Abstract Hybrid Optomechanics and The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curiens Principle and Spontaneous Symmetry Breaking
Curie’sPrinciple and spontaneous symmetry breaking John Earman Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA, USA Abstract In 1894 Pierre Curie announced what has come to be known as Curie’s Principle: the asymmetry of e¤ects must be found in their causes. In the same publication Curie discussed a key feature of what later came to be known as spontaneous symmetry breaking: the phenomena generally do not exhibit the symmetries of the laws that govern them. Philosophers have long been interested in the meaning and status of Curie’s Principle. Only comparatively recently have they begun to delve into the mysteries of spontaneous symmetry breaking. The present paper aims to advance the dis- cussion of both of these twin topics by tracing their interaction in classical physics, ordinary quantum mechanics, and quantum …eld theory. The fea- tures of spontaneous symmetry that are peculiar to quantum …eld theory have received scant attention in the philosophical literature. These features are highlighted here, along with a explanation of why Curie’sPrinciple, though valid in quantum …eld theory, is nearly vacuous in that context. 1. Introduction The statement of what is now called Curie’sPrinciple was announced in 1894 by Pierre Curie: (CP) When certain e¤ects show a certain asymmetry, this asym- metry must be found in the causes which gave rise to it (Curie 1894, p. 401).1 This principle is vague enough to allow some commentators to see in it pro- found truth while others see only falsity (compare Chalmers 1970; Radicati 1987; van Fraassen 1991, pp. -
An Introduction to Quantum Field Theory
AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ........................... -
A Spin Optodynamics Analogue of Cavity Optomechanics
A spin optodynamics analogue of cavity optomechanics N. Brahms1 and D.M. Stamper-Kurn1;2¤ 1Department of Physics, University of California, Berkeley CA 94720, USA 2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA (Dated: July 28, 2010) The dynamics of a large quantum spin coupled parametrically to an optical resonator is treated in analogy with the motion of a cantilever in cavity optomechanics. New spin optodynamic phenomena are predicted, such as cavity-spin bistability, optodynamic spin-precession frequency shifts, coherent ampli¯cation and damping of spin, and the spin optodynamic squeezing of light. Cavity optomechanical systems are currently being ex- Hin=out describes the coupling of the cavity ¯eld to exter- plored with the goal of measuring and controlling me- nal light modes. Under this Hamiltonian, the cantilever chanical objects at the quantum limit, using interactions positionz ^ and momentump ^ evolve as dz=dt^ =p=m ^ and 2 with light [1]. In such systems, the position of a mechan- dp=dt^ = ¡m!z z^ + fn^. ical oscillator is coupled parametrically to the frequency To construct a spin analogue of this system, we con- of cavity photons. A wealth of phenomena result, in- sider a Fabry-Perot cavity with its axis along k (Fig. 1). cluding quantum-limited measurements [2], mechanical For the collective spin, we ¯rst consider a gas of N hydro- response to photon shot noise [3], cavity cooling [4], and genlike atoms in a single hyper¯ne manifold of their elec- ponderomotive optical squeezing [5]. tronic ground state, each with dimensionless spin s and At the same time, spins and psuedospins coupled to gyromagnetic ratio ¹. -
A Discussion on Characteristics of the Quantum Vacuum
A Discussion on Characteristics of the Quantum Vacuum Harold \Sonny" White∗ NASA/Johnson Space Center, 2101 NASA Pkwy M/C EP411, Houston, TX (Dated: September 17, 2015) This paper will begin by considering the quantum vacuum at the cosmological scale to show that the gravitational coupling constant may be viewed as an emergent phenomenon, or rather a long wavelength consequence of the quantum vacuum. This cosmological viewpoint will be reconsidered on a microscopic scale in the presence of concentrations of \ordinary" matter to determine the impact on the energy state of the quantum vacuum. The derived relationship will be used to predict a radius of the hydrogen atom which will be compared to the Bohr radius for validation. The ramifications of this equation will be explored in the context of the predicted electron mass, the electrostatic force, and the energy density of the electric field around the hydrogen nucleus. It will finally be shown that this perturbed energy state of the quan- tum vacuum can be successfully modeled as a virtual electron-positron plasma, or the Dirac vacuum. PACS numbers: 95.30.Sf, 04.60.Bc, 95.30.Qd, 95.30.Cq, 95.36.+x I. BACKGROUND ON STANDARD MODEL OF COSMOLOGY Prior to developing the central theme of the paper, it will be useful to present the reader with an executive summary of the characteristics and mathematical relationships central to what is now commonly referred to as the standard model of Big Bang cosmology, the Friedmann-Lema^ıtre-Robertson-Walker metric. The Friedmann equations are analytic solutions of the Einstein field equations using the FLRW metric, and Equation(s) (1) show some commonly used forms that include the cosmological constant[1], Λ. -
Cavity Optomechanics
© 2009 OSA/CLEO/IQEC 2009 IWE1.pdfa336_1.pdfIWE1.pdf Cavity Optomechanics Kerry Vahala California Institute of Technology, Pasadena, California 91125 [email protected] Abstract Cavity enhancement of optical fields is providing a new way to couple light and mechanical motion. Its application to mechanical cooling and amplification, example implementations, and prospects for new science and technology are reviewed. ©2009 Optical Society of America OCIS codes: (140.3320) (140.4780) (230.1150) (140.3945) Cavity enhancement of optical fields is routinely used to strengthen the coupling of light with matter in nonlinear optics and cavity QED [1]. In recent years, however, cavity enhancement is also providing a way to modify the mechanical properties of the cavity itself, with important connections into many disciplines [2]. Related effects have been theoretically studied for decades in the context of the measurement of weak forces using interferometers (such as in the LIGO system). There, optical forces create quantum back- action on the mechanical motion of the interferometer mirror, helping to establish the so-called standard- quantum-limit [3]. Classically, cavity-enhanced optical forces also have a dynamical back-action effect on the mirror motion [4], which is now being studied experimentally to amplify [5] and cool [6-11] mechanical motion across a wide range of cavity designs (see figure 1). These phenomena have parallels in the world of atomic and ionic cooling [2], which, itself, has helped to enable remarkable new science and unprecedented leaps in metrology [12,13]. Moreover, the subject of cavity optomechanics is leveraging a surge in novel methods to fabricate high-optical-Q and high-mechanical-Q microstructures. -
Coherent State Path Integral for the Harmonic Oscillator 11
COHERENT STATE PATH INTEGRAL FOR THE HARMONIC OSCILLATOR AND A SPIN PARTICLE IN A CONSTANT MAGNETIC FLELD By MARIO BERGERON B. Sc. (Physique) Universite Laval, 1987 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES DEPARTMENT OF PHYSICS We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA October 1989 © MARIO BERGERON, 1989 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis . for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract The definition and formulas for the harmonic oscillator coherent states and spin coherent states are reviewed in detail. The path integral formalism is also reviewed with its relation and the partition function of a sytem is also reviewed. The harmonic oscillator coherent state path integral is evaluated exactly at the discrete level, and its relation with various regularizations is established. The use of harmonic oscillator coherent states and spin coherent states for the computation of the path integral for a particle of spin s put in a magnetic field is caried out in several ways, and a careful analysis of infinitesimal terms (in 1/N where TV is the number of time slices) is done explicitly. -
Effects of Photon Scattering Torque in Off-Axis Levitated Torsional Cavity Optomechanics
C44 Vol. 34, No. 6 / June 2017 / Journal of the Optical Society of America B Research Article Effects of photon scattering torque in off-axis levitated torsional cavity optomechanics 1, 1 1 1 2 M. BHATTACHARYA, *B.RODENBURG, W. WETZEL, B. EK, AND A. K. JHA 1School of Physics and Astronomy, Rochester Institute of Technology, Rochester, New York 14623, USA 2Department of Physics, Indian Institute of Technology, Kanpur 208016, India *Corresponding author: [email protected] Received 23 January 2017; revised 28 April 2017; accepted 28 April 2017; posted 3 May 2017 (Doc. ID 285304); published 25 May 2017 We consider theoretically a dielectric nanoparticle levitated in an optical ring trap inside a cavity and probed by an angular lattice, with all electromagnetic fields carrying orbital angular momentum. Analyzing the torsional mo- tion of the particle about the cavity axis, we find that photon scattering from the trap beam plays an important role in the optomechanical system. First we show that the presence of the torque introduces an instability. Subsequently, we demonstrate that for bound motion near a stable equilibrium, varying the optical torque strength allows for tuning the linear optomechanical coupling. Finally, we indicate that the relative strengths of the linear and quadratic couplings can be detected directly by homodyning the cavity output. Our studies should be of interest to researchers exploring quantum mechanics using torsional optomechanics. © 2017 Optical Society of America OCIS codes: (080.4865) Optical vortices; (140.4780) Optical resonators; (260.6042) Singular optics. https://doi.org/10.1364/JOSAB.34.000C44 1. INTRODUCTION optomechanical coupling in the system. -
Coherent and Squeezed States on Physical Basis
PRAMANA © Printed in India Vol. 48, No. 3, __ journal of March 1997 physics pp. 787-797 Coherent and squeezed states on physical basis R R PURI Theoretical Physics Division, Central Complex, Bhabha Atomic Research Centre, Bombay 400 085, India MS received 6 April 1996; revised 24 December 1996 Abstract. A definition of coherent states is proposed as the minimum uncertainty states with equal variance in two hermitian non-commuting generators of the Lie algebra of the hamil- tonian. That approach classifies the coherent states into distinct classes. The coherent states of a harmonic oscillator, according to the proposed approach, are shown to fall in two classes. One is the familiar class of Glauber states whereas the other is a new class. The coherent states of spin constitute only one class. The squeezed states are similarly defined on the physical basis as the states that give better precision than the coherent states in a process of measurement of a force coupled to the given system. The condition of squeezing based on that criterion is derived for a system of spins. Keywords. Coherent state; squeezed state; Lie algebra; SU(m, n). PACS Nos 03.65; 02-90 1. Introduction The hamiltonian of a quantum system is generally a linear combination of a set of operators closed under the operation of commutation i.e. they constitute a Lie algebra. Since their introduction for a hamiltonian linear in harmonic oscillator (HO) oper- ators, the notion of coherent states [1] has been extended to other hamiltonians (see [2-9] and references therein). Physically, the HO coherent states are the minimum uncertainty states of the two quadratures of the bosonic operator with equal variance in the two. -
Strong Mechanical Squeezing in an Electromechanical System Ling-Juan Feng, Gong-Wei Lin, Li Deng, Yue-Ping Niu & Shang-Qing Gong
www.nature.com/scientificreports OPEN Strong mechanical squeezing in an electromechanical system Ling-Juan Feng, Gong-Wei Lin, Li Deng, Yue-Ping Niu & Shang-Qing Gong The mechanical squeezing can be used to explore quantum behavior in macroscopic system and Received: 10 November 2017 realize precision measurement. Here we present a potentially practical method for generating Accepted: 14 February 2018 strong squeezing of the mechanical oscillator in an electromechanical system. Through the Coulomb Published: xx xx xxxx interaction between a charged mechanical oscillator and two fxed charged bodies, we engineer a quadratic electromechanical Hamiltonian for the vibration mode of mechanical oscillator. We show that the strong position squeezing would be obtained on the currently available experimental technologies. Nonclassical states1,2, as a very fundamental and practical application in quantum optics and quantum infor- mation processing, have attracted extensive attention. One of the most essential quantum states is the squeezed state1,3,4, in a harmonic oscillator, which can be defned as the reduction of uncertainty in one quadrature below the standard quantum limit at the expense of the corresponding enhanced uncertainty in the other, such that the Heisenberg uncertainty relation is not violated5–8. Since then, the schemes for producing and performing squeezed states have been intensively investigated via theoretical proposals and experimental implementations9–34. Following the development of laser cooling of mechanical oscillators35–38, the preparations of mechani- cal squeezed states10 were widely used to study the applicability of quantum mechanics and the precision of quantum measurements11,12. In particular, the theoretical schemes for generation of the mechanical squeezing were proposed by amplitude-modulated driving feld16–18, quantum measurement plus feedback19,20, two-tone driving21, injection of squeezed light22, or quadratic optomechanical coupling23–30. -
1 Coherent States and Path Integral Quantiza- Tion. 1.1 Coherent States Let Q and P Be the Coordinate and Momentum Operators
1 Coherent states and path integral quantiza- tion. 1.1 Coherent States Let q and p be the coordinate and momentum operators. They satisfy the Heisenberg algebra, [q,p] = i~. Let us introduce the creation and annihilation operators a† and a, by their standard relations ~ q = a† + a (1) r2mω m~ω p = i a† a (2) r 2 − Let us consider a Hilbert space spanned by a complete set of harmonic os- cillator states n , with n =0,..., . Leta ˆ† anda ˆ be a pair of creation and annihilation operators{| i} acting on that∞ Hilbert space, and satisfying the commu- tation relations a,ˆ aˆ† =1 , aˆ†, aˆ† =0 , [ˆa, aˆ] = 0 (3) These operators generate the harmonic oscillators states n in the usual way, {| i} 1 n n = aˆ† 0 (4) | i √n! | i aˆ 0 = 0 (5) | i where 0 is the vacuum state of the oscillator. Let| usi denote by z the coherent state | i † z = ezaˆ 0 (6) | i | i z = 0 ez¯aˆ (7) h | h | where z is an arbitrary complex number andz ¯ is the complex conjugate. The coherent state z has the defining property of being a wave packet with opti- mal spread, i.e.,| ithe Heisenberg uncertainty inequality is an equality for these coherent states. How doesa ˆ act on the coherent state z ? | i ∞ n z n aˆ z = aˆ aˆ† 0 (8) | i n! | i n=0 X Since n n−1 a,ˆ aˆ† = n aˆ† (9) we get h i ∞ n z n n aˆ z = a,ˆ aˆ† + aˆ† aˆ 0 (10) | i n! | i n=0 X h i 1 Thus, we find ∞ n z n−1 aˆ z = n aˆ† 0 z z (11) | i n! | i≡ | i n=0 X Therefore z is a right eigenvector ofa ˆ and z is the (right) eigenvalue. -
Detailing Coherent, Minimum Uncertainty States of Gravitons, As
Journal of Modern Physics, 2011, 2, 730-751 doi:10.4236/jmp.2011.27086 Published Online July 2011 (http://www.SciRP.org/journal/jmp) Detailing Coherent, Minimum Uncertainty States of Gravitons, as Semi Classical Components of Gravity Waves, and How Squeezed States Affect Upper Limits to Graviton Mass Andrew Beckwith1 Department of Physics, Chongqing University, Chongqing, China E-mail: [email protected] Received April 12, 2011; revised June 1, 2011; accepted June 13, 2011 Abstract We present what is relevant to squeezed states of initial space time and how that affects both the composition of relic GW, and also gravitons. A side issue to consider is if gravitons can be configured as semi classical “particles”, which is akin to the Pilot model of Quantum Mechanics as embedded in a larger non linear “de- terministic” background. Keywords: Squeezed State, Graviton, GW, Pilot Model 1. Introduction condensed matter application. The string theory metho- dology is merely extending much the same thinking up to Gravitons may be de composed via an instanton-anti higher than four dimensional situations. instanton structure. i.e. that the structure of SO(4) gauge 1) Modeling of entropy, generally, as kink-anti-kinks theory is initially broken due to the introduction of pairs with N the number of the kink-anti-kink pairs. vacuum energy [1], so after a second-order phase tran- This number, N is, initially in tandem with entropy sition, the instanton-anti-instanton structure of relic production, as will be explained later, gravitons is reconstituted. This will be crucial to link 2) The tie in with entropy and gravitons is this: the two graviton production with entropy, provided we have structures are related to each other in terms of kinks and sufficiently HFGW at the origin of the big bang. -
1 the LOCALIZED QUANTUM VACUUM FIELD D. Dragoman
1 THE LOCALIZED QUANTUM VACUUM FIELD D. Dragoman – Univ. Bucharest, Physics Dept., P.O. Box MG-11, 077125 Bucharest, Romania, e-mail: [email protected] ABSTRACT A model for the localized quantum vacuum is proposed in which the zero-point energy of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated to the zero-point energy of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift; it also offers a new insight into the Zitterbewegung of material particles. 2 INTRODUCTION The zero-point energy (ZPE) of the quantum electromagnetic field is at the same time an indispensable concept of quantum field theory and a controversial issue (see [1] for an excellent review of the subject). The need of the ZPE has been recognized from the beginning of quantum theory of radiation, since only the inclusion of this term assures no first-order temperature-independent correction to the average energy of an oscillator in thermal equilibrium with blackbody radiation in the classical limit of high temperatures. A more rigorous introduction of the ZPE stems from the treatment of the electromagnetic radiation as an ensemble of harmonic quantum oscillators. Then, the total energy of the quantum electromagnetic field is given by E = åk,s hwk (nks +1/ 2) , where nks is the number of quantum oscillators (photons) in the (k,s) mode that propagate with wavevector k and frequency wk =| k | c = kc , and are characterized by the polarization index s.