Laboratory Features of Cutaneous Lupus Erythematosus 313

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory Features of Cutaneous Lupus Erythematosus 313 CHAPTER 23 Laboratory Features 23 of Cutaneous Lupus Erythematosus Shuntaro Shinada, Daniel J. Wallace Assuming that patients with cutaneous lupus erythematosus (CLE) do not fulfill the American College of Rheumatology criteria for systemic LE (SLE) (Tan et al. 1982), what laboratory features should the clinician look for? Interestingly, there are several. This chapter attempts to elucidate the laboratory abnormalities associated with CLE, the most common being hematologic (anemia and leukopenia), erythrocyte sedi- mentation rate (ESR), antinuclear antibodies (ANAs), and antiphospholipid anti- bodies. These features are compared with those observed in SLE and certain cuta- neous clinical subsets that have been studied. General Approach to Laboratory Testing When a dermatologist, family practitioner, internist, or rheumatologist first sees a patient with CLE, their principal concern should be to rule out evidence of systemic disease. After all, 15% of patients with CLE progress to SLE in 10–15 years of obser- vation (Rowell 1984). In addition to a complete medical history and physical exami- nation, clinical laboratory findings can be very helpful in this regard. Specifically, a blood chemistry panel allows screening for renal or hepatic involvement. Creatine phosphokinase testing assists in ruling out muscle inflammation. Evidence for autoimmune hemolytic anemia or thrombocytopenia is looked for in the complete blood cell count as well as in the lactic dehydrogenase, reticulocyte count, Coombs’ direct antibody testing, serum haptoglobin, and antiplatelet antibodies. A routine urinalysis free of cellular casts or protein makes it highly unlikely that the kidney is involved. Specific autoantibodies, almost never observed in CLE, if found, can suggest central nervous system disease (antiribosomal P,antineuronal), mixed connective tis- sue disease (anti-RNP), or other disease subsets. In our practice, all patients have annual chest radiographs and electrocardiograms, since there are no blood tests to screen for cardiac or pulmonary involvement. Finally, additional imaging or electri- cal tests (electromyography, nerve conduction studies, 2-D echocardiography with Doppler) are occasionally ordered, and the results should be normal in CLE. If not, muscle, nerve, cardiac, or pulmonary disease representing visceral involvement should be ruled out. This chapter assumes that the presence of systemic disease is not under consider- ation. The question remains, are there any laboratory tests worth ordering to moni- tor or better characterize CLE? 312 Shuntaro Shinada, Daniel J. Wallace Medications Used to Manage Cutaneous Lupus Erythematosus Warrant Periodic Laboratory Monitoring Although the different therapeutic options for CLE are discussed in later chapters, it is valuable to note the laboratory abnormalities associated with the medications used to treat CLE (Table 23.1). Table 23.1. Laboratory abnormalities associated with use of drugs for cutaneous lupus erythe- matosus Medication Laboratory side effects Laboratory monitoring Antimalarials Monitor CBC, serum creatinine, Chloroquine Hemolysis secondary to and LFT every 2 months G-6-PD deficiency, decreased creatinine clearance Hydroxychloroquine Decreased creatinine clear- ance, decreased cholesterol profile, agranulocytosis (rare) Quinacrine Aplastic anemia Antileprosy drugs Dapsone Sulfhemoglobinemia, methe- Monitor baseline G-6-PD levels. moglobinemia, hemolysis Monitor CBC every 2 weeks for the secondary to G-6-PD defi- first 3 months, then every 2 months ciency, hepatotoxicity thereafter Monitor baseline LFTs then every 2 months thereafter Thalidomide Highly teratogenic, neutro- Baseline pregnancy test, then penia weekly for the first month, then monthly thereafter Monitor CBC every 2 months Methotrexate Blood dyscrasias, hepato- Monitor baseline LFTs, CBC, serum toxicity creatinine, then weekly until dose stabilized, then every 1–2 months thereafter Cyclosporine Increased serum creatinine Monitor 2 baseline creatinines, then level every 2 weeks for the first 3 months, then every month thereafter Azathioprine Thrombocytopenia, neutro- Monitor baseline CBC, LFTs, then penia, hepatotoxicity every 2 weeks for the first month, then every 1–3 months thereafter Glucocorticosteroids Increased serum glucose Monitor baseline lipid panel, CBC, level; increased VLDL-C, serum glucose and potassium, then HDL-C, and TG levels monitor serum/urine glucose every 3–6 months CBC, complete blood cell count; G-6-PD, glucose-6-phosphate dehydrogenase; HDL-C, high- density lipoprotein cholesterol; LFTs, liver function tests; TG, triglyceride; VLDL-C, very-low- density lipoprotein cholesterol. Laboratory Features of Cutaneous Lupus Erythematosus 313 Antimalarials The three antimalarials available at this time for the treatment of CLE are chloroquine, hydroxychloroquine, and quinacrine. Overall, these drugs are relatively safe, but there are some laboratory abnormalities to consider. Chloroquine slightly decreases creati- nine levels in half of its users, most likely by raising plasma aldosterone levels (Musa- bayane 1994).Forty-five percent of hydroxychloroquine is excreted in the kidneys,and the drug is associated with up to a 10% decrease in creatinine clearance (Landewe et al.1995).Therefore,the dosage should be adjusted for patients with renal impariment. Antimalarials also have a beneficial antihyperlipidemic effect. Hydroxychloroquine induces a 15%–20% decrease in total cholesterol,triglyceride,and LDL levels (Wallace et al. 1990). It is associated with only one case of agranulocytosis, in a patient who was given 1,200 mg daily,which is up to six times the current recommended dosage (Polano et al. 1965), and a handful of case reports of various blood dyscrasias, such as aplastic anemia, leukopenia, thrombocytopenia, and hemolysis in individuals with glucose-6- phosphate dehydrogenase (G-6-PD) deficiency. Chloroquine has been implicated in rare reports of G-6-PD deficiency hemolysis (Choudhry et al.1978) and with agranulocytosis (Kersly and Palin 1959).Since chloro- quine is known to concentrate in the liver, it should be used with caution in patients with hepatic disease or alcoholism or in conjunction with known hepatotoxic drugs. The prevalence of aplastic anemia among US soldiers in the Pacific during World War II rose from 0.66 to 2.84 per 100,000 after quinacrine’s introduction (Custer 1946). This represented 58 patients, 48 of whom received quinacrine. Of these, 16 were associated with overdoses, and two received marrow-suppressant drugs concurrently (Wallace 1989). It is therefore recommended that patients receiving antimalarial treatment have a complete blood cell count and a serum creatinine test every few months during therapy. Patients taking chloroquine or hydroxychloroquine should undergo ophthalmologic examination at 6- or 12-month intervals, respectively. Antileprosy Drugs Dapsone Dapsone’s use is limited by its toxic effects, which include sulfhemoglobinemia and methemoglobinemia, a dose-related hemolytic anemia, a “dapsone hypersensitivity syndrome,” and aplastic anemia (Meyerson and Cohen 1994, Mok et al. 1998). All patients treated with dapsone should have their baseline G-6-PD level checked. The drug should not be given to patients with low levels. Complete blood cell counts should be checked every 2 weeks for the first 3 months, then every 2 months there- after. Toxic hepatitis and cholestatic jaundice have been reported early in therapy. Hyperbilirubinemia may occur more often in G-6-PD-deficient patients. Baseline and subsequent monitoring of liver function is recommended. Thalidomide Thalidomide is a highly teratogenic drug with antileprosy and antilupus effects via various mechanisms.Side effects include teratogenicity,fatigue,dizziness,weight gain, constipation, amenorrhea, dry mouth, and a non-dose-related polyneuropathy that is associated with chronic administration (Ludolph and Matz 1982). Because thalido- 314 Shuntaro Shinada, Daniel J. Wallace mide is so highly teratogenic,women of childbearing potential should have pregnancy testing. The test should be performed within 24 h of beginning thalidomide therapy and at regular intervals when appropriate.Pregnancy testing should also be performed if a patient misses her period or if there is any abnormality in menstrual bleeding. Decreased white blood cell counts, including neutropenia, have been infrequently reported in association with the clinical use of thalidomide. White blood cell count and differential should be monitored on an ongoing basis, especially in patients who may be more prone to neutropenia. Higher doses of thalidomide may predispose patients to coagulopathies. Methotrexate Although serious and sometimes fatal blood dyscrasias are a well-known conse- quence of high-dose methotrexate therapy, the Committee on Safety of Medicines in the United Kingdom (Dodd et al. 1985) stated in September 1997 that it was also aware of 83 reports of blood dyscrasias associated with low-dose methotrexate used to treat psoriasis or rheumatoid arthritis; there were 36 fatalities. Megaloblastic anaemia, usually with marked macrocytosis, has been reported in mainly elderly patients receiving long-term weekly methotrexate therapy (Dahl 1984). Methotrexate has been associated with periportal fibrosis and cirrhosis (Neu- berger 1995), and its potential for hepatotoxicity has been a source of some concern given its use in nonmalignant disorders such as psoriasis and rheumatoid arthritis. It is recommended that liver function
Recommended publications
  • Severe Aplastic Anemia
    Severe AlAplas tic AiAnemia Monica S. Thakar, MD Pediatric BMT Medical College of Wisconsin Outline of Talk 1. Clinical description of aplastic anemia 2. Data collection forms And a couple of quizzes in between… CLINICAL DESCRIPTIONS What is aplastic anemia? • More than just anemia – Involves low counts in 2 of 3 cell lines: red blood cells (RBC), white blood cells (WBC), pltltlatelets • Should NOT involve dysplasia – EiException: RBC can sometimes be dlidysplastic • Should have NORMAL cytogenetics • If dysplasia (beyond RBCs) or abnormal cytogenetics seen, think myelodysplastic syndrome (MDS) What is “severe” aplastic anemia? • Marrow cellularity ≤25% AND • Two of the following peripheral blood features: – Absolute neutrophil count (ANC) < 0.5 x 109/L – Platelet count <20 x 109/L – Absolute reticulocyte count < 40 x 109/L • “Very” severe aplastic anemia – Same as above except ANC <0.2 x 109/L NORMAL BttBottom Li ne: Severely Reduced HtitiHematopoietic Stem Cell Precursors SEVERE APLASTIC ANEMIA IBIn Bone M arrow Epidemiology • Half of cases seen in first 3 decades of life • Incidence: – 2 cases/m illion in WtWestern countitries – 2‐3 fold higher in Asia • Ethnic predisposition: – Asian • Genetics vs different environmental exposures? • Sex predisposition: M:F is 1:1 Pathoppyhysiology : 3 Main Mechanisms Proposed 1. Immune‐mediated – HthiHypothesis: RdRevved‐up T cells dtdestroy stem cells – Observation: Immunosuppression improves blood counts 2. Stem‐cell “depletion” or “defect” – Hypothesis: Drugs or viruses directly destroy stem cells
    [Show full text]
  • December Is National Aplastic Anemia Awareness Month
    December Is National Aplastic Anemia Awareness Month What Is Aplastic Anemia? Aplastic anemia is a non-cancerous disease that occurs when the bone marrow stops making enough blood cells. The body makes three types of blood cells: red blood cells, which contain hemoglobin and deliver oxygen to all parts of the body white blood cells, which help fight infection platelets, which help blood clot when you bleed These blood cells are made in the bone marrow, which is the soft, sponge-like material found inside bones. The bone marrow contains immature cells called stem cells that produce blood cells. Stem cells grow into red cells, white cells, and platelets or they can make more stem cells. In patients who have aplastic anemia, there are not enough stem cells in the bone marrow to make enough blood cells. Picture of blood cells maturing from stem cells. Experts believe that aplastic anemia is an autoimmune disorder. This means that the patient’s immune system (which helps fight infection) reacts against the bone marrow and the bone marrow is not able to make blood cells. Stem cells are no longer being replaced and the left over stem cells are not working well. Therefore, the amount of red cells, white cells, and platelets begin to drop. If blood levels drop too low, a person can feel very tired (from low red cells), have bleeding or bruising (from low platelets), and/or have many or severe infections (from low white cells). What Are the Key Statistics About Aplastic Anemia? Aplastic anemia can occur in anyone of any age, race, or gender.
    [Show full text]
  • Aplastic Anemia Pre-HSCT Data (Form 2028)
    Instructions for Aplastic Anemia Pre-HSCT Data (Form 2028) This section of the CIBMTR Forms Instruction Manual is intended to be a resource for completing the Aplastic Anemia Pre-HSCT Data Form. E-mail comments regarding the content of the CIBMTR Forms Instruction Manual to: [email protected]. Comments will be considered for future manual updates and revisions. For questions that require an immediate response, please contact your transplant center’s CIBMTR liaison. TABLE OF CONTENTS Key Fields ............................................................................................................. 2 Disease Assessment at Diagnosis ........................................................................ 2 Laboratory Studies at Diagnosis ........................................................................... 5 Transfusion Status from Diagnosis to the Start of the Preparative Regimen ........ 7 Laboratory Findings Prior to the Start of the Preparative Regimen ....................... 8 Aplastic Anemia Pre-HSCT Data Aplastic Anemia is a disease in which the bone marrow does not produce enough red blood cells, white blood cells, or platelets for the body. The disease can be idiopathic, or can be caused by environmental exposure, pharmaceutical or drug exposure, or exposure to viral hepatitis. Symptoms of aplastic anemia include, but are not limited to pallor, weakness, frequent infection, and/or easy bruising. The Aplastic Anemia Pre-HSCT Data Form is one of the Comprehensive Report Forms. This form captures aplastic
    [Show full text]
  • Rituximab: Is It Possible to Link Both Autoimmune Haemolytic Anemia and Aplastic Anemia Regarding the Etiology and Management? Mina T
    icine: O ed pe M n l A a r c e c e n s e s G General Medicine: Open Access Kellani MT, Gen Med (Los Angeles) 2016, 4:3 DOI: 10.4172/2327-5146.1000e110 ISSN: 2327-5146 Editorial Open access Rituximab: Is it Possible to Link Both Autoimmune Haemolytic Anemia and Aplastic Anemia Regarding the Etiology and Management? Mina T. Kelleni* Pharmacology Department, Faculty of Medicine, Minia University, Minia, Egypt *Corresponding author: Kelleni MT, Ph, M, Pharmacology department, aculty of Medicine, Minia niversity, Minia, Egypt, Tel: 201200382422; E- mail: [email protected] Rec Date: June 28, 2016; Acc Date: June 29, 2016; Pub Date: June 30, 2016 Copyright: © 2016 Kelleni MT. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Citation: Mina Kellani T (2016) Rituximab: Is it Possible to Link Both Autoimmune Haemolytic Anemia and Aplastic Anemia Regarding the Etiology and Management? Gen Med (Los Angeles) 4: e110. Editorial References In the past few years, rituximab has been recognized as a safe and 1. Abadie K, Hege KM (2014) Severe refractory autoimmune hemolytic effective emerging treatment for autoimmune hemolytic anemia anemia with five-year complete hematologic response to third course of (AIHA) [1,2]. Rituximab was also considered as a preferred second- treatment with rituximab: a case report. Journal of medical case reports 8: line therapy of warm antibody hemolytic anemia in adults in some 175. major European centers and it was shown that second-line treatment 2.
    [Show full text]
  • AAMDSIF Aplastic Anemia Presentation
    Aplastic Anemia Emma Groarke, MD, FRCPath Staff Clinician, Bone Marrow Failure Service National Heart, Lung, and Blood Institute National Institutes of Health AA MDS 18th May, 2019 Introduction . Aplastic Anemia . Immune mediated . What is it and what causes it? . Diagnosis . Treatment . Immunosuppression . Transplant . Pure Red Cell Aplasia . What is it and what causes it? . Ongoing research 2 A historical disease Aplastic Anemia . Rare blood disorder . 2-3 per million / year . Low blood counts and empty bone marrow . Peak age distributions . 10-25 years old and >60 years old 4 Causes of Aplastic Anemia . Immune system destroying bone marrow cells . “idiopathic” . 70% . Inherited abnormal genes . Telomere diseases . Fanconi anemia . Bone marrow toxins . Rare Young, N. S. (2018). "Aplastic Anemia." N Engl J Med 379(17): 1643-1656. 5 Mechanism of Aplastic Anemia . Immune system attacks the bone marrow . Active lymphocytes (T cells) . Increase in inflammation . Cells die Young, N.S. et al. Blood.2006 6 Aplastic Anemia Young, N. S. (2018). "Aplastic Anemia." N Engl J Med 379(17): 1643-1656. Marrow is “empty” Courtesy of Dr. Stanley Schreier, American Society of Hematology Image Bank 8 How does it affect the patient? . Neutropenia (low white cells) . Risk of infection - If less than 500 – risk of infection - If less than 200 – high risk of infection . Thrombocytopenia (low platelets) . Risk of bleeding - Risk of bleeding with trauma / procedures if <50 - Some risk bleeding <20 - Higher risk bleeding <10 – Platelet transfusion . Anemia (low red cells or hemoglobin) . Red cells carry oxygen in the blood - Symptoms include: - Tiredness - Shortness of breath . If hemoglobin <7 or symptoms - blood transfusion 9 Clonal evolution .
    [Show full text]
  • Not So Benign Hematology: Aplastic Anemia, PNH And
    Not So Benign Hematology Robert A. Brodsky, MD Johns Hopkins Family Professor Director of Adult Hematology Disclosures • Dr. Brodsky serves as a Scientific Advisory Board member to: – Alexion Pharmaceuticals – Achillion Pharmaceutical – Apellis Pharmaceuticals • Grant funding: Alexion Organization • Bone Marrow Failure – Aplastic anemia • Is the era of IST coming to an end? – New complement inhibitors for PNH? • Thrombotic Microangiopathies – aHUS • Modified Ham to distinguish aHUS from TTP • Do aHUS patients need lifelong therapy with eculizumab Severe Aplastic Anemia Definitive management • Allogeneic bone marrow transplantation • Immunosuppressive therapy Acquired SAA is an Acute and Chronic Disease Take Home: PIGA Autoimmune attack on stem cells AA PNH Predisposes to clonal escape/malignancy 6pLOH 10~12% DNMT3A ASLX1 Monosomy 7 MDS Severe Aplastic Anemia • First line therapy – BMT • Matched sibling donor • Matched unrelated donor – IST (ATG/CSA) • Refractory Disease (poor response/prognosis) – Eltrombopag – Alternative donor BMT – Androgens – Other IST ATG/CSA: Late complications Rosenfeld et. al, Jama 2003;289: 1130-35 Risk of relapse > 40% in Risk of clonal evolution responders 30% failure-free survival Refractory SAA 2yr mortality approaches 50% • Repeat IST – low response rate • Eltrombopag • BMT – usually from a MUD or alternative donor Eltrombopag for Refractory SAA Desmond et al, Blood 2014 • 43 patients with refractory SAA – 1o endpoint: response at 3mos. in at least 1 linage – Response criteria (e.g, doubling of ANC, decrease in PRBCs) • Results: – 17/43 (40%) at 3 mos – 9/43 (21%) met standard response criteria at 6 mos – 7/43 (16%) trilineage response • Relapse: 3/17 (18%) responders within a year • MDS: 8/43 (16%) within 1 year Responses to eltrombopag by lineage.
    [Show full text]
  • Aplastic Anemia: Diagnosis and Treatment Gabrielle Meyers, MD, and Curtis Lachowiez, MD
    Clinical Review Aplastic Anemia: Diagnosis and Treatment Gabrielle Meyers, MD, and Curtis Lachowiez, MD year. 2,3 A recent Scandinavian study reported that the in- ABSTRACT cidence of aplastic anemia among the Swedish popula- Objective: To describe the current approach to diagnosis tion is 2.3 cases per million individuals per year, with a and treatment of aplastic anemia. median age at diagnosis of 60 years and a slight female 2 Methods: Review of the literature. predominance (52% versus 48%, respectively). This data is congruent with prior observations made in Barcelona, Results: Aplastic anemia can be acquired or associated with an inherited marrow failure syndrome (IMFS), where the incidence was 2.34 cases per million individu- and the treatment and prognosis vary dramatically als per year, albeit with a slightly higher incidence in males between these 2 etiologies. Patients may present along compared to females (2.54 versus 2.16, respectively).4 The a spectrum, ranging from being asymptomatic with incidence of aplastic anemia varies globally, with a dispro- incidental findings on peripheral blood testing to life- portionate increase in incidence seen among Asian pop- threatening neutropenic infections or bleeding. Workup ulations, with rates as high as 8.8 per million individuals and diagnosis involves investigating IMFSs and ruling per year.3-5 This variation in incidence in Asia versus other out malignant or infectious etiologies for pancytopenia. countries has not been well explained. There appears to Conclusion: Treatment outcomes are excellent with modern be a bimodal distribution, with incidence peaks seen in supportive care and the current approach to allogeneic young adults and in older adults.2,3,6 transplantation, and therefore referral to a bone marrow transplant program to evaluate for early transplantation is Pathophysiology the new standard of care for aplastic anemia.
    [Show full text]
  • Diagnosis and Management of Autoimmune Hemolytic Anemia in Patients with Liver and Bowel Disorders
    Journal of Clinical Medicine Review Diagnosis and Management of Autoimmune Hemolytic Anemia in Patients with Liver and Bowel Disorders Cristiana Bianco 1 , Elena Coluccio 1, Daniele Prati 1 and Luca Valenti 1,2,* 1 Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; [email protected] (C.B.); [email protected] (E.C.); [email protected] (D.P.) 2 Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy * Correspondence: [email protected]; Tel.: +39-02-50320278; Fax: +39-02-50320296 Abstract: Anemia is a common feature of liver and bowel diseases. Although the main causes of anemia in these conditions are represented by gastrointestinal bleeding and iron deficiency, autoimmune hemolytic anemia should be considered in the differential diagnosis. Due to the epidemiological association, autoimmune hemolytic anemia should particularly be suspected in patients affected by inflammatory and autoimmune diseases, such as autoimmune or acute viral hepatitis, primary biliary cholangitis, and inflammatory bowel disease. In the presence of biochemical indices of hemolysis, the direct antiglobulin test can detect the presence of warm or cold reacting antibodies, allowing for a prompt treatment. Drug-induced, immune-mediated hemolytic anemia should be ruled out. On the other hand, the choice of treatment should consider possible adverse events related to the underlying conditions. Given the adverse impact of anemia on clinical outcomes, maintaining a high clinical suspicion to reach a prompt diagnosis is the key to establishing an adequate treatment. Keywords: autoimmune hemolytic anemia; chronic liver disease; inflammatory bowel disease; Citation: Bianco, C.; Coluccio, E.; autoimmune disease; autoimmune hepatitis; primary biliary cholangitis; treatment; diagnosis Prati, D.; Valenti, L.
    [Show full text]
  • Paroxysmal Nocturnal Hemoglobinuria Hemoglobinuria: • PNH Was First Reported in the Medical Literature in the Latter Half of the 19Th Century
    4/17/2018 Paroxysmal Nocturnal Paroxysmal Nocturnal Hemoglobinuria Hemoglobinuria: • PNH was first reported in the medical literature in the latter half of the 19th century. Understanding the Diagnosis, Complications • It was so named because of the mistaken belief that hemolysis (red and Treatment Options blood cell break down) and subsequent hemoglobinuria (free hemoglobin in urine) occurred: • Intermittent episodes (paroxysmal) Iberia Romina Sosa, MD, PhD • Greater frequency during the night (nocturnal). Assistant Professor of Medicine Baylor College of Medicine April 21, 2018 Epidemiology PNH Stem Cell • • PNH originates from a defect in a The prevalence is estimated to be between 0.5-1.5 per million multipotent hematopoietic stem cell. people in the general population. • PNH is believed to affect males and females in equal numbers, • It can arise de novo or in the setting of an although some studies show a slight female preponderance. underlying bone marrow failure disorder • The disorder has been described in many ethnic groups and such as has been identified in all areas of the world. • Aplastic Anemia • It may occur with greater frequency in individuals of Southeast Asia or • Myelodysplasia the Far East who experience greater rates of aplastic anemia. • Primary Myelofibrosis • It can affect any age group. • The median age at diagnosis is during the 30s. Disease Mechanism • PIG-A gene is found in the X chromosome • A single hit is enough to generate the PNH phenotype. • The disease begins with the GPI anchored protein • Males only have one X chromosome expansion of the hematopoietic EIN Ethanolamine phosphate • Females undergo lyonization (chromosome inactivation). stem cell that has severe deficiency P or absence of GPI—a glycolipid • The mechanism for the mutations moiety that anchors >150 different Glycan Core is unknown.
    [Show full text]
  • Aplastic Anemia: Presence in Human Bone Marrow of Cells That Suppress Myelopoiesis* (Thymus-Derived Lymphocytes/Suppressor Cells/Differentiation) WALT A
    Proc. Natl. Acad. Sci. USA Vol. 73, No. 8, pp.2890-2894*, August 1976 Medical Sciences Aplastic anemia: Presence in human bone marrow of cells that suppress myelopoiesis* (thymus-derived lymphocytes/suppressor cells/differentiation) WALT A. KAGAN, JoAo A. ASCENSAO, RAJENDRA N. PAHWA, JOHN A. HANSEN, GIDEON GOLDSTEIN, ELISA B. VALERA, GENEVIEVE S. INCEFY, MALCOLM A. S. MOORE, AND ROBERT A. GOOD Memorial Sloan-Kettering Cancer Center, New York, N.Y. 10021 Contributed by Robert A. Good, May 24, 1976 ABSTRACT Bone marrow from a patient with aplastic all negative. There was no history of exposure to drugs or anemia was shown by multiple criteria to have a block in early chemical agents known to be capable of producing aplastic myeloid differentiation. This block was overcome in vitro by anemia. elimination of marrow lymphocytes. Furthermore, this differ- entiation block was transferred in vitro to normal marrow by coculturing with the patient's marrow. We suggest that some METHODS cases of aplastic anemia may be due to an immunologically Cell Separation. Heparinized bone marrow was obtained based suppression of marrow cell differentiation rather than from the posterior iliac crest of the patient and normal adult to a defect in stem cells or their necessary inductive environ- donors in 10 to 20 separate 0.5-ml aspirations. The cells were ment. separated according to density differences by centrifugation The hematopoietic system in man is thought to develop from on a Ficoll-hypaque gradient by the method of Boyum (5). Cells a common stem cell analogous to the spleen colony forming unit present at the plasma/Ficoll-hypaque interface were collected, in mice (CFU-s) (1), which then differentiates into committed and this heterogeneous mixture was then separated according progenitor cells of the granulocytic and monocytic series to size by velocity sedimentation at unit gravity by the method (CFU-c) (2), megakaryocytic, lymphoid, and erythroid lines, of Miller and Phillips (6).
    [Show full text]
  • Acoi Board Review 2017 Text
    CHERYL KOVALSKI, DO FACOI NO DISCLOSURES ACOI BOARD REVIEW 2017 TEXT ANEMIA ‣ Hemoglobin <13 grams or ‣ Hematocrit<39% TEXT IRON DEFICIENCY ‣ Most common nutritional problem in the world ‣ Absorbed in small bowel, enhanced by gastric acid ‣ Absorption inhibited by inflammation, phytates (bran) & tannins (tea) TEXT CAUSES OF IRON DEFICIENCY ‣ Blood loss – most common etiology ‣ Decreased intake ‣ Increased utilization-EPO therapy, chronic hemolysis ‣ Malabsorption – gastrectomy, sprue ‣ ‣ ‣ TEXT CLINICAL MANIFESTATIONS OF IRON DEFICIENCY ‣ Impaired psychomotor development ‣ Fatigue, Irritability ‣ PICA ‣ Koilonychiae, Glossitis, Angular stomatitis ‣ Dysphagia TEXT ANEMIA MCV RETICULOCYTE COUNT Corrected retic ct : >2%: blood loss or hemolysis <2%: hypoproliferative process TEXT ANEMIA ‣ MICROCYTIC ‣ Obtain and interpret iron studies ‣ Serum iron ‣ Total iron binding capacity (TIBC) ‣ Transferrin saturation ‣ Ferritin-correlates with total iron stores ‣ can be nml or inc if co-existent inflammation TEXT IRON DEFICIENCY LAB FINDINGS ‣ Low serum iron, increased TIBC ‣ % sat <20 TEXT MANAGEMENT OF IRON DEFICIENCY ‣ MUST LOOK FOR SOURCE OF BLEED: ie: GI, GU, Regular blood donor ‣ Replacement: 1. Oral: Ferrous sulfate 325 mg TID until serum iron, % sat, and ferritin mid-range normal, 6-12 months 2. IV TEXT SIDEROBLASTIC ANEMIAS Diverse group of disorders of RBC production characterized by: 1. Defect involving incorporation of iron into heme molecule 2. Ringed sideroblasts in bone marrow javascript:refimgshow(1) TEXT CLASSIFICATION OF SIDEROBLASTIC
    [Show full text]
  • Fanconi Anemia: Main Oral Manifestations
    http://dx.doi.org/10.1590/1981-8637201400030000082275 REVISÃO | REVIEW Fanconi Anemia: main oral manifestations Anemia de Fanconi: principais manifestações bucais Anna Clara Duszczak D’AGULHAM1 Cassiano Lima CHAIBEN1 Antônio Adilson Soares de LIMA1 Cassius Carvalho TORRES-PEREIRA1 Maria Ângela Naval MACHADO1 ABSTRACT Fanconi Anemia is a recessive and rare genetic disorder, characterized by chromosomal instability that induces congenital alterations in individuals. Aplastic anemia due to the progressive failure of the bone marrow, malignant neoplasias such as acute myeloid leukemia, liver tumors and squamous cell carcinoma are some of the possible evolutions of Fanconi Anemia. Some of these diseases develop mainly after bone marrow transplantation. The aim of this critical review of the literature was to discourse about the main oral manifestations and their involvement in the health of individuals who are ill with Fanconi Anemia. The clinical oral findings described in the literature include periodontal changes, such as gingivitis and aggressive periodontitis, recurrent aphthous ulcers and traumatic lesions. Papillary atrophy, macroglossia, melanic pigmentation and squamous cell carcinoma are the most common oral manifestations on the tongue. An increased risk for the development of malignant neoplasias in individuals with Fanconi Anemia has been reported, and this is progressive after bone marrow transplantation. In radiographs, dental anomalies such as the presence of supernumerary teeth, tooth agenesis, tooth rotation and transposition of teeth are observed. Salivary flow and some salivary components are also altered. Due to the increased susceptibility to the development of cancer in this specific population, it is important for the dentist to know the common oral manifestations and potentially cancerous lesions, in order to make an early diagnosis in individuals with Fanconi Anemia.
    [Show full text]