Increasing the Energy Efficiency of Processing

Total Page:16

File Type:pdf, Size:1020Kb

Increasing the Energy Efficiency of Processing Increasing the Energy Efficiency of Processing Joe Pease General Manager Xstrata Technology August 2007 1 Can we double the energy efficiency of grinding ? • Diminishing returns on research ? • Radical new technologies? • 10 years or longer ? Mineral comminution consumes about 3% of the world’s energy. So improving the efficiency of grinding has long been an important objective for operators and researchers. Much progress has been made. Entire research institutions like the JKMRC have dedicated decades of study with almost the sole objective of improving comminution efficiency. Does all this work mean that the big gains have been made, and that we are on diminishing returns from our research ? Has conventional technology reached its limit ? Is equipment just getting bigger, but not more efficient ? Do we need radical new technologies like microwave grinding to make a step change in grinding efficiency ? A new collaborative research program, AMSRI has a $20 M budget and the ambitious target to double grinding efficiency in 10 years. Is this a realistic target, given the enormous of amount of work already done? No, we don’t think 10 years is a reasonable target. We think it can be done today ! 2 The tools are already available • Laboratory grinding and flotation characterisation • Quantitative mineralogy • Basic thermodynamics In fact, processing efficiency can be significantly increased by using tools already developed by our previous research. We don’t need radical new technologies, we need to combine the tools we already have in the right way. These tools are : •Laboratory grinding and laboratory flotation tests •Quantitative mineralogy • basic thermodynamics of smelting and refining To grind the right mineral in the right place to the right size. In many cases this approach can double the energy efficiency of processing. Note that I refer to processing efficiency, not grinding efficiency. Grinding is not an end in itself. It is just one step in the processing chain. It cannot be considered in isolation of the downstream process. This is why I have included smelting thermodynamics in the list of tools. It is no point reducing grinding energy if this increases smelting energy. 3 We already have the tools to double the efficiency of processing : • grind the right streams, • in the right place, • to the right size In fact, processing efficiency can be significantly increased by using tools already developed by our previous research. We don’t need radical new technologies like microwave grinding, we need to combine the tools we already have in the right way. These tools are : •Laboratory grinding and laboratory flotation tests •Quantitative mineralogy • basic thermodynamics of smelting and refining To grind the right mineral in the right place to the right size. In many cases this approach can double the energy efficiency of processing. Note that I refer to processing efficiency, not grinding efficiency. Grinding is not an end in itself. It is just one step in the processing chain. It cannot be considered in isolation of the downstream process. This is why I have included smelting thermodynamics in the list of tools. Sometimes we should increase grinding energy, if we can reduce smelting energy by more. 4 Processing Efficiency … Energy used by grinding ` Energy Impacted by grinding So of course, the real question is about the energy efficiency of the whole process, not just the grinding step. It is no point reducing grinding energy if it increases downstream energy by more. This is the same logic we all understand about mine-to-mill. One of the advances in the last decade has been to recognise the importance of the mine-to-mill interaction. Most of us will be familiar with the classic example of the mining engineer who reduced his blasting cost by 20 c/tonne, only to reduce SAG mill throughput by 10% and increase milling cost by $1/tonne. Sometimes the right answer is to spend a bit more and blast finer in the mine, and save much more in the mill. Well of course, the same applies between the mill and the smelter. Yet how many of us check the thermodynamics of smelting, and see what we can do in the mill to reduce smelting energy ? Maybe that’s not a fair question, because we don’t have simple tools to help us do it. Have you ever seen a grinding model that includes some simple smelting thermodynamics to help you minimise processing energy ? Which research group is working on it ? We have research proposals to develop more and more sophisticated grinding simulations, to seek the last little bit of grinding efficiecny. But where do they consider smelting energy ? I think this is a huge oversight, and a huge opportunity – we are just like the mining engineer who tried to reduce his blasting cost with no consideration of what it would do to grinding efficiency. 5 Regrind minor stream Circulating loads A common circuit Inefficient grinding Steel harms chemistry Don’t regrind concentrate fine enough Grind whole tonnage too fine This is a flowsheet of a common circuit. How can we use existing tools to reduce the energy need. Often the primary grind can be coarsened. We don’t need complete liberation for roughing, we just need to liberate enough gangue away from the valuable mineral to get high rougher recovery. We can then achieve the liberation we want for cleaning by regrinding a smaller tonnage of rougher concentrate (or a part of it). This is the biggest single impact on grinding energy – why grind big tonnages of silica finer than you need to? Grinding too fine up front also causes us to put in more roughing flotation capacity than we really need. Coarsening primary grind also has other advantages for tailings storage and reactivity. 6 Where is the lowest energy place to remove this impurity ? • Mine • Preconcentration • Roughing • Cleaning • Smelting/refining Pentlandite in gangue Grind it out. Or add Silica and limestone, and melt it out at 13500C Improving energy efficiency means asking a simple question : where is the cheapest, lowest energy place to remove this impurity ? • in the mine (by dilution control) – requiring no energy • in a preconcentration stage (removing some gangue while it is still coarse) • in roughing – ie by grinding the whole mill feed • in cleaning – ie by grinding a much smaller tonnage of rougher concentrate • in the smelter – by melting it out ? Of course, cleaner feed tonnage is much lower than rougher feed tonnage. So ideally, so it is obviously better to grind the lower tonnage of rougher concentrate rather than rougher feed. So long as you grind rougher feed just enough to get recovery into the rougher concentrate. The photo of the composite shown is taken from a paper on Nickel metallurgy. The gray is pentlandite, the white is MgO. Excellent work was done in the flotation circuit to allow recovery of this low grade composite. Even so, this particle causes a problem for the smelter – MgO causes highly viscous slag. The smelter has to add Silica and lime fluxes, then heat the whole lot up to 13500C to remove the MgO. This consumes a lot of energy – over 10 times the energy it would take to grind the MgO out. The high temperatures also make smelting difficult and reduce refractory campaign life. So to improve energy efficiency, the concentrator should regrind this particle – so long as the mill can still recover the pentlandite. 7 How can we use existing tools better ? • Simplify use of quantitative mineralogy • Make better use of regrinding • Look at the mill-smelter interface I think there three areas where we can improve our use of the existing tools to improve energy efficiency, which I will discuss in the next few slides. 8 Quantitative Mineralogy … …. See the forest for the trees What do we want to achieve in each part of the circuit, eg • Primary grind and rough for recovery – Look for gangue liberation, not mineral liberation • Regrind and clean for grade – Look for mineral liberation and entrainment Distinguish symptoms from causes • Eg fines in tails may mean … – … you are grinding too fine – OR you are grinding too coarse ! Because quantitative mineralogy is so powerful, sometimes we overcomplicate it. It can generate so much data that we get lost in detail, and can’t see the forest for the trees. We need to keep it simple, and apply the 80/20 rule. Avoid the temptation to find out everything about every mineral in every liberation class in every stream. Ask a few simple questions about what you are trying to achieve in each stage of the process. And look for root causes rather than symptoms. The mineralogy can only be interpreted with a good understanding of how the circuit is operated. Two simple questions are : 1. in roughing, how coarse can I grind and still be able to get good recovery to rougher concentrate. You don’t need to worry about grade yet, that is, you don’t need to worry about the mineral liberation, but rather the gangue liberation – is enough gangue liberated from the mineral to allow it to float into rougher concentrate. 2. In cleaning, the question changes to how fine you need to grind to make a high grade concentrate. Now mineral liberation is important. So is entrainment of liberated gangue. If there are coarse composites in concentrate that could be easily liberated, these are “low hanging fruit”. Even if you are already at concentrate grade, by removing the easy impurities you make room to “pull” the rest of the circuit harder. This point is an example of distinguishing root causes from symptoms. You will always find fine liberated values in cleaner tailings and rougher tailings.
Recommended publications
  • From Base Metals and Back – Isamills and Their Advantages in African Base Metal Operations
    The Southern African Institute of Mining and Metallurgy Base Metals Conference 2013 H. de Waal, K. Barns, and J. Monama From base metals and back – IsaMills and their advantages in African base metal operations H. de Waal, K. Barns, and J. Monama Xstrata IsaMill™ technology was developed from Netzsch Feinmahltechnik GmbH stirred milling technology in the early 1990s to bring about a step change in grinding efficiency that was required to make Xstrata’s fine-grained lead/zinc orebodies economic to process. From small-scale machines suited to ultrafine grinding, the IsaMill™ has developed into technology that is able to treat much larger tonnages, in coarser applications, while still achieving high energy efficiency, suited for coarser more standard regrind and mainstream grinding applications. The unique design of the IsaMillTM, combining high power intensity and effective internal classification, achieves high energy efficiency and tight product distribution which can be effectively scaled from laboratory scale to full-sized models. The use of fine ceramic media also leads to significant benefits in downstream flotation and leaching operations. These benefits are key drivers for the adoption of the technology into processing a diverse range of minerals worldwide, and offer major opportunities for power reduction and improved metallurgy for the African base metal operations. Keywords: IsaMill, regrind, energy efficiency, inert grinding. Introduction The development of the IsaMillTM, by MIM (now GlencoreXstrata) and Netzsch Feinmahltechnik GmbH, was initiated to enable the development of the fine-grained ore deposits at Mt Isa and McArthur River in Northern Australia. To liberate the valuable minerals and so produce a saleable concentrate this ultrafine-grained ore needed to be ground to a P80 of 7 μm.
    [Show full text]
  • Optimisation of an Industrial Scale Ball Mill Using an Online Pulp and Ball
    OPTIMISATION OF AN INDUSTRIALTown SCALE BALL MILL USING AN ONLINE PULP AND BALL LOADCape SENSOR of Thesis submitted in fulfilment of the degree of Master of Science University Pratish Keshav KSHPRA001 _______________ May 2013 Page | 1 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University ABSTRACT The secondary milling circuit at Waterval UG2 Concentrator had undergone a circuit change with the commissioning of the IsaMill, a horizontally stirred mill, in parallel with the secondary ball mill. The operation treats the PGM bearing UG2 ore type and produces a final concentrate enriched with PGM’s. The concept was to treat the finer silicate rich fraction in the IsaMill and the coarser chromite rich fraction through the ball mill. This circuit is typical of a UG2 plant in which maximum silicate with minimal chromite breakage is targeted. As a result of the circuit change an opportunity for optimisation around the industrial scale ball mill was considered for this study. Of concern in this study were new operating conditions for the mill in the changed circuit at which improved performance could be obtained. Another objective was to investigate if a difference in breakage response for the silicate and chromite fractions could be identified for different operating conditions in the ball mill.
    [Show full text]
  • Energy Efficiency Analysis of Copper Ore Ball Mill Drive Systems
    energies Article Energy Efficiency Analysis of Copper Ore Ball Mill Drive Systems Piotr Bortnowski, Lech Gładysiewicz, Robert Król and Maksymilian Ozdoba * Department of Mining and Geodesy, Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, 50-421 Wroclaw, Poland; [email protected] (P.B.); [email protected] (L.G.); [email protected] (R.K.) * Correspondence: [email protected] Abstract: Milling is among the most energy-consuming technological stages of copper ore processing. It is performed in mills, which are machines of high rotational masses. The start of a mill filled to capacity requires appropriate solutions that mitigate the overloading. One method for increasing the energy efficiency of ball mills is to optimize their drive systems. This article looks at two variants of drive systems with efficiencies higher than the already existing solutions. The first variant is a low-speed synchronous motor with permanent magnets without a gearbox, and the second variant is an asynchronous high-efficiency motor with a gearbox and a fluid coupling. The energy performance analysis of the three solutions was based on the average energy consumption indicator per mass unit of the milled material and on the energy consumption per hour. The investigations required models of the drive systems and analyses with the use of the Monte Carlo methods. The highest energy efficiency is observed in the case of the solution based on the permanent magnet motor. However, the drive system with the high-speed motor offers a gentle start-up possibility owing to the fluid coupling.
    [Show full text]
  • Evolution of the Isamill™ Into Magnetite Processing
    EVOLUTION OF THE ISAMILL™ INTO MAGNETITE PROCESSING Greg Rasmussen, Xstrata Technology Pty Ltd Tommy Do , Ernest Henry Mining Michael Larson, Xstrata Technology Pty Ltd Katie Barns, Xstrata Technology Pty Ltd Xstrata Technology • Mount Isa Mines (MIM), a large Australian mining company, was acquired by Xstrata in 2003 who then merged with Glencore in 2013 • MIM internal technology group was re-named Xstrata Technology (XT) and became an independent technology developer and supplier to the global minerals industry with 250 staff worldwide • The equipment and processes which are marketed by XT are developed in our own operations • XT offers full-package solutions including: • Equipment and processes • Engineering • Commissioning and Training • Dedicated after-market support IsaMill™ Technology Development ™ • Development of IsaMill driven by inability Broken Hill to efficiently treat fine grained orebodies • Late 1980s, Xstrata required 7µm grind for new Pb/Zn orebodies in Australia • Conventional mining technologies tested (1975-1990), but 0 40 micron − Too high power consumption to achieve target size McArthur River − Ball/tower mills ineffective below 20-30μm − Negative influence of steel grinding on flotation 0 40 micron IsaMill™ Technology Development A technology was found... • Horizontal Bead Mills − Used in industries other than mining (pharmaceuticals, paint, food, etc.) − Small, batch scale − Very expensive and exotic media types • Cross-over into mining required: − Much larger scale − Continuous operation − Ability to use cheap,
    [Show full text]
  • Isamill™ Technology Used in Efficient Grinding Circuits
    1 IsaMill™ Technology Used in Efficient Grinding Circuits B.D. Burford1 and L.W. Clark2 High intensity stirred milling is now an industry accepted method to efficiently grind fine and coarse particles. In particular, the IsaMill™, which was invented for, and transformed the fine grinding industry, is now being included in many new comminution circuits in coarser applications. While comminution has always been regarded as important from a processing perspective, the pressure being applied by environmental concerns on all large scale power users, now make highly energy efficient processes more important than ever. The advantages that were developed in fine grinding in the early IsaMill™ installations have been carried over into coarse grinding applications. These advantages include a simple grinding circuit that operates in open circuit with a small footprint, the ability to offer sharp product size classification, as well as the use of inert media in a high energy intensive environment. This paper will examine the use of IsaMill™ technology in fine grinding (P80 below 15 micron), and examine the use of the technology in conventional grinding applications (P80 20 - 150 µm). Recent installations will be examined, including fine and coarse grinding applications, as well as the recent test work that was undertaken using an IsaMill™ in a primary grinding circuit, and the resulting circuit proposal for this site. While comminution has been relatively unchanged for the last century, the need to install energy efficient technology will promote further growth in IsaMill™ installations, and result in one of the biggest challenges to traditional comminution design. 1. Senior Process Engineer, Xstrata Technology, L4, 307 Queen Street, Brisbane 4000, Qld, Australia 2.
    [Show full text]
  • Comminution of Copper Ores with the Use of a High-Pressure Water Jet
    energies Article Comminution of Copper Ores with the Use of a High-Pressure Water Jet Przemyslaw J. Borkowski Faculty of Geo Engineering Mining and Geology, Wroclaw University of Technology, 50-370 Wroclaw, Poland; [email protected] Received: 4 November 2020; Accepted: 27 November 2020; Published: 28 November 2020 Abstract: The article presents research on the comminution of copper ore in a self-constructed mill using high-pressure water jet energy to investigate the usefulness of such a method for comminuting copper ore. As a result, ore particles are obtained that are characterized by appropriate comminution and a significant increase in their specific surface, in turn allowing for potential further processing of the mineral. A comparative analysis of the efficiency of copper ore comminution, primarily taking into account the unit energy consumption and the efficiency of the milling process, clearly indicates that the energy absorption of hydro-jet material comminuting is lower than during mechanical grinding, e.g., in a planetary ball mill. The applicability of the technique depends on the brittle nature of the host rock, e.g., it is especially appropriate for sandstone and shale ores. Keywords: copper ore comminution; hydro-jet mill; high-pressure water jet 1. Introduction Shredding processes are widely used in various fields of raw material processing. Such procedures are carried out in order to lower the costs of maintaining the cutter discs used in Tunnel Boring Machines (TBM) operating in hard rock formations [1]. They are also used to obtain fine-grained particles, sometimes even nanoparticles [2] or those that have an increased specific surface, which can be especially useful in pharmaceuticals [3].
    [Show full text]
  • Efficiency of High Energy Over Conventional Milling of Granulated
    Efficiency of high energy over conventional milling of granulated blast furnace slag powder to improve mechanical performance of slag cement paste Ahmed Bouaziz, Rabah Hamzaoui, Sofiane Guessasma, Ridha Lakhal, Djamel Achoura, Nordine Leklou To cite this version: Ahmed Bouaziz, Rabah Hamzaoui, Sofiane Guessasma, Ridha Lakhal, Djamel Achoura, et al.. Effi- ciency of high energy over conventional milling of granulated blast furnace slag powder to improve mechanical performance of slag cement paste. Powder Technology, Elsevier, 2017, 308, pp.37-46. 10.1016/j.powtec.2016.12.014. hal-01602598 HAL Id: hal-01602598 https://hal.archives-ouvertes.fr/hal-01602598 Submitted on 13 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Efficiency of high energy over conventional milling of granulated blast furnace slag powder to improve mechanical performance of slag cement paste Ahmed Bouaziz a, Rabah Hamzaoui b,Sofiane Guessasma c,⁎, Ridha Lakhal d, Djamel Achoura d, Nordine
    [Show full text]
  • The Metallurgy of Antimony
    Chemie der Erde 72 (2012) S4, 3–8 Contents lists available at SciVerse ScienceDirect Chemie der Erde journal homepage: www.elsevier.de/chemer The metallurgy of antimony Corby G. Anderson ∗ Kroll Institute for Extractive Metallurgy, George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, United States article info abstract Article history: Globally, the primary production of antimony is now isolated to a few countries and is dominated by Received 4 October 2011 China. As such it is currently deemed a critical and strategic material for modern society. The metallurgical Accepted 10 April 2012 principles utilized in antimony production are wide ranging. This paper will outline the mineral pro- cessing, pyrometallurgical, hydrometallurgical and electrometallurgical concepts used in the industrial Keywords: primary production of antimony. As well an overview of the occurrence, reserves, end uses, production, Antimony and quality will be provided. Stibnite © 2012 Elsevier GmbH. All rights reserved. Tetrahedrite Pyrometallurgy Hydrometallurgy Electrometallurgy Mineral processing Extractive metallurgy Production 1. Background bullets and armory. The start of mass production of automobiles gave a further boost to antimony, as it is a major constituent of Antimony is a silvery, white, brittle, crystalline solid that lead-acid batteries. The major use for antimony is now as a trioxide exhibits poor conductivity of electricity and heat. It has an atomic for flame-retardants. number of 51, an atomic weight of 122 and a density of 6.697 kg/m3 ◦ ◦ at 26 C. Antimony metal, also known as ‘regulus’, melts at 630 C 2. Occurrence and mineralogy and boils at 1380 ◦C.
    [Show full text]
  • Extractive Metallurgy of Copper This Page Intentionally Left Blank Extractive Metallurgy of Copper
    Extractive Metallurgy of Copper This page intentionally left blank Extractive Metallurgy of Copper Mark E. Schlesinger Matthew J. King Kathryn C. Sole William G. Davenport AMSTERDAM l BOSTON l HEIDELBERG l LONDON NEW YORK l OXFORD l PARIS l SAN DIEGO SAN FRANCISCO l SINGAPORE l SYDNEY l TOKYO Elsevier The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands First edition 1976 Second edition 1980 Third edition 1994 Fourth edition 2002 Fifth Edition 2011 Copyright Ó 2011 Elsevier Ltd. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: permissions@ elsevier.com. Alternatively you can submit your request online by visiting the Elsevier web site at http://elsevier.com/locate/permissions, and selecting Obtaining permission to use Elsevier material Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloging-in-Publication Data A catalog record for this book is available from the Library of Congress ISBN: 978-0-08-096789-9 For information on all Elsevier publications visit our web site at elsevierdirect.com Printed and bound in Great Britain 11 12 13 14 10 9 8 7 6 5 Photo credits: Secondary cover photograph shows anode casting furnace at Palabora Mining Company, South Africa.
    [Show full text]
  • AP-42, CH 12.16: Lead Oxide and Pigment Production
    12.16 Lead Oxide And Pigment Production 12.16.1 General1-2,7 Lead oxide is a general term and can be either lead monoxide or "litharge" (PbO); lead tetroxide or "red lead" (Pb3O4); or black or "gray" oxide which is a mixture of 70 percent lead monoxide and 30 percent metallic lead. Black lead is made for specific use in the manufacture of lead acid storage batteries. Because of the size of the lead acid battery industry, lead monoxide is the most important commercial compound of lead, based on volume. Total oxide production in 1989 was 57,984 megagrams (64,000 tons). Litharge is used primarily in the manufacture of various ceramic products. Because of its electrical and electronic properties, litharge is also used in capacitors, Vidicon® tubes, and electrophotographic plates, as well as in ferromagnetic and ferroelectric materials. It is also used as an activator in rubber, a curing agent in elastomers, a sulfur removal agent in the production of thioles and in oil refining, and an oxidation catalyst in several organic chemical processes. It also has important markets in the production of many lead chemicals, dry colors, soaps (i. e., lead stearate), and driers for paint. Another important use of litharge is the production of lead salts, particularly those used as stabilizers for plastics, notably polyvinyl chloride materials. The major lead pigment is red lead (Pb3O4), which is used principally in ferrous metal protective paints. Other lead pigments include white lead and lead chromates. There are several commercial varieties of white lead including leaded zinc oxide, basic carbonate white lead, basic sulfate white lead, and basic lead silicates.
    [Show full text]
  • Increasing Energy Efficiency and Productivity of the Comminution
    energies Review Increasing Energy Efficiency and Productivity of the Comminution Process in Tumbling Mills by Indirect Measurements of Internal Dynamics—An Overview Mateusz Góralczyk 1,* , Pavlo Krot 1,* , Radosław Zimroz 1 and Szymon Ogonowski 2 1 Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Na Grobli 15, 50-421 Wrocław, Poland; [email protected] 2 Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; [email protected] * Correspondence: [email protected] (M.G.); [email protected] (P.K.) Received: 15 November 2020; Accepted: 10 December 2020; Published: 21 December 2020 Abstract: Tumbling mills have been widely implemented in many industrial sectors for the grinding of bulk materials. They have been used for decades in the production of fines and in the final stages of ore comminution, where optimal levels for the enrichment particles’ sizes are obtained. Even though these ubiquitous machines of relatively simple construction have been subjected to extensive studies, the industry still struggles with very low energy efficiency of the comminution process. Moreover, obtaining an optimal size for the grinding product particles is crucial for the effectiveness of the following processes and waste production reduction. New, innovative processing methods and machines are being developed to tackle the problem; however, tumbling mills are still most commonly used in all ranges of the industry. Since heavy equipment retrofitting is the most costly approach, process optimization with dedicated models and control systems is the most preferable solution for energy consumption reduction.
    [Show full text]
  • Effects of Grinding Media Shapes on Ball Mill Performance
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wits Institutional Repository on DSPACE EFFECTS OF GRINDING MEDIA SHAPES ON BALL MILL PERFORMANCE Niyoshaka Nistlaba Stanley Lameck A dissertation submitted to the Faculty of Engineering and The Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, October 2005 Declaration I declare that this dissertation is my own unaided work. It is being submitted for the Degree of Master of Science in Engineering in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University. Niyoshaka N. S. Lameck 04 Day of November Year 2005. i Abstract Comminution is an important process in mineral processing, power plants, cement production and pharmaceutical industries. It is costly and an inefficient process in terms of energy requirements and steel consumption related to grinding media and liners. Spherical grinding media are predominantly used in final stages of ore grinding. The spherical balls change shape through breakage and wear. Though this is universal in milling, its contribution and effect on milling kinetics, load behaviour and mill power is not fully established. One area that is usually ignored is the relationship between media shape and mill power. The objective of this dissertation was to investigate how media shape affects grinding. Ball size distribution inside an industrial mill was analysed in terms of shapes and sizes. Load behaviour, mill power and breakage as affected by media shapes were studied in a pilot laboratory mill.
    [Show full text]