ACKNOWLEDGEMENTS I would like to thank my advisor Fay-Wei Li and committee members Chelsea Specht and Robert Raguso, for their advisement on this work and for supporting me beyond my research pursuits by helping me to discover and act on what is right for me.
    [Show full text]
  • Addendum to the Guide to the Natural Communities of the Delaware Estuary
    ADDENDUM TO THE UIDE TO THE ATURAL OMMUNITIES G N C OF THE DELAWARE ESTUARY SEPTEMBER0 2009 Citation: Largay, E. and L. Sneddon. 2009. Addendum to the Guide to the Ecological Systems and Vegetation Communities of the Delaware Estuary. NatureServe. Arlington, Virginia. Partnership for the Delaware Estuary, Report #09-XX. 112 pp. PDE Report No. 09-XX Copyright © 2009 NatureServe COVER PHOTOS Top L: Overwash Dunes, photo from Delaware Natural Heritage Program Top R: Coastal Plain Muck Pondshore, photo by Kathleen Strakosch Walz, New Jersey Natural Heritage Program Bottom L: Dry Oak Hickory Forest, photo by Tony Davis, Pennsylvania Natural Heritage Program Bottom R: Inland Dune and Ridge Forest/Woodland, Kathleen Strakosch Walz, New Jersey Natural Heritage Program ADDENDUM TO THE GUIDE TO THE NATURAL COMMUNITIES OF THE DELAWARE ESTUARY Ery Largay Lesley Sneddon September 2009 Acknowledgements: This work was made possible through funding from the Delaware Estuary Program (EPA 320 Funding). Kristin Snow and Mary Russo from NatureServe provided essential data management services to develop this report and report format. Robert Coxe and Bill McAvoy from the Delaware Natural Heritage Program, Kathleen Strakosch Walz from the New Jersey Natural Heritage Program, Tony Davis from the Pennsylvania Natural Heritage Program, Linda Kelly and Karl Anderson, independent botanists, provided ecological expertise, energy and insight. Mark Anderson and Charles Ferree from The Nature Conservancy developed ecological systems maps to accompany this work. Danielle Kreeger, Laura Whalen, and Martha-Maxwell Doyle from the Partnership for the Delaware Estuary provided support and guidance throughout this project. We thank everyone who helped us with this effort.
    [Show full text]