Automated Ontology Creation Using XML Schema Elements

Total Page:16

File Type:pdf, Size:1020Kb

Automated Ontology Creation Using XML Schema Elements Automated Ontology Creation using XML Schema Elements Samuel Suhas Singapogu, Paulo C. G. Costa, J. Mark Pullen C4I center, George Mason University Fairfax, VA, USA [ssingapo,pcosta,mpullen]@c4i.gmu.edu Abstract—Ontologies are commonly used to represent formal semantics in a computer system, usually capturing them in the Although ontologies are valuable assets in system model- form of concepts, relationships and axioms. Axioms convey ing, testing and analysis, the process of manually creating an asserted knowledge and support inferring new knowledge ontology for a complex system is inherently tedious and through logical reasoning. For complex systems, the process of error prone. Existing methods of knowledge discovery and creating ontologies manually can be tedious and error-prone. ontology creation usually are based on text mining of a data Many automated methods of knowledge discovery are based on mining domain text corpus, but current state-of-the-art meth- corpus for that domain. XML-based systems capture the ods using this approach fail to consider properly semantic data structure and syntax of all necessary and meaningful ele- embedded in XML schemata in complex systems. This paper ments in a XML schema, which therefore is a useful starting proposes a mapping method for identifying relevant semantic point for semantic analysis. In such systems, XML schemata data in XML schemata, automatically structuring and repre- have been shown to be a valuable resource of semantic data senting it in the form of a draft ontology. Concepts, concept [2]. Command and Control systems in the military context hierarchy and domain relationships from XML schema are support various functions, including commanding of forces mapped to relevant parts of an OWL ontology. A part-of- and also receiving and interpretation of situational aware- speech tagging method extracts domain relationships from ness reports. To perform these functions, most C2 systems schema annotations. This mapping method can be applied to are modeled using XML schemata e.g. Coalition Battle any system that has a well-annotated XML schema. We illus- Management System (C-BML) [3], Military Scenario Defi- trate our process with the preliminary results obtained when creating a command and control to simulation (C2SIM) draft nition Language (MSDL) [4], and National Information ontology from an XML schema. Exchange Model (NIEM) [5], which represent the systems’ structural and syntactic framework. These systems use and exchange XML documents that are based on XML schema- Keywords—OWL, XML Schema, Part of Speech tagging, Com- ta. mand and Control, Interoperability XML often is used as the exchange mechanism in the command and control domain [6]. Given the increasing I. INTRODUCTION number of XML-based systems in the C2 domain, an auto- mated framework that leverages semantic information in the XML schema and creates a draft ontology would be a useful Knowledge discovery is essentially the process of ex- tool. Domain experts can refine and populate the draft on- tracting semantic concepts and relationships from domain tology using concept hierarchy and basic domain relation- resources within a particular domain. Ontologies are the de ships. For large XML based systems, this process of creat- facto standard for representing knowledge of a system [1]. ing a draft ontology saves valuable time and avoids errors The framework and components of ontologies are based on common to the alternative tedious, manual process. In con- established, yet evolving W3C standards. Ontologies usual- trast to existing techniques used to map a XML schema to ly are comprised of concepts, relationships and axioms. an ontology, the mapping proposed in this paper highlights Concepts are abstractions of related attributes that form the the need to map schema element (xs:element from here basic building blocks of a semantic model. Relationships forward) to an ontological concept. This avoids the usual can be between two concepts or between a concept and a approach of mapping XML complex types to concepts that data-type. Axioms consist of asserted knowledge that can be could lead to unnecessary ontological complexity. In addi- represented as a <subject, predicate, object> tion, this paper proposes a novel Part of Speech tagging triple. Logic-based reasoners can be used to infer new knowledge in an ontology. STIDS 2015 Proceedings Page 10 method to extract domain relationships from well-annotated XML schema. Existing work ignores semantic information pertaining to domain relationships that are present in well-annotated XML schema annotations. By design, the purpose of XML II. RELATED WORK annotations is to capture description of elements, which are often described in relation to other elements. For instance, consider the XSD annotation for the element Most existing work on mapping a XML Schema to an on- <xs:EventStatus> of the C2 domain in Figure 1. tology (e.g. [7], [8] ) is based on mapping XML schema complexType (henceforth referred to as xs:complexType) to an owl:class. This mapping can lead to problems for the following reasons: 1. A “simpleType” definition is sufficient to define a se- mantic concept. In the command and control domain, for example, it is possible to define an element called “Unit- Name,” which is of a “simpleType” string (with string re- strictions). There is sufficient semantic information in Fig. 1. Illustrating the presence of domain relationships in XSD annotations this definition to create a distinct ontological concept. When this level of abstraction of concepts is ignored and This pattern of linking elements in annotations is com- only complex type definitions are considered as semantic mon in domains with well-annotated XML schemata. Our concepts, the resulting ontologies will contain significant approach leverages this pattern by employing a mapping modeling gaps for any useful analysis. from xs:element to owl:class and uses Part of 2. By design, XML parsing only allows elements associated Speech tagging of XSD annotations to extract domain rela- to a complex type to appear in valid XML files. XML tionships. schemata can contain complex type definitions that are never associated to an element definition. When concepts are mapped to complex types, the resulting ontology will III. SYSTEM DESIGN likely include concepts that will never appear in the XML document. This unnecessary complexity is counter- productive to efficient semantic modeling in design and The mapping process takes as input a sufficiently anno- analysis. tated XML schema, which we define as any XML schema that contains the following: Bohring et al. [9] recognize the value of semantic con- a) The schema provides annotations for most elements cepts being mapped to <xs:element> definition. How- using descriptive domain terminology ever, this mapping is done only for <xs:element> defi- b) Annotations referencing elements defined in the schema nitions that are not leaf nodes and have at least one attribute use a consistent naming convention. definition. The approach in [9] fails to consider valid se- mantic concepts that are simple literal definitions. In addi- As an example of the latter, if the schema defines an el- tion, ontologies have been designed so that datatype proper- ement as “ReporterWho” then any annotation referring to ties can be mapped to XML schema datatypes [10]. There- this element must do so in a consistent way, i.e., the refer- fore, the resulting mapping of simple xs:element to ence can be extracted by simple operations (e.g., removing owl:DatatypeProperty using that approach would be spaces, pruning special characters, etc.) inconsistent with standard practice of ontology design. Yang, Steele, and Lo [11] describe an ontology-based map- The system components and relationships between the ping between XML and ontology (bi-directional) that focus- components are illustrated in Figure 2 below. es on limiting loss of information in the bi-directional map- ping. STIDS 2015 Proceedings Page 11 Fig. 4. XML schema after pre-processing Fig. 2. Illustrating system components and relationships Pre-processing the XML schema: Our approach maps the After pre-processing, the following mappings are estab- ontological concept name to the name of the element in the lished while parsing through the XML schema: XML schema. XML schemata allow for multiple elements Mapping 1: 'xs:element’ to owl:class: Com- to have the same name. More often than not, the same name monly, each definition of an element contains a name and an is used (e.g. <xs:element name=”ID”/>),specially associated complex type. An owl:class is created with when defining identifiers and other common elements. the class name equal to the name of the element. Attribute Even though the same name may exist in different element definitions for the element are mapped to the definitions, as long as their context is different they are owl:datatype property. Cardinality of concepts is de- semantically different concepts. In order to disambiguate fined according to the xs:minOccurs and between elements with the same name, we propose a pre- xs:MaxOccurs in the XML schema as explained in [9]. processing step that concatenates the parent complex type Therefore, if an element “element1” is defined as having name to the name of the element using a delimiter. For ele- type “complexType1” and the definition of “com- ments that do not have a parent complex type, an iterating plexType1” includes an “element2” with max- place-holder name can be used (e.g. “Parenti”) Because occurs=unbounded, then the cardinality between the XML schema rules require that all xs:complexType concepts “element1” and “element2” is 1…∝ have unique names in the schema, this pre-processing step Mapping 2: Element hierarchy to concept hierarchy: ensures that element names (and therefore concept names in Nayak and Wina [12] have noted that XML schema contains the ontology) are unique in the XML schema. The pre- element definitions in a hierarchical structure. They employ processing step performs the disambiguation technique to structural information in XML schemata to define clusters all elements, and not only to the redundant elements.
Recommended publications
  • Transforming Recursive Relationships to OWL2 Components
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 10, No. 10, 2019 Ontology Learning from Relational Databases: Transforming Recursive Relationships to OWL2 Components 1 Mohammed Reda CHBIHI LOUHDI Hicham BEHJA2 Research Laboratory on computer science innovation (LRII) LRI - Laboratory Faculty of Science Aïn Chock Casablanca ENSEM, Hassan II University Hassan II University, Casablanca, Morocco Casablanca, Morocco Abstract—Relational databases (RDB) are widely used as a ontologies provide classes, properties, individuals, and data backend for information systems, and contain interesting values and are stored as Semantic Web documents [3]. structured data (schema and data). In the case of ontology learning, RDB can be used as knowledge source. Multiple There are many approaches that transform a RDB to an approaches exist for building ontologies from RDB. They mainly ontology. Three main techniques are used: (1) Reverse use schema mapping to transform RDB components to Engineering, to convert the relational model to the conceptual ontologies. Most existing approaches do not deal with recursive model (which is considered as semantically richer than the relationships that can encapsulate good semantics. In this paper, relational model) or to retrieve lost information during the two technics are proposed for transforming recursive transformation of the conceptual model to the relational model, relationships to OWL2 components: (1) Transitivity mechanism (2) Schema Mapping, to convert relational model components and (2) Concept Hierarchy. The main objective of this work is to to ontology components, through the use of transformation build richer ontologies with deep taxonomies from RDB. rules and (3) Data Mining to analyze stored data in order to enrich the ontology.
    [Show full text]
  • Ontology Life Cycle: a Survey on the Ontology and Its Development Steps
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Ontology Life Cycle: A Survey on the Ontology and its Development Steps Eiman Alsiddig Altayeb Ibrahim1, Mohammed Awad Mohammed Ataelfadiel2 1Sudan University of Science and Technology, College of Computer Science and Information Technology, Khartoum – Sudan 2Computer Science dept. AL-Imam MuhommedIbn Saud Islamic University, AL-Ahsa, Kingdom of Saudi Arabia Abstract: In the last decades, the turnout has become great for the use of ontology in various fields, such as web technologies, database integration, multi agent systems, natural language processing, etc... The main goal of this paper is to answer generic questions about ontologies, such as: What is the ontology? Which are the different Types of ontologies? What is the purpose of the use of ontologies in an application? Which methods can I use to build ontology? During the paper we discussed the definition of Ontology, types of ontologies (Formal and Informal ontology) and its Component.Also, highlighted some of the languages used in the construction of the Ontologies beside the ontology Building Tools. In addition, we listed the agreed steps for building the Ontology. In conclusion, we did not overlook to mention some of the Ontology projects specifically in Holy Quran Domain. Keywords: Ontology Definition, Ontology Types, Ontology Building Tools, Ontology languages, Ontology components, Ontology Engineering 1. Introduction 2. Ontology Definition Historically, ontologies arise out of the branch of philosophy There are many interpretations about what ontology is. In fact, known as metaphysics, which deals with the nature of reality – hot discussions are often done in many meetings on ontology.
    [Show full text]
  • An Approach to Formalizing Ontology Driven Semantic Integration: Concepts, Dimensions and Framework Wenlong Gao
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2012 An Approach to Formalizing Ontology Driven Semantic Integration: Concepts, Dimensions and Framework Wenlong Gao Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF COMMUNICATION AND INFORMATION AN APPROACH TO FORMALIZING ONTOLOGY DRIVEN SEMANTIC INTEGRATION: CONCEPTS, DIMENSIONS AND FRAMEWORK By WENLONG GAO A Dissertation submitted to the School of Library and Information Studies In partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2012 Wenlong Gao defended this dissertation on December 9, 2011 The members of the supervisory committee were: Corinne Jörgensen Professor Directing Dissertation Daniel Schwartz University Representative Ian Douglas Committee Member Besiki Stvilia Committee Member The Graduate School has verified and approved the above-named committee members and certifies that the dissertation has been approved in accordance with university requirements. ii For my parents, I could not have done this without you. iii ACKNOWLEDGEMENTS This dissertation could not have been completed without the tremendous support and help of my dissertation committee, friends and family. First, I would like to thank Dr. Corinne Jörgensen, my dissertation chair and mentor. You supported me through this entire process, and encouraged me whenever I encountered challenges. I will always appreciate the trust and confidence you placed in me. It has been an honor and privilege to be your doctoral student. Second, I am thankful for other committee members, Dr. Ian Douglas, Dr. Besiki Stvilia, Dr. Daniel Schwartz, who inspired me not only throughout the dissertation development but also though my personal academic development.
    [Show full text]
  • Ontology Without Borders 1St Edition Free Download
    FREE ONTOLOGY WITHOUT BORDERS 1ST EDITION PDF Jody Azzouni | 9780190622558 | | | | | Daniele Lorenzini and Martina Tazzioli: Critique without ontology / Radical Philosophy Uh-oh, it looks like your Internet Explorer is out of date. For a better shopping experience, please upgrade now. Javascript is not enabled in your browser. Enabling JavaScript in your browser will allow you to experience all the features of our site. Learn how to enable JavaScript on your browser. NOOK Book. Home 1 Books 2. Read an excerpt of this book! Add to Wishlist. Sign in to Purchase Instantly. Members save with free shipping everyday! See details. Overview Our experience of objects and consequently our theorizing about them is very rich. We perceive objects as possessing individuation conditions. They appear to have boundaries in space and time, for example, and they appear to move independently of a background of other objects or a landscape. In Ontology Without Boundaries Jody Azzouni undertakes an analysis of our concept of object, and shows what about that notion is truly due to the world and what about it is a projection onto the world of our senses and thinking. Location and individuation conditions are our product: there is no echo of them in the world. Features, the ways that objects seem to be, aren't projections. Azzouni shows how the resulting austere metaphysics tames a host of ancient philosophical problems about constitution "Ship of Theseus," "Sorities"as well as contemporary puzzles about reductionism. In addition, it's shown that the same sorts of individuation conditions for properties, which philosophers Ontology Without Borders 1st edition to distinguish between various kinds of odd abstracta-universals, tropes, and so on, are also projections.
    [Show full text]
  • Completion of Ontologies and Ontology Networks
    Link¨opingStudies in Science and Technology Dissertations. No. 1852 Completion of Ontologies and Ontology Networks by Zlatan Dragisic Department of Computer and Information Science Link¨opingUniversity SE-581 83 Link¨oping,Sweden Link¨oping2017 Copyright 2017 Zlatan Dragisic ISBN 978-91-7685-522-5 ISSN 0345–7524 Printed by LiU Tryck 2017 URL: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139487 Abstract The World Wide Web contains large amounts of data, and in most cases this data has no explicit structure. The lack of structure makes it difficult for automated agents to understand and use such data. A step towards a more structured World Wide Web is the Semantic Web, which aims at introducing semantics to data on the World Wide Web. One of the key technologies in this endeavour are ontologies, which provide a means for modeling a domain of interest and are used for search and integration of data. In recent years many ontologies have been developed. To be able to use multiple ontologies it is necessary to align them, i.e., find inter-ontology re- lationships. However, developing and aligning ontologies is not an easy task and it is often the case that ontologies and their alignments are incorrect and incomplete. This can be a problem for semantically-enabled applications. Incorrect and incomplete ontologies and alignments directly influence the quality of the results of such applications, as wrong results can be returned and correct results can be missed. This thesis focuses on the problem of completing ontologies and ontology networks. The contributions of the thesis are threefold.
    [Show full text]
  • Ontology Based Teaching Domain Knowledge Management for E-Learning by Doing Systems Farida Bouarab-Dahmani, Catherine Comparot, Malik Si-Mohammed, Pierre-Jean Charrel
    Ontology Based Teaching Domain Knowledge Management for E-Learning by Doing Systems Farida Bouarab-Dahmani, Catherine Comparot, Malik Si-Mohammed, Pierre-Jean Charrel To cite this version: Farida Bouarab-Dahmani, Catherine Comparot, Malik Si-Mohammed, Pierre-Jean Charrel. Ontology Based Teaching Domain Knowledge Management for E-Learning by Doing Systems. Electronic Journal of Knowledge Management, Academic Conferences and Publishing International, 2015, vol. 13 (n° 2), pp. 156-171. hal-01535943 HAL Id: hal-01535943 https://hal.archives-ouvertes.fr/hal-01535943 Submitted on 9 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive TOULOUSE Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 16919 To link to this article : URL : http://www.ejkm.com To cite this version : Bouarab-Dahmani, Farida and Comparot, Catherine and Si-Mohammed, Malik and Charrel, Pierre-Jean Ontology Based Teaching Domain Knowledge Management for E-Learning by Doing Systems. (2015) Electronic Journal of Knowledge Management, vol.
    [Show full text]
  • Knowledge Organization Systems: Summary Taxonomies Thesauri
    About the Speakers Alexis Dimitriadis Heather Hedden Data and Knowledge Engineer Data and Knowledge Engineer Semantic Web Company Semantic Web Company Alexis holds a Ph.D. degree in Linguistics Heather has over 25 years of experience in from the University of Pennsylvania. He developing and managing taxonomies, metadata, has research and teaching experience in and other knowledge organization systems for ontologies and linked data, database various organizations and applications. She design, natural language processing, and provides training in taxonomy creation and is machine learning and classification. author of the book The Accidental Taxonomist. www.linkedin.com/in/alexisdimitriadis www.linkedin.com/in/hedden Semantic Web Company is a leading provider of graph-based metadata, search, and analytic solutions and the developer of PoolParty Semantic Suite software. Outline 1. Data, Information, and Knowledge Problems 2. Knowledge Organization Systems 3. Ontology Types and Approaches 4. Using and Applying Ontologies to Taxonomies 5. Creating Knowledge Graphs 6. Ontology Modeling Issues and Tips Data, information, and knowledge problems and solutions Data, Information, and Knowledge Problems & Solutions Problems Causing Provided by • Data silos • Inefficiencies • Data-centric architecture • Heterogeneous data • Missed opportunities • Knowledge graphs sources • Poor decisions • Ontologies • Mix of unstructured and structured data Solutions Results in • Same things with • Sharing data • Better decisions different names • Reusable data sets
    [Show full text]
  • Ontology Based Querying and Integration of Heterogeneous Flat Files
    Ontology based Querying and Integration of Heterogeneous Flat Files THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Rohit Dinakar Graduate Program in Computer Science and Engineering The Ohio State University 2010 Master's Examination Committee: Dr. Gagan Agrawal, Advisor Dr. Hakan Ferhatosmanoglu Copyright by Rohit Dinakar 2010 Abstract In scientific domains, most of the measurements collected during observation periods are stored in flat files. In many cases, especially when different scientists come together from different fields to draw comprehensive conclusions, the formats of the files vary from one group to another. Integrating, querying, and retrieving data from such heterogeneous data files present a challenge. Semantic interoperability is essential in order to harmonize these datasets. In this thesis, we describe an ontology-based system that parses, summarizes, represents and integrates heterogeneous data files stored as flat files. The test bed dataset is from the Episodic Events Great Lakes Experiment (EEGLE) project which collected over 500 MB of data in more than 1,500 objects. Existing works on querying hydrological data involve the use of relational databases and do not provide ways to query within the flat files. Hence efficient ways are required to eliminate the overhead associated with relational databases and still provide the flexibility and ease of querying that relational databases offer. We develop an intuitive approach using ontologies to integrate and query the semi-structured data present in the flat files. The crawled data from the flat files is ii represented in XML using resource scripts to provide a structure and schema to it.
    [Show full text]
  • Ontology-Driven Geographic Information Systems Frederico Torres Fonseca
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 5-2001 Ontology-Driven Geographic Information Systems Frederico Torres Fonseca Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Databases and Information Systems Commons, and the Geographic Information Sciences Commons Recommended Citation Fonseca, Frederico Torres, "Ontology-Driven Geographic Information Systems" (2001). Electronic Theses and Dissertations. 588. http://digitalcommons.library.umaine.edu/etd/588 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. ONTOLOGY-DRIVEN GEOGRAPHIC INFORMATION SYSTEMS By Frederico Torres Fonseca B.S. Federal University of Minas Gerais - Brazil, 1977 B.E. Catholic University of Minas Gerais - Brazil, 1978 M.S. Joao Pinheiro Foundation - Brazil, 1997 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Spatial Information Science and Engineering) The Graduate School The University of Maine May, 2001 Advisory Committee: Max J. Egenhofer, Professor of Spatial Information Science and Engineering, Advisor Peggy Agouris, Assistant Professor of Spatial Information Science and Engineering Claudia M. Bauzer Medeiros, Professor of Computer Science, IC-UNICAMP, Brazil M. Kate Beard-Tisdale, Professor of Spatial Information Science and Engineering David M. Mark, Professor of Geography, State University of New York, Buffalo ONTOLOGY-DRIVEN GEOGRAPHIC INFORMATION SYSTEMS By Frederico Torres Fonseca Thesis Advisor: Dr. Max J. Egenhofer An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Spatial Information Science and Engineering) May, 2001 Information integration is the combination of different types of information in a framework so that it can be queried, retrieved, and manipulated.
    [Show full text]
  • Ontology Engineering in UML: Best Practices & Lessons Learned of A
    + Ontology Engineering in UML: Best Practices & Lessons Learned of a Working Ontologist Elisa Kendall Thematix Partners LLC OMG Technical Meeting, 19 March, 2013 + Content management Mars was photographed by the Hubble Space Telescope in August 2003 as 2 2 the planet passed closer to Earth than it had in nearly 60,000 years. Image Credit: NASA, J. Bell (Cornell U.) and M. Wolff (SSI) A sunset on Mars creates a glow due to the presence of tiny dust particles in the atmosphere. This photo is a combination of four images taken by Mars Pathfinder, which landed on Mars in 1997. Image credit: NASA/JPL Recent images from instruments on board the Mars Reconnaissance Orbiter take much more detailed, narrower views of specific features of the Martian surface. Image credit: NASA/JPL The Planetary Data Store (PDS) is a distributed repository of 40+ years’ imagery & data taken by a range of instruments on many diverse missions, available for scientific research. Copyright © 2013 Thematix Partners LLC + Smart search 3 3 Provenance/sources for tracking family members in the 19th century include early census data (often error prone), military records, passenger & immigration lists, online documents (e.g., county histories, church histories, etc.) • Historical/forensic research requires cross-domain search of a wide variety of resources within a given geo-spatial/temporal context • Similar capabilities are essential for business intelligence, law enforcement, government applications – all require terminology reconciliation Copyright © 2013 Thematix Partners
    [Show full text]
  • Line Semantic Web Information Retrieval
    Journal of Web Engineering, Vol. 6, No. 4 (2007) 309-336 © Rinton Press A MODEL-DRIVEN APPROACH OF ONTOLOGICAL COMPONENTS FOR ON- LINE SEMANTIC WEB INFORMATION RETRIEVAL HAJER BAAZAOUI ZGHAL1, MARIE-AUDE AUFAURE2, 3, NESRINE BEN MUSTAPHA1 1Riadi-GDL Laboratory, ENSI Campus Universitaire de la Manouba, Tunis, Tunisia {hajer.baazaouizghal, nesrine.benmustapha}@riadi.rnu.tn 2Supelec, Computer Science Department, Plateau du Moulon, 91 192 Gif sur Yvette, France [email protected] 3Inria Paris-Rocquencourt, Axis project, Domaine de Voluceau, 78 153 Le Chesnay Cedex, France [email protected] Received June 1, 2007 Revised December 1, 2007 With the development of Web engineering and the advent of the Semantic Web, adding a semantic dimension to the Web by the deployment of ontologies has contributed to solve many problems. Ontologies specify the knowledge shared by a community of a target domain in an explicit and formal way. The present work deals with the problem of ontology construction for the Semantic Web. The objective of the paper is to propose a solution for the representation of Web knowledge by means of ontologies as well as to define an approach to their semi-automatic construction. The implementation and the experimentation of the proposition were achieved by the development of a framework, called “OntoCoSemWeb" and an On-Line Information Retrieval tool using the generated ontologies. An evaluation and an analysis of the results of this approach were carried out. Keywords: Semantic Web, Ontology building, Meta-ontology, ontology construction, ontology learning, on-line information retrieval 1 Introduction Web engineering is a relatively new branch of software engineering, which addresses specific issues related to the design and development of large-scale Web applications.
    [Show full text]
  • Using Ontology-Based Approaches to Representing Speech Transcripts for Automated Speech Scoring
    Syracuse University SURFACE School of Information Studies - Dissertations School of Information Studies (iSchool) 8-2013 Using Ontology-Based Approaches to Representing Speech Transcripts for Automated Speech Scoring Miao Chen Follow this and additional works at: https://surface.syr.edu/it_etd Part of the Library and Information Science Commons Recommended Citation Chen, Miao, "Using Ontology-Based Approaches to Representing Speech Transcripts for Automated Speech Scoring" (2013). School of Information Studies - Dissertations. 87. https://surface.syr.edu/it_etd/87 This Dissertation is brought to you for free and open access by the School of Information Studies (iSchool) at SURFACE. It has been accepted for inclusion in School of Information Studies - Dissertations by an authorized administrator of SURFACE. For more information, please contact [email protected]. ABSTRACT Text representation is a process of transforming text into some formats that computer systems can use for subsequent information-related tasks such as text classification. Representing text faces two main challenges: meaningfulness of representation and unknown terms. Research has shown evidence that these challenges can be resolved by using the rich semantics in ontologies. This study aims to address these challenges by using ontology-based representation and unknown term reasoning approaches in the context of content scoring of speech, which is a less explored area compared to some common ones such as categorizing text corpus (e.g. 20 newsgroups and Reuters). From the perspective of language assessment, the increasing amount of language learners taking second language tests makes automatic scoring an attractive alternative to human scoring for delivering rapid and objective scores of written and spoken test responses.
    [Show full text]