Histochemical Studies on Leukocyte Alkaline Phosphatase Activity with Special Reference to Various Types of Hemolytic Disorders

Total Page:16

File Type:pdf, Size:1020Kb

Histochemical Studies on Leukocyte Alkaline Phosphatase Activity with Special Reference to Various Types of Hemolytic Disorders Tohoku J. exp. Med ., 1966, 89, 387-399 Histochemical Studies on Leukocyte Alkaline Phosphatase Activity with Special Reference to Various Types of Hemolytic Disorders Shinobu Sakamoto Departmentof Internal Medicine(Prof. T. Torikai), TohokuUniversity School of Medicine,Sendai Alkaline phosphatase activity of neutrophils was estimated histochemically with special reference to various types of hemolytic disorders. Enzyme activity tended to be lower than normal in all but one of the cases studied . Leukocytes incubated for one hour at 37•Ž in plasma obtained from a patient with paroxysmal nocturnal hemoglobinuria and from a patient with congenital spherocytosis showed a decrease in enzyme activity. When leukocytes were incubated in normal plasma containing bovine hemoglobin, enzyme activity also decreased . Plasma obtained from patients with hyperbilirubinemia caused by bile duct obstruction did not affect enzyme activity in vitro at all. It was concluded from these observations that the low enzyme activity seen in various hemolytic disorders was due to the inhibitory effect of hemoglobin in plasma and not due to indirect bilirubin. Differences in enzyme activity in these hemolytic states were considered to be due to differences in plasma hemoglobin concentration. It was Kaplow1 who first devised a fairly satisfactory, clinically applicable cytochemical staining method for the demonstration of leukocyte alkaline phosphatase activity in blood smears. This method, however, had disadvantages of low sensitivity and ill-defined localization of enzymatic activity. With this method, it is difficult to detect low levels of activity of this enzyme in leukocytes and it is impossible to determine minute differences in enzyme activity. Recently it was disclosed that certain substituted naphthol AS phosphate derivatives2-5 offered most satisfactory staining results because of their sensitivity, specificity and sharp topographical localization of enzymatic activity in cells. Its diagnostic value in certain hematological disorders is well established.5-12 However, little is known about what influence the strength of the activity of this enzyme has on the leukocyte and in what way this enzyme activity is regulated in leukocytes. It is a well known fact that enzyme activity is very low in paroxysmal nocturnal hemoglobinuria.6,10,13-16 However, only a few studies have been presented concerning this enzyme in hemolytic disorders other than paroxysmal nocturnal hemoglobinuria. Tanaka et al.13 reported depressed activity of the Received for publication, April 27, 1966. 387 388 S. Sakamoto enzyme in some cases of acquired hemolytic anemia and sickle-cell anemia. Martinez-Maldonado et al.8 found the same tendency in a case of sickle-cell anemia. On the other hand, Hayhoe and Quaglino7 reported normal or high enzymatic activity in four cases of idiopathic acquired hemolytic anemia. Mitus et al.10 reported normal activity in a case of acquired hemolytic anemia. Hashimoto10 observed normal activity in four cases of congenital spherocytosis and in a case of congenital non-spherocytic hemolytic anemia; and slightly elevated activity in a case of acquired hemolytic anemia with leukemoid reaction. The same observations were made by Leonard et al.9 in acquired auto-immune hemolytic anemia with leukemoid reactions. As cited above, quite different findings have been reported by different investigators. This led the present author to examine leukocyte alkaline phosphatase activity in various types of hemolytic disorders including paroxysmal nocturnal hemoglobinuria and to determine whether any influence of hemolysis on this enzyme activity in leukocytes can be seen. MATERIALS AND METHODS Sources: Thin blood films on glass slides were obtained from 40 healthy subjects (20 males and 20 females), consisting of doctors, nurses and others, ranging from 18 to 53 years in age. The various hemolytic diseases studied in this report are as follows: a) 2 cases of acquired auto-immune hemolytic anemia, b) 3 cases of congenital spherocytosis, c) I case of congenital non-spherocytic hemolytic anemia, d) 3 cases of paroxysmal nocturnal hemoglobinuria, e) 1 case of methemoglobinemia, and f) 1 case of sulfhemoglobinemia. Histochemical demonstration of leukocyte alkaline phosphatase activity: Leu kocyte alkaline phosphatase activity was demonstrated histochemically by Tomonaga's method in which naphthol AS-MX phosphate was used as the substrate and fast blue RR salt as the azo dye.5 Scoring was done according to Tomonaga's modified criteria and the sum of the ratings of 100 successive neutrophils was designated as the alkaline phos phatase score, "AP" scores, for a given blood smear. Examination of in vitro effect of plasma obtained from patients with hemolytic disorders on leukocyte alkaline phosphatase activity: By venipuncture with a heparinized syringe, 10 ml of blood were obtained respectively from a patient with paroxysmal nocturnal hemoglobinuria and from a patient with congenital spherocytosis and with a low "AP" score. These blood samples were placed separately in test tubes and centrifuged at 1,500 r.p.m . for 5 minutes. Three milliliters of plasma were taken from each of these samples and kept aside for a while. Leukocyte Alkaline Phosphatase in Hemolytic Disorders 389 In the same way 10 ml of blood were drawn from healthy persons with the same blood type as the above-mentioned patients and poured into test tubes. After standing one hour at room temperature, these samples were centrifuged at 1,500 r.p.m. for 5 minutes. The buffy coat was collected by capillary pipette and poured into the test tubes containing previously prepared plasma. The contents were then mixed gently, but well. The rest of the blood, from which the buffy coat was taken, was used as control during incubation. After incubation of these mixtures and control samples for one hour at 37•Ž, the buffy coat was collected into Wintrobe tubes by capillary pipette and centrifuged at 1,000 r.p.m. for 3 minutes. This last procedure was omitted when white cells proved to be sedimented sufficiently as a white layer after incubation. The in vitro effect on leukocyte alkaline phosphatase of plasma from a patient with chronic myelogenous leukemia was also examined in a similar way. Examination of in vitro effect of hemoglobin on leukocyte alkaline phosphatase activity: As described previously, 2 ml of normal plasma were prepared in a test tube. The rest of the blood from which plasma was taken was used as a leukocyte source and as control during incubation. Eight milligrams of bovine hemoglobin (Tokyo Kasei, commercially available) were dissolved in this plasma. The huffy coat of the same blood sample was placed into this hemoglobin dissolved plasma and mixed gently and well. Blood films were made in exactly the same way from the leukocyte layer after one hour incubation at 37•Ž. Examination of in vitro effect of plasma obtained from patients with hyper bilirubinemia on leukocyte alkaline phosphatase activity: Plasma obtained from two patients with obstructive jaundice was used in this experiment. The procedure was the same as described above. RESULTS 1. Normal subjects The results obtained from normal subjects are summarized in Table 1. "AP" scores for healthy men were distributed in the range from 156 to 271 and those for healthy women ranged from 183 to 334. "AP" scores were higher for women than for men. The mean and standard deviation for both sexes were 233.9 •} 60.4. Women were all premenopausal and were not menorrheic when examined. 2. Hemolytic diseases It is obvious from Fig. 1 that all but one case among the hemolytic disorders showed lower values than normal. In acquired auto-immune hemolytic anemia, one case showed a remarkably low value which approximates the value seen in chronic myelogenous leukemia, while the other showed a subnormal value. The course of this case with low 390 S. Sakamoto TABLE 1. Neutrophil alkaline phosphatase scores in healthy subjects * Standard deviation Fig. 1. Neutrophil alkaline phosphatase activity in hemolytic disorders. enzyme activity is illustrated in Fig. 2. This case was the so-called "Lederer type" with leukemoid reaction. When first studied at the time of admission, its "AP" score was found to be near the upper limits of the normal range, and leukocytosis was observed. As leukocyte counts returned to normal and anemia improved by the administration of steroid hormone, its "AP" score became remarkably low. The "AP" score remained low until the second leukemoid reaction and marked anemia occurred. Unfortunately, leukocyte alkaline phosphatase activity was not determined at the time of the highest leukocyte count, but the "AP" score rose to normal when leukocyte counts became normal. Afterwards, contrary to the increase in erythrocytes and leukocytes, the "AP" score fell below normal. The probable implication of this phenomenon will be discussed later. Relatively low values were obtained in two of three cases of congenital apherocytosis; the other case showed normal values. A case of congenital non spherocytic hemolytic anemia which showed no hitherto known erythrocyte Leukocyte Alkaline Phosphatase in Hemolytic Disorders 391 Fig. 2. Acquired auto-immune hemolytic anemia (male, 40 y.). Fig. 3. Paroxysmal nocturnal hemoglobinuria following aplastic anemia (male 28 y.). Note gradual fall of "AP" score and its return to normal after disappearance of hemoglobinuria. 392 S. Sakamoto Fig. 4. Relationship between serum indirect bilirubin and neutrophil "AP" score. enzyme
Recommended publications
  • Severe Aplastic Anemia
    Severe AlAplas tic AiAnemia Monica S. Thakar, MD Pediatric BMT Medical College of Wisconsin Outline of Talk 1. Clinical description of aplastic anemia 2. Data collection forms And a couple of quizzes in between… CLINICAL DESCRIPTIONS What is aplastic anemia? • More than just anemia – Involves low counts in 2 of 3 cell lines: red blood cells (RBC), white blood cells (WBC), pltltlatelets • Should NOT involve dysplasia – EiException: RBC can sometimes be dlidysplastic • Should have NORMAL cytogenetics • If dysplasia (beyond RBCs) or abnormal cytogenetics seen, think myelodysplastic syndrome (MDS) What is “severe” aplastic anemia? • Marrow cellularity ≤25% AND • Two of the following peripheral blood features: – Absolute neutrophil count (ANC) < 0.5 x 109/L – Platelet count <20 x 109/L – Absolute reticulocyte count < 40 x 109/L • “Very” severe aplastic anemia – Same as above except ANC <0.2 x 109/L NORMAL BttBottom Li ne: Severely Reduced HtitiHematopoietic Stem Cell Precursors SEVERE APLASTIC ANEMIA IBIn Bone M arrow Epidemiology • Half of cases seen in first 3 decades of life • Incidence: – 2 cases/m illion in WtWestern countitries – 2‐3 fold higher in Asia • Ethnic predisposition: – Asian • Genetics vs different environmental exposures? • Sex predisposition: M:F is 1:1 Pathoppyhysiology : 3 Main Mechanisms Proposed 1. Immune‐mediated – HthiHypothesis: RdRevved‐up T cells dtdestroy stem cells – Observation: Immunosuppression improves blood counts 2. Stem‐cell “depletion” or “defect” – Hypothesis: Drugs or viruses directly destroy stem cells
    [Show full text]
  • December Is National Aplastic Anemia Awareness Month
    December Is National Aplastic Anemia Awareness Month What Is Aplastic Anemia? Aplastic anemia is a non-cancerous disease that occurs when the bone marrow stops making enough blood cells. The body makes three types of blood cells: red blood cells, which contain hemoglobin and deliver oxygen to all parts of the body white blood cells, which help fight infection platelets, which help blood clot when you bleed These blood cells are made in the bone marrow, which is the soft, sponge-like material found inside bones. The bone marrow contains immature cells called stem cells that produce blood cells. Stem cells grow into red cells, white cells, and platelets or they can make more stem cells. In patients who have aplastic anemia, there are not enough stem cells in the bone marrow to make enough blood cells. Picture of blood cells maturing from stem cells. Experts believe that aplastic anemia is an autoimmune disorder. This means that the patient’s immune system (which helps fight infection) reacts against the bone marrow and the bone marrow is not able to make blood cells. Stem cells are no longer being replaced and the left over stem cells are not working well. Therefore, the amount of red cells, white cells, and platelets begin to drop. If blood levels drop too low, a person can feel very tired (from low red cells), have bleeding or bruising (from low platelets), and/or have many or severe infections (from low white cells). What Are the Key Statistics About Aplastic Anemia? Aplastic anemia can occur in anyone of any age, race, or gender.
    [Show full text]
  • Aplastic Anemia Pre-HSCT Data (Form 2028)
    Instructions for Aplastic Anemia Pre-HSCT Data (Form 2028) This section of the CIBMTR Forms Instruction Manual is intended to be a resource for completing the Aplastic Anemia Pre-HSCT Data Form. E-mail comments regarding the content of the CIBMTR Forms Instruction Manual to: [email protected]. Comments will be considered for future manual updates and revisions. For questions that require an immediate response, please contact your transplant center’s CIBMTR liaison. TABLE OF CONTENTS Key Fields ............................................................................................................. 2 Disease Assessment at Diagnosis ........................................................................ 2 Laboratory Studies at Diagnosis ........................................................................... 5 Transfusion Status from Diagnosis to the Start of the Preparative Regimen ........ 7 Laboratory Findings Prior to the Start of the Preparative Regimen ....................... 8 Aplastic Anemia Pre-HSCT Data Aplastic Anemia is a disease in which the bone marrow does not produce enough red blood cells, white blood cells, or platelets for the body. The disease can be idiopathic, or can be caused by environmental exposure, pharmaceutical or drug exposure, or exposure to viral hepatitis. Symptoms of aplastic anemia include, but are not limited to pallor, weakness, frequent infection, and/or easy bruising. The Aplastic Anemia Pre-HSCT Data Form is one of the Comprehensive Report Forms. This form captures aplastic
    [Show full text]
  • Rituximab: Is It Possible to Link Both Autoimmune Haemolytic Anemia and Aplastic Anemia Regarding the Etiology and Management? Mina T
    icine: O ed pe M n l A a r c e c e n s e s G General Medicine: Open Access Kellani MT, Gen Med (Los Angeles) 2016, 4:3 DOI: 10.4172/2327-5146.1000e110 ISSN: 2327-5146 Editorial Open access Rituximab: Is it Possible to Link Both Autoimmune Haemolytic Anemia and Aplastic Anemia Regarding the Etiology and Management? Mina T. Kelleni* Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt *Corresponding author: Kelleni MT, Ph, M, Pharmacology department, aculty of Medicine, Minia niversity, Minia, Egypt, Tel: 201200382422; E- mail: [email protected] Rec Date: June 28, 2016; Acc Date: June 29, 2016; Pub Date: June 30, 2016 Copyright: © 2016 Kelleni MT. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Mina Kellani T (2016) Rituximab: Is it Possible to Link Both Autoimmune Haemolytic Anemia and Aplastic Anemia Regarding the Etiology and Management? Gen Med (Los Angeles) 4: e110. Editorial References In the past few years, rituximab has been recognized as a safe and 1. Abadie K, Hege KM (2014) Severe refractory autoimmune hemolytic effective emerging treatment for autoimmune hemolytic anemia anemia with five-year complete hematologic response to third course of (AIHA) [1,2]. Rituximab was also considered as a preferred second- treatment with rituximab: a case report. Journal of medical case reports 8: line therapy of warm antibody hemolytic anemia in adults in some 175. major European centers and it was shown that second-line treatment 2.
    [Show full text]
  • AAMDSIF Aplastic Anemia Presentation
    Aplastic Anemia Emma Groarke, MD, FRCPath Staff Clinician, Bone Marrow Failure Service National Heart, Lung, and Blood Institute National Institutes of Health AA MDS 18th May, 2019 Introduction . Aplastic Anemia . Immune mediated . What is it and what causes it? . Diagnosis . Treatment . Immunosuppression . Transplant . Pure Red Cell Aplasia . What is it and what causes it? . Ongoing research 2 A historical disease Aplastic Anemia . Rare blood disorder . 2-3 per million / year . Low blood counts and empty bone marrow . Peak age distributions . 10-25 years old and >60 years old 4 Causes of Aplastic Anemia . Immune system destroying bone marrow cells . “idiopathic” . 70% . Inherited abnormal genes . Telomere diseases . Fanconi anemia . Bone marrow toxins . Rare Young, N. S. (2018). "Aplastic Anemia." N Engl J Med 379(17): 1643-1656. 5 Mechanism of Aplastic Anemia . Immune system attacks the bone marrow . Active lymphocytes (T cells) . Increase in inflammation . Cells die Young, N.S. et al. Blood.2006 6 Aplastic Anemia Young, N. S. (2018). "Aplastic Anemia." N Engl J Med 379(17): 1643-1656. Marrow is “empty” Courtesy of Dr. Stanley Schreier, American Society of Hematology Image Bank 8 How does it affect the patient? . Neutropenia (low white cells) . Risk of infection - If less than 500 – risk of infection - If less than 200 – high risk of infection . Thrombocytopenia (low platelets) . Risk of bleeding - Risk of bleeding with trauma / procedures if <50 - Some risk bleeding <20 - Higher risk bleeding <10 – Platelet transfusion . Anemia (low red cells or hemoglobin) . Red cells carry oxygen in the blood - Symptoms include: - Tiredness - Shortness of breath . If hemoglobin <7 or symptoms - blood transfusion 9 Clonal evolution .
    [Show full text]
  • Laboratory Features of Cutaneous Lupus Erythematosus 313
    CHAPTER 23 Laboratory Features 23 of Cutaneous Lupus Erythematosus Shuntaro Shinada, Daniel J. Wallace Assuming that patients with cutaneous lupus erythematosus (CLE) do not fulfill the American College of Rheumatology criteria for systemic LE (SLE) (Tan et al. 1982), what laboratory features should the clinician look for? Interestingly, there are several. This chapter attempts to elucidate the laboratory abnormalities associated with CLE, the most common being hematologic (anemia and leukopenia), erythrocyte sedi- mentation rate (ESR), antinuclear antibodies (ANAs), and antiphospholipid anti- bodies. These features are compared with those observed in SLE and certain cuta- neous clinical subsets that have been studied. General Approach to Laboratory Testing When a dermatologist, family practitioner, internist, or rheumatologist first sees a patient with CLE, their principal concern should be to rule out evidence of systemic disease. After all, 15% of patients with CLE progress to SLE in 10–15 years of obser- vation (Rowell 1984). In addition to a complete medical history and physical exami- nation, clinical laboratory findings can be very helpful in this regard. Specifically, a blood chemistry panel allows screening for renal or hepatic involvement. Creatine phosphokinase testing assists in ruling out muscle inflammation. Evidence for autoimmune hemolytic anemia or thrombocytopenia is looked for in the complete blood cell count as well as in the lactic dehydrogenase, reticulocyte count, Coombs’ direct antibody testing, serum haptoglobin, and antiplatelet antibodies. A routine urinalysis free of cellular casts or protein makes it highly unlikely that the kidney is involved. Specific autoantibodies, almost never observed in CLE, if found, can suggest central nervous system disease (antiribosomal P,antineuronal), mixed connective tis- sue disease (anti-RNP), or other disease subsets.
    [Show full text]
  • Not So Benign Hematology: Aplastic Anemia, PNH And
    Not So Benign Hematology Robert A. Brodsky, MD Johns Hopkins Family Professor Director of Adult Hematology Disclosures • Dr. Brodsky serves as a Scientific Advisory Board member to: – Alexion Pharmaceuticals – Achillion Pharmaceutical – Apellis Pharmaceuticals • Grant funding: Alexion Organization • Bone Marrow Failure – Aplastic anemia • Is the era of IST coming to an end? – New complement inhibitors for PNH? • Thrombotic Microangiopathies – aHUS • Modified Ham to distinguish aHUS from TTP • Do aHUS patients need lifelong therapy with eculizumab Severe Aplastic Anemia Definitive management • Allogeneic bone marrow transplantation • Immunosuppressive therapy Acquired SAA is an Acute and Chronic Disease Take Home: PIGA Autoimmune attack on stem cells AA PNH Predisposes to clonal escape/malignancy 6pLOH 10~12% DNMT3A ASLX1 Monosomy 7 MDS Severe Aplastic Anemia • First line therapy – BMT • Matched sibling donor • Matched unrelated donor – IST (ATG/CSA) • Refractory Disease (poor response/prognosis) – Eltrombopag – Alternative donor BMT – Androgens – Other IST ATG/CSA: Late complications Rosenfeld et. al, Jama 2003;289: 1130-35 Risk of relapse > 40% in Risk of clonal evolution responders 30% failure-free survival Refractory SAA 2yr mortality approaches 50% • Repeat IST – low response rate • Eltrombopag • BMT – usually from a MUD or alternative donor Eltrombopag for Refractory SAA Desmond et al, Blood 2014 • 43 patients with refractory SAA – 1o endpoint: response at 3mos. in at least 1 linage – Response criteria (e.g, doubling of ANC, decrease in PRBCs) • Results: – 17/43 (40%) at 3 mos – 9/43 (21%) met standard response criteria at 6 mos – 7/43 (16%) trilineage response • Relapse: 3/17 (18%) responders within a year • MDS: 8/43 (16%) within 1 year Responses to eltrombopag by lineage.
    [Show full text]
  • Aplastic Anemia: Diagnosis and Treatment Gabrielle Meyers, MD, and Curtis Lachowiez, MD
    Clinical Review Aplastic Anemia: Diagnosis and Treatment Gabrielle Meyers, MD, and Curtis Lachowiez, MD year. 2,3 A recent Scandinavian study reported that the in- ABSTRACT cidence of aplastic anemia among the Swedish popula- Objective: To describe the current approach to diagnosis tion is 2.3 cases per million individuals per year, with a and treatment of aplastic anemia. median age at diagnosis of 60 years and a slight female 2 Methods: Review of the literature. predominance (52% versus 48%, respectively). This data is congruent with prior observations made in Barcelona, Results: Aplastic anemia can be acquired or associated with an inherited marrow failure syndrome (IMFS), where the incidence was 2.34 cases per million individu- and the treatment and prognosis vary dramatically als per year, albeit with a slightly higher incidence in males between these 2 etiologies. Patients may present along compared to females (2.54 versus 2.16, respectively).4 The a spectrum, ranging from being asymptomatic with incidence of aplastic anemia varies globally, with a dispro- incidental findings on peripheral blood testing to life- portionate increase in incidence seen among Asian pop- threatening neutropenic infections or bleeding. Workup ulations, with rates as high as 8.8 per million individuals and diagnosis involves investigating IMFSs and ruling per year.3-5 This variation in incidence in Asia versus other out malignant or infectious etiologies for pancytopenia. countries has not been well explained. There appears to Conclusion: Treatment outcomes are excellent with modern be a bimodal distribution, with incidence peaks seen in supportive care and the current approach to allogeneic young adults and in older adults.2,3,6 transplantation, and therefore referral to a bone marrow transplant program to evaluate for early transplantation is Pathophysiology the new standard of care for aplastic anemia.
    [Show full text]
  • Diagnosis and Management of Autoimmune Hemolytic Anemia in Patients with Liver and Bowel Disorders
    Journal of Clinical Medicine Review Diagnosis and Management of Autoimmune Hemolytic Anemia in Patients with Liver and Bowel Disorders Cristiana Bianco 1 , Elena Coluccio 1, Daniele Prati 1 and Luca Valenti 1,2,* 1 Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] (C.B.); [email protected] (E.C.); [email protected] (D.P.) 2 Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy * Correspondence: [email protected]; Tel.: +39-02-50320278; Fax: +39-02-50320296 Abstract: Anemia is a common feature of liver and bowel diseases. Although the main causes of anemia in these conditions are represented by gastrointestinal bleeding and iron deficiency, autoimmune hemolytic anemia should be considered in the differential diagnosis. Due to the epidemiological association, autoimmune hemolytic anemia should particularly be suspected in patients affected by inflammatory and autoimmune diseases, such as autoimmune or acute viral hepatitis, primary biliary cholangitis, and inflammatory bowel disease. In the presence of biochemical indices of hemolysis, the direct antiglobulin test can detect the presence of warm or cold reacting antibodies, allowing for a prompt treatment. Drug-induced, immune-mediated hemolytic anemia should be ruled out. On the other hand, the choice of treatment should consider possible adverse events related to the underlying conditions. Given the adverse impact of anemia on clinical outcomes, maintaining a high clinical suspicion to reach a prompt diagnosis is the key to establishing an adequate treatment. Keywords: autoimmune hemolytic anemia; chronic liver disease; inflammatory bowel disease; Citation: Bianco, C.; Coluccio, E.; autoimmune disease; autoimmune hepatitis; primary biliary cholangitis; treatment; diagnosis Prati, D.; Valenti, L.
    [Show full text]
  • Paroxysmal Nocturnal Hemoglobinuria Hemoglobinuria: • PNH Was First Reported in the Medical Literature in the Latter Half of the 19Th Century
    4/17/2018 Paroxysmal Nocturnal Paroxysmal Nocturnal Hemoglobinuria Hemoglobinuria: • PNH was first reported in the medical literature in the latter half of the 19th century. Understanding the Diagnosis, Complications • It was so named because of the mistaken belief that hemolysis (red and Treatment Options blood cell break down) and subsequent hemoglobinuria (free hemoglobin in urine) occurred: • Intermittent episodes (paroxysmal) Iberia Romina Sosa, MD, PhD • Greater frequency during the night (nocturnal). Assistant Professor of Medicine Baylor College of Medicine April 21, 2018 Epidemiology PNH Stem Cell • • PNH originates from a defect in a The prevalence is estimated to be between 0.5-1.5 per million multipotent hematopoietic stem cell. people in the general population. • PNH is believed to affect males and females in equal numbers, • It can arise de novo or in the setting of an although some studies show a slight female preponderance. underlying bone marrow failure disorder • The disorder has been described in many ethnic groups and such as has been identified in all areas of the world. • Aplastic Anemia • It may occur with greater frequency in individuals of Southeast Asia or • Myelodysplasia the Far East who experience greater rates of aplastic anemia. • Primary Myelofibrosis • It can affect any age group. • The median age at diagnosis is during the 30s. Disease Mechanism • PIG-A gene is found in the X chromosome • A single hit is enough to generate the PNH phenotype. • The disease begins with the GPI anchored protein • Males only have one X chromosome expansion of the hematopoietic EIN Ethanolamine phosphate • Females undergo lyonization (chromosome inactivation). stem cell that has severe deficiency P or absence of GPI—a glycolipid • The mechanism for the mutations moiety that anchors >150 different Glycan Core is unknown.
    [Show full text]
  • Aplastic Anemia: Presence in Human Bone Marrow of Cells That Suppress Myelopoiesis* (Thymus-Derived Lymphocytes/Suppressor Cells/Differentiation) WALT A
    Proc. Natl. Acad. Sci. USA Vol. 73, No. 8, pp.2890-2894*, August 1976 Medical Sciences Aplastic anemia: Presence in human bone marrow of cells that suppress myelopoiesis* (thymus-derived lymphocytes/suppressor cells/differentiation) WALT A. KAGAN, JoAo A. ASCENSAO, RAJENDRA N. PAHWA, JOHN A. HANSEN, GIDEON GOLDSTEIN, ELISA B. VALERA, GENEVIEVE S. INCEFY, MALCOLM A. S. MOORE, AND ROBERT A. GOOD Memorial Sloan-Kettering Cancer Center, New York, N.Y. 10021 Contributed by Robert A. Good, May 24, 1976 ABSTRACT Bone marrow from a patient with aplastic all negative. There was no history of exposure to drugs or anemia was shown by multiple criteria to have a block in early chemical agents known to be capable of producing aplastic myeloid differentiation. This block was overcome in vitro by anemia. elimination of marrow lymphocytes. Furthermore, this differ- entiation block was transferred in vitro to normal marrow by coculturing with the patient's marrow. We suggest that some METHODS cases of aplastic anemia may be due to an immunologically Cell Separation. Heparinized bone marrow was obtained based suppression of marrow cell differentiation rather than from the posterior iliac crest of the patient and normal adult to a defect in stem cells or their necessary inductive environ- donors in 10 to 20 separate 0.5-ml aspirations. The cells were ment. separated according to density differences by centrifugation The hematopoietic system in man is thought to develop from on a Ficoll-hypaque gradient by the method of Boyum (5). Cells a common stem cell analogous to the spleen colony forming unit present at the plasma/Ficoll-hypaque interface were collected, in mice (CFU-s) (1), which then differentiates into committed and this heterogeneous mixture was then separated according progenitor cells of the granulocytic and monocytic series to size by velocity sedimentation at unit gravity by the method (CFU-c) (2), megakaryocytic, lymphoid, and erythroid lines, of Miller and Phillips (6).
    [Show full text]
  • Acoi Board Review 2017 Text
    CHERYL KOVALSKI, DO FACOI NO DISCLOSURES ACOI BOARD REVIEW 2017 TEXT ANEMIA ‣ Hemoglobin <13 grams or ‣ Hematocrit<39% TEXT IRON DEFICIENCY ‣ Most common nutritional problem in the world ‣ Absorbed in small bowel, enhanced by gastric acid ‣ Absorption inhibited by inflammation, phytates (bran) & tannins (tea) TEXT CAUSES OF IRON DEFICIENCY ‣ Blood loss – most common etiology ‣ Decreased intake ‣ Increased utilization-EPO therapy, chronic hemolysis ‣ Malabsorption – gastrectomy, sprue ‣ ‣ ‣ TEXT CLINICAL MANIFESTATIONS OF IRON DEFICIENCY ‣ Impaired psychomotor development ‣ Fatigue, Irritability ‣ PICA ‣ Koilonychiae, Glossitis, Angular stomatitis ‣ Dysphagia TEXT ANEMIA MCV RETICULOCYTE COUNT Corrected retic ct : >2%: blood loss or hemolysis <2%: hypoproliferative process TEXT ANEMIA ‣ MICROCYTIC ‣ Obtain and interpret iron studies ‣ Serum iron ‣ Total iron binding capacity (TIBC) ‣ Transferrin saturation ‣ Ferritin-correlates with total iron stores ‣ can be nml or inc if co-existent inflammation TEXT IRON DEFICIENCY LAB FINDINGS ‣ Low serum iron, increased TIBC ‣ % sat <20 TEXT MANAGEMENT OF IRON DEFICIENCY ‣ MUST LOOK FOR SOURCE OF BLEED: ie: GI, GU, Regular blood donor ‣ Replacement: 1. Oral: Ferrous sulfate 325 mg TID until serum iron, % sat, and ferritin mid-range normal, 6-12 months 2. IV TEXT SIDEROBLASTIC ANEMIAS Diverse group of disorders of RBC production characterized by: 1. Defect involving incorporation of iron into heme molecule 2. Ringed sideroblasts in bone marrow javascript:refimgshow(1) TEXT CLASSIFICATION OF SIDEROBLASTIC
    [Show full text]