Gamma Radioactivity

Total Page:16

File Type:pdf, Size:1020Kb

Gamma Radioactivity Gamma Radioactivity Gamma radioactivity is composed of electromagnetic rays. It is distinguished from x-rays only by the fact that it comes from the nucleus. Most gamma rays are somewhat higher in Index energy than x-rays and therefore are very penetrating. It is the most useful type of radiation for medical purposes, but at the same time it is the most dangerous because of its ability to penetrate large thicknesses of material. Go Back HyperPhysics***** Nuclear R Nave After a decay reaction, the nucleus is often in an excited state. This means that the decay has resulted in producing a nucleus which still has excess energy to get rid of. Rather than emitting another beta or alpha particle, this energy is lost by emitting a pulse of electromagnetic radiation called a gamma ray. The gamma ray is identical in nature to light or microwaves, but of very high energy. Like all forms of electromagnetic radiation, the gamma ray has no mass and no charge. Gamma rays interact with material by colliding with the electrons in the shells of atoms. They lose their energy slowly in material, being able to travel significant distances before stopping. Depending on their initial energy, gamma rays can travel from 1 to hundreds of meters in air and can easily go right through people. It is important to note that most alpha and beta emitters also emit gamma rays as part of their decay process. However, there is no such thing as a “pure” gamma emitter. Important gamma emitters including Technetium-99m which is used in nuclear medicine, and Cesium-137 which is used for calibration of nuclear instruments. Other Radioactive Processes While the most common types of radioactive decay are by alpha, beta, and gamma radiation, several other varieties of radioactivity occur: Electron capture: A parent nucleus may capture one of its own electrons and emit a neutrino. This is exhibited in the potassium-argon decay. Index Positron or positive beta decay: Positron emission is called beta decay because the characteristics of electron or positron decay are similar. They both show a characteristic energy spectrum because of the emission of a neutrino or antineutrino. Internal conversion is the use of electromagnetic energy from the nucleus to expel an orbital electron from the atom. Go Back HyperPhysics***** Nuclear R Nave Electron Capture Electron capture is one form of radioactivity. A parent nucleus may capture one of its orbital electrons and emit a neutrino. This is a process which competes with positron emission and has the same effect on the atomic number. Most commonly, it is a K-shell electron which is captured, and this is referred to as K-capture. A typical example is Index In the middle range of the periodic table, those isotopes which are lighter than the most stable isotopes tend to decay by electron capture, and those heavier decay by negative beta decay. An example of this pattern is seen with silver isotopes, with two stable isotopes plus one of lower mass which decays by electron capture and one of heavier mass which decays by beta emission. Cobalt-57 Go Back HyperPhysics***** Nuclear R Nave Internal Conversion Internal conversion is another electromagnetic process which can occur in the nucleus and which competes with gamma emission. Sometimes the multipole electric fields of the nucleus interact with orbital electrons with enough energy to eject them from the atom. This process is not the same as Index emitting a gamma ray which knocks an electron out of the atom. It is also not the same as beta decay, since the emitted electron was previously one of the Reference orbital electrons, whereas the electron in beta decay is produced by the decay Krane of a neutron. Sec 10.6 An example used by Krane is that of 203Hg, which decays to 203Tl by beta emission, leaving the 203Tl in an electromagnetically excited state. It can proceed to the ground state by emitting a 279.190 keV gamma ray, or by internal conversion. In this case the internal conversion is more probable. Since the internal conversion process can interact with any of the orbital electrons, the result is a spectrum of internal conversion electrons which will be seen as superimposed upon the electron energy spectrum of the beta emission. The energy yield of this electromagnetic transition can be taken as 279.190 keV, so the ejected electrons will have that energy minus their binding energy in the 203Tl daughter atom. Electron emissions from the Hg-203 to Tl-203 decay, measured by A. H. Wapstra, et al., Physica 20, 169 (1954). At higher resolution, the internal conversion electrons from the L, M and N shells can be resolved. Z. Sujkowski, Ark. Fys. 20, 243 (1961). At even higher resolution, the three L shells can be resolved. From C. J. Herrlander and R. L. Graham, Nucl. Phys. 58, 544 (1964). The resolution of the electron detection is good enough that such internal conversion electron spectra can be used to study the binding energies of the electrons in heavy atoms. In this case, the measured electron energies can be subtracted from the transition energy as indicated by the gamma emission, 279.190 keV. Binding energies for 203Tl K 85.529 keV LI 15.347 keV LII 14.698 keV LIII 12.657 keV M 3.704 keV In addition to information from the internal conversion electrons about the binding energies of the electrons in the daughter atom, the relative intensities of these internal conversion electron peaks can give information about the electric multipole character of the nucleus. Go Back HyperPhysics***** Nuclear R Nave .
Recommended publications
  • R-Process Elements from Magnetorotational Hypernovae
    r-Process elements from magnetorotational hypernovae D. Yong1,2*, C. Kobayashi3,2, G. S. Da Costa1,2, M. S. Bessell1, A. Chiti4, A. Frebel4, K. Lind5, A. D. Mackey1,2, T. Nordlander1,2, M. Asplund6, A. R. Casey7,2, A. F. Marino8, S. J. Murphy9,1 & B. P. Schmidt1 1Research School of Astronomy & Astrophysics, Australian National University, Canberra, ACT 2611, Australia 2ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), Australia 3Centre for Astrophysics Research, Department of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, AL10 9AB, UK 4Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 5Department of Astronomy, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden 6Max Planck Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching, Germany 7School of Physics and Astronomy, Monash University, VIC 3800, Australia 8Istituto NaZionale di Astrofisica - Osservatorio Astronomico di Arcetri, Largo Enrico Fermi, 5, 50125, Firenze, Italy 9School of Science, The University of New South Wales, Canberra, ACT 2600, Australia Neutron-star mergers were recently confirmed as sites of rapid-neutron-capture (r-process) nucleosynthesis1–3. However, in Galactic chemical evolution models, neutron-star mergers alone cannot reproduce the observed element abundance patterns of extremely metal-poor stars, which indicates the existence of other sites of r-process nucleosynthesis4–6. These sites may be investigated by studying the element abundance patterns of chemically primitive stars in the halo of the Milky Way, because these objects retain the nucleosynthetic signatures of the earliest generation of stars7–13.
    [Show full text]
  • Experimental Γ Ray Spectroscopy and Investigations of Environmental Radioactivity
    Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity BY RANDOLPH S. PETERSON 216 α Po 84 10.64h. 212 Pb 1- 415 82 0- 239 β- 01- 0 60.6m 212 1+ 1630 Bi 2+ 1513 83 α β- 2+ 787 304ns 0+ 0 212 α Po 84 Experimental γ Ray Spectroscopy and Investigations of Environmental Radioactivity Randolph S. Peterson Physics Department The University of the South Sewanee, Tennessee Published by Spectrum Techniques All Rights Reserved Copyright 1996 TABLE OF CONTENTS Page Introduction ....................................................................................................................4 Basic Gamma Spectroscopy 1. Energy Calibration ................................................................................................... 7 2. Gamma Spectra from Common Commercial Sources ........................................ 10 3. Detector Energy Resolution .................................................................................. 12 Interaction of Radiation with Matter 4. Compton Scattering............................................................................................... 14 5. Pair Production and Annihilation ........................................................................ 17 6. Absorption of Gammas by Materials ..................................................................... 19 7. X Rays ..................................................................................................................... 21 Radioactive Decay 8. Multichannel Scaling and Half-life .....................................................................
    [Show full text]
  • Chapter 3 the Fundamentals of Nuclear Physics Outline Natural
    Outline Chapter 3 The Fundamentals of Nuclear • Terms: activity, half life, average life • Nuclear disintegration schemes Physics • Parent-daughter relationships Radiation Dosimetry I • Activation of isotopes Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4th ed. http://www.utoledo.edu/med/depts/radther Natural radioactivity Activity • Activity – number of disintegrations per unit time; • Particles inside a nucleus are in constant motion; directly proportional to the number of atoms can escape if acquire enough energy present • Most lighter atoms with Z<82 (lead) have at least N Average one stable isotope t / ta A N N0e lifetime • All atoms with Z > 82 are radioactive and t disintegrate until a stable isotope is formed ta= 1.44 th • Artificial radioactivity: nucleus can be made A N e0.693t / th A 2t / th unstable upon bombardment with neutrons, high 0 0 Half-life energy protons, etc. • Units: Bq = 1/s, Ci=3.7x 1010 Bq Activity Activity Emitted radiation 1 Example 1 Example 1A • A prostate implant has a half-life of 17 days. • A prostate implant has a half-life of 17 days. If the What percent of the dose is delivered in the first initial dose rate is 10cGy/h, what is the total dose day? N N delivered? t /th t 2 or e Dtotal D0tavg N0 N0 A. 0.5 A. 9 0.693t 0.693t B. 2 t /th 1/17 t 2 2 0.96 B. 29 D D e th dt D h e th C. 4 total 0 0 0.693 0.693t /th 0.6931/17 C.
    [Show full text]
  • 3 Gamma-Ray Detectors
    3 Gamma-Ray Detectors Hastings A Smith,Jr., and Marcia Lucas S.1 INTRODUCTION In order for a gamma ray to be detected, it must interact with matteu that interaction must be recorded. Fortunately, the electromagnetic nature of gamma-ray photons allows them to interact strongly with the charged electrons in the atoms of all matter. The key process by which a gamma ray is detected is ionization, where it gives up part or all of its energy to an electron. The ionized electrons collide with other atoms and liberate many more electrons. The liberated charge is collected, either directly (as with a proportional counter or a solid-state semiconductor detector) or indirectly (as with a scintillation detector), in order to register the presence of the gamma ray and measure its energy. The final result is an electrical pulse whose voltage is proportional to the energy deposited in the detecting medhtm. In this chapter, we will present some general information on types of’ gamma-ray detectors that are used in nondestructive assay (NDA) of nuclear materials. The elec- tronic instrumentation associated with gamma-ray detection is discussed in Chapter 4. More in-depth treatments of the design and operation of gamma-ray detectors can be found in Refs. 1 and 2. 3.2 TYPES OF DETECTORS Many different detectors have been used to register the gamma ray and its eneqgy. In NDA, it is usually necessary to measure not only the amount of radiation emanating from a sample but also its energy spectrum. Thus, the detectors of most use in NDA applications are those whose signal outputs are proportional to the energy deposited by the gamma ray in the sensitive volume of the detector.
    [Show full text]
  • Cooperative Internal Conversion Process by Proton Exchange
    Cooperative internal conversion process by proton exchange P´eter K´alm´an∗ and Tam´as Keszthelyi† Budapest University of Technology and Economics, Institute of Physics, Budafoki ´ut 8. F., H-1521 Budapest, Hungary A generalization of the recently discovered cooperative internal conversion process is investigated theoretically. In the cooperative internal conversion process by proton exchange investigated the coupling of bound-free electron and proton transitions due to the dipole term of their Coulomb interaction permits cooperation of two nuclei leading to proton exchange and an electron emission. General expression of the cross section of the process obtained in the one particle spherical nuclear shell model is presented. As a numerical example the cooperative internal conversion process by proton exchange in Al is dealt with. As a further generalization, cooperative internal conversion process by heavy charged particle exchange and as an example of it the cooperative internal con- version process by triton exchange is discussed. The process is also connected to the field of nuclear waste disposal. PACS numbers: 23.20.Nx, 25.90.+k, 28.41.Kw, Keywords: internal conversion and extranuclear effects, other topics of nuclear reactions: specific reactions, radioactive wastes, waste disposal In a recent paper [1] a new phenomenon, the coop- erative internal conversion process (CICP) is discussed which is a special type of the well known internal conver- sion process [2]. In CICP two nuclei cooperate by neutron exchange creating final nuclei of energy lower than the en- ergy of the initial nuclei. The process is initiated by the coupling of bound-free electron and neutron transitions due to the dipole term of their Coulomb interaction in the initial atom leading to the creation of a virtual free neutron which is captured through strong interaction by an other nucleus.
    [Show full text]
  • Hadronic Physics II
    Geant4 10.1 p01 Hadronic Physics II Geant4 Tutorial at M&C+SNA+MC2015 19 April 2015 Dennis Wright (SLAC) Outline • Low energy hadronic models • Capture, Stopping and Fission • Gamma- and lepto-nuclear models • RadioacQve decay 2 Low Energy Neutron Physics • Below 20 MeV incident energy, Geant4 provides several models for treang neutron interacQons in detail • The high precision models (NeutronHP) are data-driven and depend on a large database of cross secQons, etc. • the G4NDL database is available for download from the Geant4 web site • elasQc, inelasQc, capture and fission models all use this isotope- dependent data • There are also models to handle thermal scaering from chemically bound atoms 3 Geant4 Neutron Data Library (G4NDL) • Contains the data files for the high precision neutron models • includes both cross secQons and final states • From Geant4 9.5 onward, G4NDL is based solely on the ENDF/B-VII database • G4NDL data is now taken only from ENDF/B-VII, but sQll has G4NDL format • use G4NDL 4.0 or later • Prior to G4 9.5 G4NDL selected data from 9 different databases, each with its own format • Brond-2.1, CENDL2.2, EFF-3, ENDF/B-VI, FENDL/E2.0, JEF2.2, JENDL-FF, JENDL-3 and MENDL-2 • G4NDL also had its own (undocumented) format 4 G4NeutronHPElasQc • Handles elasQc scaering of neutrons by sampling differenQal cross secQon data • interpolates between points in the cross secQon tables as a funcon of energy • also interpolates between Legendre polynomial coefficients to get the angular distribuQon as a funcQon of energy • scaered neutron and recoil nucleus generated as final state • Note that because look-up tables are based on binned data, there will always be a small energy non-conservaon • true for inelasQc, capture and fission processes as well 5 G4NeutronHPInelasQc • Currently supports 34 inelasQc final states + n gamma (discrete and conQnuum) • n (A,Z) -> (A-1, Z-1) n p • n (A,Z) -> (A-3, Z) n n n n • n (A,Z) -> (A-4, Z-2) d t • …….
    [Show full text]
  • Sources of Gamma Radiation in a Reactor Core Matts Roas
    AE-19 Sources of gamma radiation in a reactor core Matts Roas AKTIEBOLAGET ATOMENERGI STOCKHOLM • S\\ HDJtN • 1959 AE-19 ERRATUM The spectrum in Fig. 3 has erroneously been normalized to 7. 4 MeV/capture. The correct spectrum can be found by mul- tiplying the ordinate by 0. 64. AE-19 Sources of gamma radiation in a reactor core Matts Roos Summary: - In a thermal reactor the gamma ray sources of importance for shielding calculations and related aspects are 1) fission, 2) decay of fission products, 3) capture processes in fuel, poison and other materials, 4) inelastic scattering in the fuel and 5) decay of capture products. The energy release and the gamma ray spectra of these sources have been compiled or estimated from the latest information available, and the results are presented in a general way to permit 235 application to any thermal reactor, fueled with a mixture of U and 238 U • As an example the total spectrum and the spectrum of radiation escaping from a fuel rod in the Swedish R3-reactor are presented. Completion of manuscript April 1959 Printed Maj 1959 LIST OF CONTENTS Page Introduction ........... 1 1. Prompt fis sion gamma rays i 2. Fission product gamma rays 2 3. Uranium capture gamma rays 4 O -2 Q 4. U inelastic scattering gamma rays 5 5. Gamma rays from capture in poison, construction materials and moderator .....*•»..•........ 8 6. Gamma rays from disintegration of capture products. 8 7. Total gamma spectra. Application to the Swedish R3 -reactor 9 SOURCES OF GAMMA RADIATION IN A REACTOR CORE.
    [Show full text]
  • Slow Neutrons and Secondary Gamma Ray Distributions in Concrete Shields Followed by Reflecting Layers
    oo A. R. E. A. E. A. / Rep. 318 w ARAB REPUBLIC OF EGYPT ATOMIC ENERGY AUTHORITY REACTOR AND NEUTRON PHYSICS DEPART SLOW NEUTRONS AND SECONDARY GAMMA RAY DISTRIBUTIONS IN CONCRETE SHIELDS FOLLOWED BY REFLECTING LAYERS BY A.S. MAKARI.OUS, Y;I. SWILEM, Z. AWWAD AND T. BAYOMY 1993 INFORMATION AND DOCUMENTATION CENTER ATOMIC ENERGY POST OFFICE CAIRO, A.R;I:. VOL 2 7 id Q 7 AREAEA/Rep.318 ARAB REPUBLIC OF EGYPT ATOMIC ENERGY AUTHORITY REACTOR AND NEUTRON PHYSICS DEPART, SLOW NEUTRONS AND SECONDARY GAMMA RAY DISTRIBUTIONS IN CONCRETE SHIELDS FOLLOWED BY REFLECTING LAYERS BY A,S.M\KARIOUS, Y.I.SWILEM, 2.AWWAD AND T.BAYOMY INFORMATION AND DUCUMENTATICN CENTER ATOMIC ENERGY POST OFFICE CAIRO, A.R«E. CONTENTS x Page ABSTRACT *<,..».»••... i INTRODUCTION . *« . *.*,...... 1 EXPERIMENTAL DETAILS ••»*«•««»« • • a • » « •»»«*««* *»»*«•»»»«»<>• — RESULTS AND DISCUSSION ..,.••+ .*.....•...•.. 4 ACKNOWLEDGEMENTS ...,.......•..<...»,..>......... 10 REFERENCES „...»,«.**»» 11 ABSTRACT Slow neutrons and secondary gamma r>ay distributions in concrete shields with and without a reflecting layer behind the concrete shield have been investigated first in case of' using a bare reactor beam and then on using & B.C filtered beam. The total and capture secondary gair-m-a ray coefficient (B^and B^) , the ratio of the reflected (Thermal neutron (S ) the ratio of the secondary gamma rays caused by reflected neutrons to those caused by transmitted neutrons ( and the effect of inserting a blocking l&yer (a B^C layer) between the concrete shield and the reflector on the sup- pression of the produced secondary gamma rays have been investigated, It was found that the presence of the reflector layer behind the concrete shield reflects sor/so thermal neutrons back to the concrete shields end so it increases the number of thermal neutrons at the interface between the concrete shield and the reflector.
    [Show full text]
  • Measurements of Some Internal Conversion Coefficients Using Scintillation Counter, Coincidence Techniques Ronald S
    Ames Laboratory Technical Reports Ames Laboratory 2-1964 Measurements of some internal conversion coefficients using scintillation counter, coincidence techniques Ronald S. Dingus Iowa State University W. L. Talbert Jr. Iowa State University E. N. Hatch Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/ameslab_isreports Part of the Physics Commons Recommended Citation Dingus, Ronald S.; Talbert, W. L. Jr.; and Hatch, E. N., "Measurements of some internal conversion coefficients using scintillation counter, coincidence techniques" (1964). Ames Laboratory Technical Reports. 85. http://lib.dr.iastate.edu/ameslab_isreports/85 This Report is brought to you for free and open access by the Ames Laboratory at Iowa State University Digital Repository. It has been accepted for inclusion in Ames Laboratory Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Measurements of some internal conversion coefficients using scintillation counter, coincidence techniques Abstract Internal conversion coefficients were measured by observing with a well-type Nal(Tl) crystal the photon spectra emitted during the de-excitation from the first excited state to the ground state of Gdl54,D)y 160, Ybl70, Ybl71 and Prl41 following the respective beta decays of Eul54, Tbl60, Tm170, Tml71 and Cel41. The results were obtained by analysis of either the singles spectra, or spectra obtained by coincidence-sum techniques, or both. For the coincidence work gating was done either with high energy gamma rays or with beta particles. The spectra from the Yb isotopes were analyzed on a computer using a least-squares curve- fitting program.
    [Show full text]
  • M1+E2) Mixed Character of the 9.2 Kev Transition in 227Th and Its Consequence for Spin-Interpretation of Low-Lying Levels
    Experimental evidence of (M1+E2) mixed character of the 9.2 keV transition in 227Th and its consequence for spin-interpretation of low-lying levels A. Kovalík a,b, А.Kh. Inoyatov a,c, L.L. Perevoshchikov a, M. Ryšavý b, D.V. Filosofov a, P. Alexa d, J. Kvasil e a Dzhelepov Laboratory of Nuclear Problems, JINR, 141980 Dubna, Moscow Region, Russian Federation b Nuclear Physics Institute of the ASCR, CZ-25068 Řež near Prague, Czech Republic c Institute of Applied Physics, National University, University Str. 4, 100174 Tashkent, Republic of Uzbekistan d Department of Physics, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava, Czech Republic e Institute of Particle and Nuclear Physics, Charles University, CZ-18000, Praha 8, Czech Republic Keywords: Internal conversion electron spectroscopy; Nuclear transition; Transition multipolarity; Spin-Parity; 227Ac; 227Th The 9.2 keV nuclear transition in 227Th populated in the -decay of 227Ac was studied by means of the internal conversion electron spectroscopy. Its multipolarity was proved to be of mixed character M1+E2 and the spectroscopic admixture parameter δ2(E2/M1)=0.695±0.248 (|δ(E2/M1)| =0.834±0.210) was determined. Nonzero value of δ(E2/M1) raises a question about the existing theoretical interpretation of low-lying levels of 227Th. 1. Introduction The interpretation of the level structure of 227Th is still a major problem mainly due to the lack of experimental information on the low-lying levels of 227Th and a long-standing controversy [1] about the spin-parity of the 227Th ground state, which represents the basis for all other level spin- parity assignments.
    [Show full text]
  • Gamma-Ray Bursts and Magnetars
    GAMMA-RAY BURSTS AND MAGNETARS How USRA scientists helped make major advancements in high-energy astrophysics. During the 1960s, the second Administrator Frank J. Kerr (1918 - 2000) of the University of NASA, James E. Webb, sought a university- of Maryland was appointed by USRA to based organization that could serve the manage its programs in astronomy and needs of NASA as well as the space research astrophysics. Kerr was a highly-regarded radio community. In particular, Webb sought to astronomer, originally from Australia. He had have university researchers assist NASA in been the Director of the Astronomy Program the planning and execution of large, complex at the University projects. The result of Webb’s vision was of Maryland, the Universities Space Research Association and at the time (USRA), which was incorporated as a non- of his USRA proft association of research universities on appointment 12 March 1969. in 1983, he was Provost of As described in the previous essay, USRA’s the Division of frst major collaboration with NASA was the Physical and Apollo Exploration of the Moon. The vehicle Mathematical by which USRA assisted NASA and the space Sciences and research community was the Lunar Science Engineering at Institute, later renamed the Lunar and the University. Frank Kerr Planetary Institute. In support of Another major project was undertaken in MSFC and NRL, USRA brought astronomers 1983, when USRA began to support NASA to work closely with NASA researchers in in the development of the Space Telescope the development of instrumentation and Project at NASA’s Marshall Space Flight the preparation for analyses of data for Center (MSFC).
    [Show full text]
  • Fission Product Gamma Spectra
    LA-7620-MS Informal Report UC-34c Issued: January 1979 Fission Product Gamma Spectra E. T. Jurney P. J. Bendt T. R. England -—• — NOTICE I Hiu report J-J*. pn-fviifii .,•. .111 j, i-i-ii V.itiei the 1 ' -i!r.: S-v. r. .• lit I ni!e.. S'jif FISSION PRODUCT GAMMA SPECTRA by E. T. Jurney, P. J. Bendt, and T. R. England ABSTRACT The fission product gamma spectra of 233U, 23SU, and 239Pu have been measured at 12 cooling times following 20 000-s irradiations in the thermal column of the Omega West Reactor. The mean cooling times ranged from 29 s to 146 500 s. The total gamma energies were obtained by inte- grating over the energy spectra, and both the spectra and the total energies are compared with calculations using the CINDER-10 code and ENDF/B-IV data base. The measured and calculated gamma spectra are compared in a series of figures. The meas- ured total gamma energies are *M4? larger than the calculated energies during the earliest counting period (4 s to 54 s cooling time). For 23SU, the measured and calculated total gamma energies are nearly the same after 1200 s cooling time, and the measurements are 2% to 6% lower at longer cooling times. For 239Pu, the measured and calculated total gamma energies are nearly the same at cooling times longer than 4 000 s, and for 233U this condition prevails at cooling times longer than 10 000 s. I. INTRODUCTION o o o o o c o o o The fission product gamma spectra of II, U, and "' Pu have been meas- ured at 12 cooling times following 20 000-s irradiations in the thermal column of the Omega West Reactor.
    [Show full text]