Chinaxiv:201910.00072V3

Total Page:16

File Type:pdf, Size:1020Kb

Chinaxiv:201910.00072V3 The Uncertainty Principle and the Certainty Rule Delong DUAN (Aerospace Information Research Institute, Chinese Academy of Sciences; Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China) Abstract Objective: Analyze and resolve differences between the uncertainty principle and quantum theory in physical interpretation. Methods: The original derivation and physical meaning of the mathematical relationship of Heisenberg's uncertainty principle were re-examined, and the limits of the relationship under different action scenarios were investigated. Results: Under the electromagnetic interaction scenario, through the analysis of the statistical distribution of quantum mechanical quantities and its full probability space, the result of the destruction of the uncertainty relationship under non-statistical interpretation is obtained; Using Fourier transform, the standard deviation constraint relation of the corresponding conjugate mechanical quantity under the virtual action scene is derived; By investigating the collection of electromagnetic interaction scenarios, gravitational interaction scenarios, and virtual interaction scenarios, the deterministic criterion of the mechanical state of microscopic quantum objects is chinaXiv:201910.00072v3 obtained. Limitations: Unanalyzed Entanglement. Conclusions: ①The non-statistical interpretation has logical contradictions;the uncertainty relationship, and the current quantum mechanics theory can properly describe the mechanical state of the microscopic quantum object only in the electromagnetic interaction scene under the statistical interpretation; ② The deterministic criterion shows that the mechanical state of microscopic particles is objectively certain, and its wave function is an *Corresponding author: De-Long DUAN (E-mail: [email protected]) 1 / 15 20200920(2012) expression of the statistical appearance of the mechanical state of microscopic particles in the context of electromagnetic interaction. The quantum probability of non-statistical interpretation refers in essence to the description of the statistical probability of the interaction between microscopic particles and the interaction scene. Keywords: quantum mechanics, uncertainty principle (relation), Copenhagen interpretation of quantum mechanics, probability distribution,gravitational waves PACS: 03.65.Ca, 03.65.Ta, 05.30.ch, 02.50.Sk, 04.40.Dg 1. Introduction 1.1 Background introduction and problem elicitation Quantum mechanics is called by Jammer M. as the only logically consistent theory about the micro-primitive process. It has laid the foundation of modern science, is the cornerstone of the development of contemporary material and information science-technology, and has achieved unprecedented success in the history of science1234. At the same time, the dispute between the interpretation of quantum mechanics and the physical interpretation of Heisenberg's uncertainty principle-the fundamental difference between the two interpretations represented by Bohr and Einstein, has been existing for a long time. The uncertainty principle, as a proposition called "principle" in the theoretical system of quantum mechanics5, is called the cornerstone of the quantum mechanics theory by Pauli and Dirac of the Bohr school. The construction of the mathematical formal system of quantum mechanics is ahead of its physical interpretation. In order to solve the quantum mechanics formal system ①whether the position and velocity of a particle can only be determined with limited accuracy at a given moment, ②whether the accuracy the theory allows is compatible with the best accuracy obtained in the experimental measurement1346, Heisenberg derived the uncertainty relation and proposed the uncertainty principle in March 1927. The proposal of the uncertainty principle is considered to be a major achievement in the history of science-it demonstrates the sharp contrast between the indeterminacy of quantum mechanics and the determinism in classical mechanics. It is the theory of quantum mechanics which signs of essential differences with classical mechanics theory57. chinaXiv:201910.00072v3 As soon as Heisenberg's uncertainty relation and its physical interpretation were put forward, it immediately attracted the attention of Einstein and Bohr. At the Solvay Conference held in October of that year, Einstein and Bohr had a heated debate on it. From the logical consistency of the uncertainty principle, which is equivalent to the logical self-consistency of quantum theory, to the completeness of the quantum mechanics theory targeted by the EPR theory, from 1927to the end of their lives, the ongoing debate between Einstein and Bohr lasted for decades. Although after the debate with Bohr in 1927 and 1930 at the two Solvay Conferences, Einstein no longer publicly questioned the validity of the uncertainty principle, but in fact he never agreed with Bohr-Heisenberg's interpretation basis. Moreover, it should be noted that until the end of his life in 1962, Bohr was not completely confident and affirmed of the uncertainty principle and the non-statistical interpretation of quantum mechanics that he and Heisenberg had been insisting on18. The physics community has no objection to the mathematical derivation of the uncertainty relation. The fundamental difference lies in the physical interpretation of the uncertainty principle that began in the Einstein-Bohr era. The physical interpretation of the uncertainty relationship is divided into the following two schools according to Jammer’s research 1: Ⅰ Statistical Interpretation-the interpretation insisted by Einstein and Schrödinger: the uncertainty relationship describes the ensemble composed of identically prepared quantum systems, and the lower limit of the product of the standard deviation of the statistical distribution 2 / 15 20200920(2012) of the regular conjugate variables is ħ⁄2. Its essence is to insist on rather than give up the precise description of the classic cause and effect. Ⅱ Non-statistical Interpretation-Bohr-Heisenberg interpretation: The uncertainty relationship is a description of an individual quantum system, whose regular conjugate variables cannot be accurately determined at the same time, and the lower limit of the product of uncertainty is ħ⁄26, this is the mainstream interpretation of quantum mechanics, also known as the orthodox interpretation of quantum mechanics or the Copenhagen interpretation. Its essence is to adhere to the individual probability of quantum mechanics. 1.2 Problem solution and meaning At present, the application technology of quantum mechanics is developing rapidly, but the theoretical interpretation is still binary oppositions and cannot be unified. This awkward situation has caused great troubles for the further improvement of new theories and new technologies based on quantum mechanics. In view of the history and current status of the physical interpretation of the quantum mechanics theory marked by the uncertainty principle, this article will first examine the original derivation and physical meaning of the uncertainty principle relation, the probability analysis and discussion of the non-statistical interpretation of the uncertainty relation are carried out under the electromagnetic interaction; then the corresponding mathematical relations are deduced by analogy in the picture of gravitational action scene, and finally, the uncertainty relation and the evolution of the mathematical form of the wave function are investigated through the limit analysis of the basic action unit of the virtual action picture. The research results of this paper show that the orthodox non-statistical interpretation of quantum mechanics is difficult to maintain its theoretical the self-consistency and logical consistency, negating the theory that quantum mechanics is the only logical consistency of the fundamental process, and restoring the original statistical appearance of uncertainty relations and quantum mechanics. 2. The formulation and non-statistical interpretation of the uncertainty principle Literature review Heisenberg published "On the Intuitive Content of Quantum Theory's Kinematics and Mechanics"16in March 1927, proposing the Heisenberg uncertainty principle and giving the mathematical derivation of the relationship, 1929 HP Robertson use quantum mechanics operators to express the normative proof of uncertainty relations. Heisenberg derives the following relationship in 6 through the mathematical form of quantum mechanics: chinaXiv:201910.00072v3 ħ ∆ ∆ ≥ (1) q p In the formula(1), ∆ ≡ ∆ − ∆ ≡ 2 ∆ − . At the same time, a 2 2 2 2 physical interpretation of thqe un(ceqrt)ai=nty pxrinxcip,lepwas c(arpr)ied=outpbx y ptaxking γ-ray microscope and electronic single slit position determination and other thought experiments as examples12. The definition of uncertainty relation is the accuracy limit of quantum theory for simultaneous measurement of several different physical quantities, emphasize that any experiment measuring position Q, every observation must interfere in some way with the velocity (momentum)P (and vice versa);and the degree of uncertainty of this change must limit the knowledge (accuracy) of the electron motion with respect to position Q and velocity (momentum) P to the uncertainty relation after the experiment is completed6,"Any exact observation (accuracy) must be subject to the uncertainty relationship 8. It is considered that the uncertainty principle protects the logical self-consistency of quantum mechanics10, the emphasis
Recommended publications
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Appendix: the Interaction Picture
    Appendix: The Interaction Picture The technique of expressing operators and quantum states in the so-called interaction picture is of great importance in treating quantum-mechanical problems in a perturbative fashion. It plays an important role, for example, in the derivation of the Born–Markov master equation for decoherence detailed in Sect. 4.2.2. We shall review the basics of the interaction-picture approach in the following. We begin by considering a Hamiltonian of the form Hˆ = Hˆ0 + V.ˆ (A.1) Here Hˆ0 denotes the part of the Hamiltonian that describes the free (un- perturbed) evolution of a system S, whereas Vˆ is some added external per- turbation. In applications of the interaction-picture formalism, Vˆ is typically assumed to be weak in comparison with Hˆ0, and the idea is then to deter- mine the approximate dynamics of the system given this assumption. In the following, however, we shall proceed with exact calculations only and make no assumption about the relative strengths of the two components Hˆ0 and Vˆ . From standard quantum theory, we know that the expectation value of an operator observable Aˆ(t) is given by the trace rule [see (2.17)], & ' & ' ˆ ˆ Aˆ(t) =Tr Aˆ(t)ˆρ(t) =Tr Aˆ(t)e−iHtρˆ(0)eiHt . (A.2) For reasons that will immediately become obvious, let us rewrite this expres- sion as & ' ˆ ˆ ˆ ˆ ˆ ˆ Aˆ(t) =Tr eiH0tAˆ(t)e−iH0t eiH0te−iHtρˆ(0)eiHte−iH0t . (A.3) ˆ In inserting the time-evolution operators e±iH0t at the beginning and the end of the expression in square brackets, we have made use of the fact that the trace is cyclic under permutations of the arguments, i.e., that Tr AˆBˆCˆ ··· =Tr BˆCˆ ···Aˆ , etc.
    [Show full text]
  • Quantum Field Theory II
    Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 20, 2018 1 Introduction The purpose of this independent study is to familiarize ourselves with the fundamental concepts of quantum field theory. In this paper, I discuss how the theory incorporates the interactions between quantum systems. With the success of the free Klein-Gordon field theory, ultimately we want to introduce the field interactions into our picture. Any interaction will modify the Klein-Gordon equation and thus its Lagrange density. Consider, for example, when the field interacts with an external source J(x). The Klein-Gordon equation and its Lagrange density are µ 2 (@µ@ + m )φ(x) = J(x); 1 m2 L = @ φ∂µφ − φ2 + Jφ. 2 µ 2 In a relativistic quantum field theory, we want to describe the self-interaction of the field and the interaction with other dynamical fields. This paper is based on my lecture for the Kapitza Society. The second section will discuss the concept of symmetry and conservation. The third section will discuss the self-interacting φ4 theory. Lastly, in the fourth section, I will briefly introduce the interaction (Dirac) picture and solve for the time evolution operator. 2 Noether's Theorem 2.1 Symmetries and Conservation Laws In 1918, the mathematician Emmy Noether published what is now known as the first Noether's Theorem. The theorem informally states that for every continuous symmetry there exists a corresponding conservation law. For example, the conservation of energy is a result of a time symmetry, the conservation of linear momentum is a result of a plane symmetry, and the conservation of angular momentum is a result of a spherical symmetry.
    [Show full text]
  • Interaction Representation
    Interaction Representation So far we have discussed two ways of handling time dependence. The most familiar is the Schr¨odingerrepresentation, where operators are constant, and states move in time. The Heisenberg representation does just the opposite; states are constant in time and operators move. The answer for any given physical quantity is of course independent of which is used. Here we discuss a third way of describing the time dependence, introduced by Dirac, known as the interaction representation, although it could equally well be called the Dirac representation. In this representation, both operators and states move in time. The interaction representation is particularly useful in problems involving time dependent external forces or potentials acting on a system. It also provides a route to the whole apparatus of quantum field theory and Feynman diagrams. This approach to field theory was pioneered by Dyson in the the 1950's. Here we will study the interaction representation in quantum mechanics, but develop the formalism in enough detail that the road to field theory can be followed. We consider an ordinary non-relativistic system where the Hamiltonian is broken up into two parts. It is almost always true that one of these two parts is going to be handled in perturbation theory, that is order by order. Writing our Hamiltonian we have H = H0 + V (1) Here H0 is the part of the Hamiltonian we have under control. It may not be particularly simple. For example it could be the full Hamiltonian of an atom or molecule. Neverthe- less, we assume we know all we need to know about the eigenstates of H0: The V term in H is the part we do not have control over.
    [Show full text]
  • Advanced Quantum Theory AMATH473/673, PHYS454
    Advanced Quantum Theory AMATH473/673, PHYS454 Achim Kempf Department of Applied Mathematics University of Waterloo Canada c Achim Kempf, September 2017 (Please do not copy: textbook in progress) 2 Contents 1 A brief history of quantum theory 9 1.1 The classical period . 9 1.2 Planck and the \Ultraviolet Catastrophe" . 9 1.3 Discovery of h ................................ 10 1.4 Mounting evidence for the fundamental importance of h . 11 1.5 The discovery of quantum theory . 11 1.6 Relativistic quantum mechanics . 13 1.7 Quantum field theory . 14 1.8 Beyond quantum field theory? . 16 1.9 Experiment and theory . 18 2 Classical mechanics in Hamiltonian form 21 2.1 Newton's laws for classical mechanics cannot be upgraded . 21 2.2 Levels of abstraction . 22 2.3 Classical mechanics in Hamiltonian formulation . 23 2.3.1 The energy function H contains all information . 23 2.3.2 The Poisson bracket . 25 2.3.3 The Hamilton equations . 27 2.3.4 Symmetries and Conservation laws . 29 2.3.5 A representation of the Poisson bracket . 31 2.4 Summary: The laws of classical mechanics . 32 2.5 Classical field theory . 33 3 Quantum mechanics in Hamiltonian form 35 3.1 Reconsidering the nature of observables . 36 3.2 The canonical commutation relations . 37 3.3 From the Hamiltonian to the equations of motion . 40 3.4 From the Hamiltonian to predictions of numbers . 44 3.4.1 Linear maps . 44 3.4.2 Choices of representation . 45 3.4.3 A matrix representation . 46 3 4 CONTENTS 3.4.4 Example: Solving the equations of motion for a free particle with matrix-valued functions .
    [Show full text]
  • The Path Integral Approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV
    The Path Integral approach to Quantum Mechanics Lecture Notes for Quantum Mechanics IV Riccardo Rattazzi May 25, 2009 2 Contents 1 The path integral formalism 5 1.1 Introducingthepathintegrals. 5 1.1.1 Thedoubleslitexperiment . 5 1.1.2 An intuitive approach to the path integral formalism . .. 6 1.1.3 Thepathintegralformulation. 8 1.1.4 From the Schr¨oedinger approach to the path integral . .. 12 1.2 Thepropertiesofthepathintegrals . 14 1.2.1 Pathintegralsandstateevolution . 14 1.2.2 The path integral computation for a free particle . 17 1.3 Pathintegralsasdeterminants . 19 1.3.1 Gaussianintegrals . 19 1.3.2 GaussianPathIntegrals . 20 1.3.3 O(ℏ) corrections to Gaussian approximation . 22 1.3.4 Quadratic lagrangians and the harmonic oscillator . .. 23 1.4 Operatormatrixelements . 27 1.4.1 Thetime-orderedproductofoperators . 27 2 Functional and Euclidean methods 31 2.1 Functionalmethod .......................... 31 2.2 EuclideanPathIntegral . 32 2.2.1 Statisticalmechanics. 34 2.3 Perturbationtheory . .. .. .. .. .. .. .. .. .. .. 35 2.3.1 Euclidean n-pointcorrelators . 35 2.3.2 Thermal n-pointcorrelators. 36 2.3.3 Euclidean correlators by functional derivatives . ... 38 0 0 2.3.4 Computing KE[J] and Z [J] ................ 39 2.3.5 Free n-pointcorrelators . 41 2.3.6 The anharmonic oscillator and Feynman diagrams . 43 3 The semiclassical approximation 49 3.1 Thesemiclassicalpropagator . 50 3.1.1 VanVleck-Pauli-Morette formula . 54 3.1.2 MathematicalAppendix1 . 56 3.1.3 MathematicalAppendix2 . 56 3.2 Thefixedenergypropagator. 57 3.2.1 General properties of the fixed energy propagator . 57 3.2.2 Semiclassical computation of K(E)............. 61 3.2.3 Two applications: reflection and tunneling through a barrier 64 3 4 CONTENTS 3.2.4 On the phase of the prefactor of K(xf ,tf ; xi,ti) ....
    [Show full text]
  • Superconducting Transmon Machines
    Quantum Computing Hardware Platforms: Superconducting Transmon Machines • CSC591/ECE592 – Quantum Computing • Fall 2020 • Professor Patrick Dreher • Research Professor, Department of Computer Science • Chief Scientist, NC State IBM Q Hub 3 November 2020 Superconducting Transmon Quantum Computers 1 5 November 2020 Patrick Dreher Outline • Introduction – Digital versus Quantum Computation • Conceptual design for superconducting transmon QC hardware platforms • Construction of qubits with electronic circuits • Superconductivity • Josephson junction and nonlinear LC circuits • Transmon design with example IBM chip layout • Working with a superconducting transmon hardware platform • Quantum Mechanics of Two State Systems - Rabi oscillations • Performance characteristics of superconducting transmon hardware • Construct the basic CNOT gate • Entangled transmons and controlled gates • Appendices • References • Quantum mechanical solution of the 2 level system 3 November 2020 Superconducting Transmon Quantum Computers 2 5 November 2020 Patrick Dreher Digital Computation Hardware Platforms Based on a Base2 Mathematics • Design principle for a digital computer is built on base2 mathematics • Identify voltage changes in electrical circuits that map base2 math into a “zero” or “one” corresponding to an on/off state • Build electrical circuits from simple on/off states that apply these basic rules to construct digital computers 3 November 2020 Superconducting Transmon Quantum Computers 3 5 November 2020 Patrick Dreher From Previous Lectures It was
    [Show full text]
  • Pictures and Equations of Motion in Lagrangian Quantum Field Theory
    Pictures and equations of motion in Lagrangian quantum field theory Bozhidar Z. Iliev ∗ † ‡ Short title: Picture of motion in QFT Basic ideas: → May–June, 2001 Began: → May 12, 2001 Ended: → August 5, 2001 Initial typeset: → May 18 – August 8, 2001 Last update: → January 30, 2003 Produced: → February 1, 2008 http://www.arXiv.org e-Print archive No.: hep-th/0302002 • r TM BO•/ HO Subject Classes: Quantum field theory 2000 MSC numbers: 2001 PACS numbers: 81Q99, 81T99 03.70.+k, 11.10Ef, 11.90.+t, 12.90.+b Key-Words: Quantum field theory, Pictures of motion, Schr¨odinger picture Heisenberg picture, Interaction picture, Momentum picture Equations of motion, Euler-Lagrange equations in quantum field theory Heisenberg equations/relations in quantum field theory arXiv:hep-th/0302002v1 1 Feb 2003 Klein-Gordon equation ∗Laboratory of Mathematical Modeling in Physics, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Boul. Tzarigradsko chauss´ee 72, 1784 Sofia, Bulgaria †E-mail address: [email protected] ‡URL: http://theo.inrne.bas.bg/∼bozho/ Contents 1 Introduction 1 2 Heisenberg picture and description of interacting fields 3 3 Interaction picture. I. Covariant formulation 6 4 Interaction picture. II. Time-dependent formulation 13 5 Schr¨odinger picture 18 6 Links between different time-dependent pictures of motion 20 7 The momentum picture 24 8 Covariant pictures of motion 28 9 Conclusion 30 References 31 Thisarticleendsatpage. .. .. .. .. .. .. .. .. 33 Abstract The Heisenberg, interaction, and Schr¨odinger pictures of motion are considered in La- grangian (canonical) quantum field theory. The equations of motion (for state vectors and field operators) are derived for arbitrary Lagrangians which are polynomial or convergent power series in field operators and their first derivatives.
    [Show full text]
  • Casimir-Polder Interaction in Second Quantization
    Universitat¨ Potsdam Institut fur¨ Physik und Astronomie Casimir-Polder interaction in second quantization Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) in der Wissen- schaftsdisziplin theoretische Physik. Eingereicht am 21. Marz¨ 2011 an der Mathematisch – Naturwissen- schaftlichen Fakultat¨ der Universitat¨ Potsdam von Jurgen¨ Schiefele Betreuer: PD Dr. Carsten Henkel This work is licensed under a Creative Commons License: Attribution - Noncommercial - Share Alike 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-sa/3.0/de/ Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2011/5417/ URN urn:nbn:de:kobv:517-opus-54171 http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-54171 Abstract The Casimir-Polder interaction between a single neutral atom and a nearby surface, arising from the (quantum and thermal) fluctuations of the electromagnetic field, is a cornerstone of cavity quantum electrodynamics (cQED), and theoretically well established. Recently, Bose-Einstein condensates (BECs) of ultracold atoms have been used to test the predic- tions of cQED. The purpose of the present thesis is to upgrade single-atom cQED with the many-body theory needed to describe trapped atomic BECs. Tools and methods are developed in a second-quantized picture that treats atom and photon fields on the same footing. We formulate a diagrammatic expansion using correlation functions for both the electromagnetic field and the atomic system. The formalism is applied to investigate, for BECs trapped near surfaces, dispersion interactions of the van der Waals-Casimir-Polder type, and the Bosonic stimulation in spontaneous decay of excited atomic states.
    [Show full text]
  • Advanced Quantum Theory AMATH473/673, PHYS454
    Advanced Quantum Theory AMATH473/673, PHYS454 Achim Kempf Department of Applied Mathematics University of Waterloo Canada c Achim Kempf, October 2016 (Please do not copy: textbook in progress) 2 Contents 1 A brief history of quantum theory 9 1.1 The classical period . 9 1.2 Planck and the \Ultraviolet Catastrophe" . 9 1.3 Discovery of h ................................ 10 1.4 Mounting evidence for the fundamental importance of h . 11 1.5 The discovery of quantum theory . 11 1.6 Relativistic quantum mechanics . 12 1.7 Quantum field theory . 14 1.8 Beyond quantum field theory? . 16 1.9 Experiment and theory . 18 2 Classical mechanics in Hamiltonian form 19 2.1 Newton's laws for classical mechanics cannot be upgraded . 19 2.2 Levels of abstraction . 20 2.3 Classical mechanics in Hamiltonian formulation . 21 2.3.1 The energy function H contains all information . 21 2.3.2 The Poisson bracket . 23 2.3.3 The Hamilton equations . 25 2.3.4 Symmetries and Conservation laws . 27 2.3.5 A representation of the Poisson bracket . 29 2.4 Summary: The laws of classical mechanics . 30 2.5 Classical field theory . 31 3 Quantum mechanics in Hamiltonian form 33 3.1 Reconsidering the nature of observables . 34 3.2 The canonical commutation relations . 35 3.3 From the Hamiltonian to the Equations of Motion . 38 3.4 From the Hamiltonian to predictions of numbers . 41 3.4.1 A matrix representation . 42 3.4.2 Solving the matrix differential equations . 44 3.4.3 From matrix-valued functions to number predictions .
    [Show full text]
  • Path Integral in Quantum Field Theory Alexander Belyaev (Course Based on Lectures by Steven King) Contents
    Path Integral in Quantum Field Theory Alexander Belyaev (course based on Lectures by Steven King) Contents 1 Preliminaries 5 1.1 Review of Classical Mechanics of Finite System . 5 1.2 Review of Non-Relativistic Quantum Mechanics . 7 1.3 Relativistic Quantum Mechanics . 14 1.3.1 Relativistic Conventions and Notation . 14 1.3.2 TheKlein-GordonEquation . 15 1.4 ProblemsSet1 ........................... 18 2 The Klein-Gordon Field 19 2.1 Introduction............................. 19 2.2 ClassicalScalarFieldTheory . 20 2.3 QuantumScalarFieldTheory . 28 2.4 ProblemsSet2 ........................... 35 3 Interacting Klein-Gordon Fields 37 3.1 Introduction............................. 37 3.2 PerturbationandScatteringTheory. 37 3.3 TheInteractionHamiltonian. 43 3.4 Example: K π+π− ....................... 45 S → 3.5 Wick’s Theorem, Feynman Propagator, Feynman Diagrams . .. 47 3.6 TheLSZReductionFormula. 52 3.7 ProblemsSet3 ........................... 58 4 Transition Rates and Cross-Sections 61 4.1 TransitionRates .......................... 61 4.2 TheNumberofFinalStates . 63 4.3 Lorentz Invariant Phase Space (LIPS) . 63 4.4 CrossSections............................ 64 4.5 Two-bodyScattering . 65 4.6 DecayRates............................. 66 4.7 OpticalTheorem .......................... 66 4.8 ProblemsSet4 ........................... 68 1 2 CONTENTS 5 Path Integrals in Quantum Mechanics 69 5.1 Introduction............................. 69 5.2 The Point to Point Transition Amplitude . 70 5.3 ImaginaryTime........................... 74 5.4 Transition Amplitudes With an External Driving Force . ... 77 5.5 Expectation Values of Heisenberg Position Operators . .... 81 5.6 Appendix .............................. 83 5.6.1 GaussianIntegration . 83 5.6.2 Functionals ......................... 85 5.7 ProblemsSet5 ........................... 87 6 Path Integral Quantisation of the Klein-Gordon Field 89 6.1 Introduction............................. 89 6.2 TheFeynmanPropagator(again) . 91 6.3 Green’s Functions in Free Field Theory .
    [Show full text]
  • Path-Integral Formulation of Scattering Theory
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Paul Finkler Papers Research Papers in Physics and Astronomy 10-15-1975 Path-integral formulation of scattering theory Paul Finkler University of Nebraska-Lincoln, [email protected] C. Edward Jones University of Nebraska-Lincoln M. Misheloff University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/physicsfinkler Part of the Physics Commons Finkler, Paul; Jones, C. Edward; and Misheloff, M., "Path-integral formulation of scattering theory" (1975). Paul Finkler Papers. 11. https://digitalcommons.unl.edu/physicsfinkler/11 This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Finkler Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. PHYSIC AL REVIE% D VOLUME 12, NUMBER 8 15 OCTOBER 1975 Path-integral formulation of scattering theory W. B. Campbell~~ Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125 P. Finkler, C. E. Jones, ~ and M. N. Misheloff Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68508 (Received 14 July 1975} A new formulation of nonrelativistic scattering theory is developed which expresses the S matrix as a path integral. This formulation appears to have at least two advantages: (1) A closed formula is obtained for the 8 matrix in terms of the potential, not involving a series expansion; (2) the energy-conserving 8 function can be explicitly extracted using a technique analogous to that of Faddeev and Popov, thereby yielding a closed path- integral expression for the T matrix.
    [Show full text]