Ontology Representation : Design Patterns and Ontologies That Make Sense
Total Page:16
File Type:pdf, Size:1020Kb
UvA-DARE (Digital Academic Repository) Ontology Representation : design patterns and ontologies that make sense Hoekstra, R.J. Publication date 2009 Document Version Final published version Link to publication Citation for published version (APA): Hoekstra, R. J. (2009). Ontology Representation : design patterns and ontologies that make sense. IOS Press. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:24 Sep 2021 Ontology Representation Design Patterns and Ontologies that Make Sense Rinke Hoekstra SIKS Dissertation Series No. 2009-15 The research reported in this thesis has been carried out under the auspices of SIKS, the Dutch Research School for Information and Knowledge Systems. ONTOLOGY REPRESENTATION Design Patterns and Ontologies that Make Sense ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op vrijdag 18 september 2009, te 12:00 uur door Rinke Jan Hoekstra geboren te Zaanstad Promotiecommissie Promotor: prof. dr. J.A.P.J. Breuker Copromotores: prof. dr. T.M. van Engers dr. R.G.F. Winkels Overige leden: prof. dr. F. van Harmelen prof. dr. E. Motta prof. dr. F.J.M.M. Veltman prof. dr. B.J. Wielinga dr. B. Bredeweg Faculteit der Rechtsgeleerdheid To Eefje and Lieve Contents 1 Introduction1 1.1 Introduction..............................1 1.2 Questions...............................3 1.3 Ontologies...............................4 1.4 Contribution and Overview.....................6 2 Knowledge Representation8 2.1 Introduction..............................8 2.2 Two Schools..............................9 2.2.1 Intelligence by First Principles............... 10 2.2.2 Production Systems..................... 12 2.2.3 Semantic Networks...................... 14 2.2.4 Frames............................. 15 2.2.5 Frame Languages....................... 17 2.3 Epistemology............................. 19 2.3.1 Knowledge and Representation............... 20 2.3.2 Representation and Language................ 22 2.3.3 Adequacy........................... 26 2.4 Components of a Knowledge Based System............ 28 2.4.1 Modelling Principles..................... 28 2.5 Knowledge Representation..................... 32 2.5.1 Description Logics...................... 33 2.6 Discussion............................... 36 3 Semantic Web 39 3.1 Introduction.............................. 39 3.1.1 The Web............................ 40 3.2 Groundwork.............................. 41 3.3 Lightweight Semantics........................ 43 3.3.1 RDF: The Resource Description Framework........ 44 3.3.2 The RDF Schema Vocabulary Description Language... 47 3.4 Requirements for Web-Based Knowledge Representation.... 50 3.5 The Web Ontology Language.................... 52 3.5.1 OWL.............................. 52 3.5.2 OWL 2............................. 57 3.6 Discussion............................... 63 Contents v 4 Ontologies 66 4.1 Introduction.............................. 66 4.2 Ontologies as Artefacts........................ 67 4.3 Ontology in Philosophy....................... 73 4.3.1 Problems in Formal Ontology: Semantics and Syntax.. 74 4.4 Two Kinds of Ontologies....................... 76 4.5 Discussion............................... 79 5 Ontology Engineering 82 5.1 Introduction.............................. 82 5.2 Criteria and Methodology...................... 83 5.2.1 A Social Activity?....................... 86 5.3 Categories and Structure....................... 88 5.3.1 A Basic Level?......................... 89 5.3.2 Beyond Categories...................... 91 5.4 Ontology Integration......................... 91 5.4.1 Types of Ontologies: Limits to Reuse............ 94 5.4.2 Safe Reuse........................... 97 5.4.3 Possibilities for Reuse.................... 101 5.5 Ontological Principles........................ 102 5.5.1 OntoClean........................... 103 5.5.2 Frameworks and Ontologies................ 106 5.6 Design Patterns............................ 111 5.6.1 Patterns and Metaphors................... 112 5.6.2 Patterns in Ontology Engineering............. 113 5.6.3 Knowledge Patterns..................... 114 5.6.4 Ontology Design Patterns.................. 115 5.7 Discussion............................... 118 6 Commonsense Ontology 120 6.1 Introduction.............................. 120 6.1.1 A Functional View...................... 122 6.1.2 Purpose............................ 124 6.2 Developing a Core Ontology.................... 127 6.2.1 Ontology Integration..................... 127 6.2.2 Ontology Reuse........................ 130 6.2.3 Scope.............................. 134 6.3 Ontology Modules.......................... 135 6.3.1 First Things First: The top-level............... 137 6.3.2 The Intentional Level..................... 139 6.3.3 The Legal Level........................ 142 6.4 Discussion............................... 143 7 Design Patterns 146 7.1 Introduction.............................. 146 7.1.1 Dealing with Models..................... 147 7.1.2 Structured Concepts..................... 150 7.1.3 Three Patterns......................... 151 7.2 Grasping the Diamond: The Reciprocity of Exchange ........ 152 7.2.1 Representing Transaction.................. 154 7.2.2 Discussion........................... 158 7.3 Reification and Summarisation: Relations and Social Reality ... 159 7.3.1 N-Ary Relations....................... 159 7.3.2 Social Reality......................... 162 7.3.3 Representing Summarisation................ 164 7.3.4 Discussion and Examples.................. 169 7.4 Sequences: Change and Causation .................. 175 7.4.1 Causation........................... 177 7.4.2 Representing Causal Change................ 180 7.4.3 Discussion........................... 185 7.5 Patterns in Practice: Action! ..................... 189 7.5.1 Representing Action..................... 190 7.5.2 Discussion........................... 194 7.6 Discussion............................... 194 8 Conclusion 198 8.1 Introduction.............................. 198 8.2 Compatibility of Ontologies..................... 199 8.3 Quality and Design.......................... 202 8.4 Rationale and Expressiveness of OWL 2.............. 204 8.5 Closing Remarks........................... 205 Bibliography 208 Chapter 1 Introduction “I pretty much try to stay in a constant state of confusion just because of the expression it leaves on my face.” Johnny Depp 1.1 Introduction An intelligent computer system needs to maintain an internal representation of that part of reality it is to be intelligent about: it needs to understand its domain. This understanding is commonly captured in models on the basis of which a computer can perform automated reasoning. For instance, a suitable model of ‘table’ will allow a machine to infer that each occurrence of a table has four legs. Models are often not a direct reflection of the domain itself, but rather represent our knowledge of that domain. The construction of models thus involves a mapping – a translation – between human understanding and that of a computer. In fact, the translation of human knowledge to computer models is one of the most profound problems in Artificial Intelligence (Newell, 1982). Over the course of several years, I have worked on many projects that in- volved the design and construction of such models, for a variety of purposes. The specification of an ontology for a large insurance company in the CLIME project (Boer et al., 2001; Winkels et al., 2002), made me aware that not only this modelling is a lot of work, but also that mistakes are easily made (Hoek- stra, 2001).1 The systematic representation of the contents of regulations in the E-POWER project (van Engers et al., 2000), illustrated not just the benefits of this approach, but simultaneously highlighted the enormous effort and scru- 1CLIME, Cooperative Legal Information Management and Explanation, Esprit Project 25414. 1 1.1. Introduction 2 tiny required from the people that actually build the models.2 Furthermore, both the E-POWER and KDE projects (Jansweijer et al., 2001) made it acutely clear how important the language is in which the model is expressed.3 Coming from academia, it was puzzling to see how easily one defaults to inexpressive but intuitive languages (or even just database tables), rather than well-wrought languages that support reasoning. What is more, it was very difficult to defend a more principled approach as available languages did not have widespread tool support (yet), nor did they offer even the trivial