View of 3C As a New Biopesticide Ingredient

Total Page:16

File Type:pdf, Size:1020Kb

View of 3C As a New Biopesticide Ingredient Genomic Analysis, Population Quantification and Diversity Characterization of Cryptococcus flavescens DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Xiaoqing Rong, M.S. Graduate Program in Plant Pathology The Ohio State University 2013 Dissertation Committee: Dr. Brian B. McSpadden Gardener, Advisor Dr. Thomas K. Mitchell Dr. Pierce A. Paul Dr. Christopher G. Taylor Copyrighted by Xiaoqing Rong 2013 Abstract Cryptococcus flavescens strain OH182.9_3C (3C) has been shown to have biocontrol efficacy against Fusarium head blight (FHB) of wheat, and, 3C is currently under development as a biopesticide. The research described in this dissertation advanced that commercial development of this agent by providing new information about the biology, genetics, diversity, and ecology of this species for the control of Fusarium Head Blight. Such data may be used by the US EPA and the company developing the strain for the regulatory review of 3C as a new biopesticide ingredient. A draft genome sequence of 3C was obtained through high-throughput sequencing and short read assembly. Ab initio gene prediction and sequence similarity search were conducted to annotate the genome. Nine conserved regions were identified from the assembled genome sequence to develop molecular markers for population quantification and diversity characterization. Putative non-ribosomal peptide synthetase and glucanase genes were also found in the genome and may contribute to the biocontrol activity previously noted for the strain. A quantitative PCR (qPCR) assay was developed to quantify the abundance and population dynamics of 3C-like C. flavescens in wheat production systems. Following application of 3C to flowering wheat spikes, the population of 3C-like C. flavescens in the inoculated areas remained relatively stable for the remainder of the growing season. The populations of 3C-like C. flavescens seem to have spread from inoculated areas to non-inoculated areas and increased over time. Populations decreased on threshed grains during storage, but persisted in the postharvest field during the winter and early spring following the growing season. Detailed study on diversity within C. flavescens species has not been reported before. Multilocus sequence typing was performed on strain 3C and 12 other C. flavescens ii strains using six apparently unlinked loci: rDNA-ITS, β-tubulin, chitin synthase 1, elongation factor 1, heat shock protein 70 kDa and a mostly anonymous region. The rDNA-ITS sequences were identical across all the 13 strains. The other five loci consistently revealed two genotypes, A (6 strains, including 3C and type strain NRRL Y- 1401T) and B (7 strains), with high bootstrap support. This genotypic split was congruent to the mating type previously performed on some of the tested strains. Phenotypic variation noted using BIOLOG assays supported the grouping by genotype and revealed the slow assimilation of several carbon sources by two isolates of genotype A. In green- house bioassays, the strains of both genotypes showed biocontrol efficacy against Fusarium head blight, but genotype A as a whole showed slightly greater biocontrol efficacy than genotype B strains. This study provided insight into the phylogenetic relationships within C. flavescens species and resources for developing genetic and phenotypic markers to differentiate subspecies of C. flavescens. This research paves the way for additional studies of C. flavescens and their use as biopesticidal agents. Genome-wide discovery of genes involved in biocontrol of FHB by 3C may help reveal the biocontrol mechanisms expressed by C. flavescens. The developed qPCR assay and MLST can be used to further characterize the abundance and diversity of natural and inoculated populations of C. flavescens. Collectively, such studies will further facilitate the development and registration of 3C and possibly other C. flavescens strains as biopesticides for use against FHB. iii Acknowledgements I would like to acknowledge my Ph.D. advisor Dr. Brian McSpadden Gardener for the mentoring and support during my graduate career. He gave me me great amounts of advice that was very helpful for my career development and personal growth. I also thank him for giving me opportunities for working on the genomic and molecular sides of microbiology which I am most interested in. I thank my Student Advisory Committee members for advising me throughout the Ph.D. program. I thank Dr. Paul for his advice and help on the projects we collaborated on, as well as his thorough comments on my thesis. I thank Dr. Mitchell and Dr. Taylor for all their advice and suggestions on my projects. I thank Dr. Paul and Dr. David Schisler from USDA-ARS for the collaboration on my dissertation projects, especially their kind help and readily offers of collaboration efforts. I thank Dr. Michael Boehm for his efforts in discovering and initially characterizing the biocontrol activities of Cryptococcus flavescens OH182.9, work that laid the foundation for my thesis research. I also thank all the past and current members in McSpadden Gardener lab and collaboration labs who have assisted with my projects. iv Vita 2009 .................................................................. B.S. Honors Program of Life Sciences, China Agricultural University 2012 .................................................................. M.S. Plant Pathology, The Ohio State University 2009 to present ............................................... Graduate Research Associate, Department of Plant Pathology, The Ohio State University Publications Rong, X.; Schisler, D.A.; McSpadden Gardener, B.B. 2013. Genotypic and phenotypic characterization of Cryptococcus flavescens, biocontrol agents for Fusarium head blight of wheat. Submitted for publication. Rong, X.; Paul, P.A.; Schisler, D.A.; McSpadden Gardener, B.B. 2013. A quantitative PCR assay useful for monitoring the field dispersal and persistence of Cryptococcus flavescens, a biocontrol yeast applied to wheat. Submitted for publication. Rong, X.; Baysal Gurel, F.; Meulia, T.; McSpadden Gardener, B.B. 2012. Draft Genome Sequences of the Pseudomonas fluorescens Biocontrol Strains Wayne1R and Wood1R. Journal of Bacteriology 194(3):724-725. Rong, X.; Baysal Gurel, F.; Meulia, T.; McSpadden Gardener, B.B. 2012. Draft Genome Sequences of the Biocontrol Bacterium Mitsuaria sp. Strain H24L5A. Journal of Bacteriology 194(3):734-735. v Kim, H.J.; Lee, J.H.; Kang, B.R.; Rong, X.; McSpadden Gardener, B.B.; Ji, H.J., et al.. 2012. Draft Genome Sequence of Pantoea ananatis B1-9, a Nonpathogenic Plant Growth-Promoting Bacterium. Journal of Bacteriology 194(3):729-729. Kim, H.J.; Park, J.Y.; Han, S.H.; Lee, J.H.; Rong, X.; McSpadden Gardener, B.B., et al. 2011. Draft genome sequence of the biocontrol bacterium Chromobacterium sp. strain C-61. Journal of Bacteriology 193(23):6803-6804. Park, J.Y.; Han, S.H.; Lee, J.H.; Han, Y.S.; Lee, Y.S.; Rong, X., et al. 2011. Draft genome sequence of the biocontrol bacterium Pseudomonas putida B001, an oligotrophic bacterium that induces systemic resistance to plant diseases. Journal of Bacteriology 193(23):6795-6796. Fields of Study Major Field: Plant Pathology vi Table of contents Abstract .....................................................................................................................................ii Acknowledgements ................................................................................................................. iv Vita ............................................................................................................................................ v Table of contents ....................................................................................................................vii List of Tables ........................................................................................................................... xi List of Figures.........................................................................................................................xii Chapter 1: Literature review – Fusarium head blight and Cryptococcus flavescens OH182.9_3C, a biological control agent against this disease ............................................... 1 Fusarium head blight ...................................................................................................... 1 Overview of Fusarium head blight ....................................................................... 1 Biology of pathogen infection and mycotoxin production ................................. 2 Economic loss due to Fusarium head blight ........................................................ 7 Need for biological control of FHB ............................................................................... 7 Inadequacy of cultural, chemical, and host resistance in controlling FHB ....... 8 Biocontrol as a promising approach to FHB control .......................................... 9 C. flavescens OH182.9 as a biocontrol agent against Fusarium head blight (FHB) of wheat ................................................................................................................................ 9 Discovery, isolation and selection of a fungicide-resistant variant .................... 9 Reduction of FHB damages by OH182.9 and OH182.9_3C ............................ 11 Taxonomy, physiology and sexual reproduction of C. flavescens species ............... 12
Recommended publications
  • Idiopathic CD4 Lymphocytopenia: Spectrum of Opportunistic Infections, Malignancies, and Autoimmune Diseases
    Published online: 2021-08-09 REVIEW ARTICLE Idiopathic CD4 Lymphocytopenia: Spectrum of opportunistic infections, malignancies, and autoimmune diseases Dina S. Ahmad, Mohammad Esmadi, William C. Steinmann Department of Internal Medicine, University of Missouri School of Medicine, Columbia, MO, USA Access this article online ABSTRACT Website: www.avicennajmed.com DOI: 10.4103/2231-0770.114121 Idiopathic CD4 lymphocytopenia (ICL) was first defined in 1992 by the US Centers for Disease Quick Response Code: Control and Prevention (CDC) as the repeated presence of a CD4+ T lymphocyte count of fewer than 300 cells per cubic millimeter or of less than 20% of total T cells with no evidence of human immunodeficiency virus (HIV) infection and no condition that might cause depressed CD4 counts. Most of our knowledge about ICL comes from scattered case reports. The aim of this study was to collect comprehensive data from the previously published cases to understand the characteristics of this rare condition. We searched the PubMed database and Science Direct for case reports since 1989 for Idiopathic CD4 lymphocytopenia cases. We found 258 cases diagnosed with ICL in 143 published papers. We collected data about age, sex, pathogens, site of infections, CD4 count, CD8 count, CD4:CD8 ratio, presence of HIV risk factors, malignancies, autoimmune diseases and whether the patients survived or died. The mean age at diagnosis of first opportunistic infection (or ICL if no opportunistic infection reported) was 40.7 ± 19.2 years (standard deviation), with a range of 1 to 85. One-sixty (62%) patients were males, 91 (35.2%) were females, and 7 (2.7%) patients were not identified whether males or females.
    [Show full text]
  • 153.Full.Pdf
    Copyright Ó 2010 by the Genetics Society of America DOI: 10.1534/genetics.109.113027 A Tetrad Analysis of the Basidiomycete Fungus Cryptococcus neoformans Alexander Idnurm Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110 Manuscript received December 10, 2009 Accepted for publication February 9, 2010 ABSTRACT Cryptococcus neoformans is a basidiomycete fungus that is found worldwide and causes disease in humans and animal species. The fungus grows asexually as a budding yeast. Under laboratory conditions it is capable of sexual reproduction between two mating types. After cell fusion a dikaryotic filament develops, at the tip of which a basidium gives rise to four chains of basidiospores. Because the chains each comprise 10–30 spores, rather than single spores, the analysis of individual meiotic events has not been attempted in C. neoformans in the style of tetrad analyses performed in other fungal species. Here, the basidiospores from .100 basidia were micromanipulated and the resultant .2500 progeny analyzed for three genetic markers to understand the sexual process in this fungus, leading to four observations: (i) Marker seg- regation provides genetic evidence for a single meiotic event within the basidium followed by multiple rounds of mitosis. (ii) Using each basidium as an unordered tetrad, the ADE2 and URA5 genes are linked to their centromeres, consistent with adjacent genomic regions rich in repetitive elements predicted to comprise Cryptococcus centromeres. (iii) Lack of germination of basidiospores is attributed to aneuploidy, rather than dormancy. (iv) Analysis of basidiospores derived from single chains demonstrates that each chain can contain different genotypes.
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for NR-50430 Cryptococcus gattii, Strain C10 Propagation: 1. Keep vial frozen until ready for use; thaw rapidly. Catalog No. NR-50430 2. Inoculate an agar plate with approximately 50 µL of thawed culture and/or transfer the entire thawed aliquot into a single tube of broth For research use only. Not for human use. 3. Incubate the plate and/or tube at 25°C for 2 to 4 days. Contributor: Citation: Brian Wong, M.D., Professor, and Igor Bruzual, Ph.D., Acknowledgment for publications should read “The following Infectious Disease Division, Department of Medicine, Oregon reagent was obtained through BEI Resources, NIAID, NIH: Health and Science University, Portland, Oregon, USA Cryptococcus gattii, Strain C10, NR-50430.” Manufacturer: Biosafety Level: 2 BEI Resources Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the following Product Description: publication: U.S. Department of Health and Human Services, Classification: Tremellaceae, Cryptococcus Public Health Service, Centers for Disease Control and Species: Cryptococcus gattii Prevention, and National Institutes of Health. Biosafety in Strain: C10 Microbiological and Biomedical Laboratories. 5th ed. Original Source: Cryptococcus gattii (C. gattii), strain C10 Washington, DC: U.S. Government Printing Office, 2009; see was isolated from an unknown human source in the Pacific www.cdc.gov/biosafety/publications/bmbl5/index.htm. Northwest region of North America.1 Comments: C. gattii, strain C10 was deposited as lineage Disclaimers: VGIIa and resistant to azoles.1 You are authorized to use this product for research use only. The Cryptococcus species complex is comprised of four It is not intended for human use.
    [Show full text]
  • Diversity of the Cryptococcus Neoformans-Cryptococcus Gattii Species Complex Marjan Bovers1, Ferry Hagen1 and Teun Boekhout1,2
    S4 Rev Iberoam Micol 2008; 25: S4-S12 Review Diversity of the Cryptococcus neoformans-Cryptococcus gattii species complex Marjan Bovers1, Ferry Hagen1 and Teun Boekhout1,2 1Yeast Research Group, CBS Fungal Diversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, The Netherlands Summary More than 110 years of study of the Cryptococcus neoformans and Cryptococcus gattii species complex has resulted in an enormous accumulation of fundamental, applied biological and clinical knowledge. Recent developments in our understanding of the diversity within the species complex are presented, emphasizing the intraspecific complexity, which includes species, microspecies, hybrids, serotypes and genotypes. Each of these may have different roles in disease. An overview of obsolete and current names is presented. Key words Cryptococcus neoformans, Cryptococcus gattii, Yeast, Taxonomy, Pathogen. Diversidad del complejo de especies Cryptococcus neoformans-Cryptococcus gattii Resumen Más de 110 años de estudio sobre el complejo de especies Cryptococcus neoformans y Cryptococcus gattii han dado lugar a un gran acúmulo de conocimiento básico, aplicado y clínico. En este artículo se describen los avances recientes en la comprensión de su diversidad, haciendo énfasis en la complejidad intraespecífica que presenta y que llega a englobar especies, microespecies, híbridos, serotipos y genotipos. Cada uno de estos grupos puede jugar un papel diferente en la enfermedad. Se presenta también una visión global de los nombres obsoletos y actuales de estos taxones. Palabras clave Cryptococcus neoformans, Cryptococcus gattii, Levaduras, Patógeno, Taxonomía. Introduction racteristics of the genus Saccharomyces were not present, he placed these species in the genus Cryptococcus [166].
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Cryptococcus Gattii Outbreak
    The recent Cryptococcus gattii outbreak A deadly pathway… From Trees to Lungs to Brain ryptococcus gattii disease. The route of C has been in the infection is from breathing the news lately, due to a recent airborne organism, which outbreak in the Pacific becomes lodged in the Northwest. This new, more pulmonary tissues. virulent strain is expected to by Jay Hardy, CLS, SM (NRCM) spread further throughout the Symptoms Northwest and Northern California in the coming The pulmonary disease, Jay Hardy is the founder and months. known as cpryptococcosis, president of Hardy Diagnostics. develops slowly. After He began his career in exposure it can take two to microbiology as a Medical Technologist in Santa Barbara, twelve months for symptoms California. to appear, with the usual onset In 1980, he began at six or seven months. manufacturing culture media for the local hospitals. Today, The symptoms include: Hardy Diagnostics is the third largest media manufacturer in the U.S. • Cough that lasts weeks or months To ensure rapid and reliable turn around time, Hardy • Sharp chest pain Figure 1: An India ink stain Diagnostics maintains six • Unexplained shortness of showing the capsule surrounding distribution centers, and breath produces over 3,000 products the C. gattii cells in the yeast form used in clinical and industrial at 1,000X. Photo from Haley/CDC. • Severe headache microbiology laboratories • Confusion throughout the world. The organism is a fungus that • Fever is usually found in the soil • Night sweats www.HardyDiagnostics.com and on trees. It is not spread • Unintended weight loss from human to human or animal to human.
    [Show full text]
  • Idiopathic CD4 Lymphocytopenia Presenting As Refractory Cryptococcal Meningitis
    Case Report Idiopathic CD4 lymphocytopenia presenting as refractory cryptococcal meningitis A. Sharma, V. Lal, M. Modi, D. Khurana, S. Bal, S. Prabhakar Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh-160 012, India Abstract Idiopathic CD4 T-lymphocytopenia (ICL) is a syndrome characterized by depletion of CD4 T-cells without evidence of human immunodeficiency virus (HIV) infection. There are a few reported cases of ICL associated with different diseases and clinical conditions, most commonly the opportunistic infections like Tuberculosis, fungal and parasitic diseases which are also seen in HIV-positive patients. We report a case without risk factors or laboratory evidence of HIV infection who presented with refractory cryptococcal meningitis and was found to have ICL. Key Words Cryptococcus, CD4, idiopathic For correspondence: Dr. Vivek Lal, Department of Neurology, PGIMER, Sector-12, Chandigarh-160 012, India. E-mail: [email protected] Ann Indian Acad Neurol 2010;13:136-8 [DOI: 10.4103/0972-2327.64646] Introduction and decreased pain and temperature sensation in the right half of the body, with sparing of the face. The neurological Idiopathic CD4 lymphocytopenia (ICL) was defi ned by the examination was otherwise normal. Plain magnetic resonance United States Centers for Disease Control and Prevention imaging (MRI) brain revealed a T2 hyperintensity in the (CDC) as a clinical condition in patients with depressed left thalamus, extending to involve the left corona radiata numbers of circulating CD4 T lymphocytes (<300 cells/µl or [Figure 1]. There was no meningeal enhancement on contrast- <20% of total T cells) at a minimum of two separate time points enhanced MRI.
    [Show full text]
  • Safety Precautions for Working with Cryptococcus Neoformans
    Safety Precautions for Working with Cryptococcus neoformans The basidiomycete fungus Cryptococcus neoformans is an invasive opportunistic pathogen of the central nervous system and the most frequent cause of fungal meningitis worldwide. Although Cryptococcus is a problem in the United States, it is significantly more prevalent and especially devastating in the developing world, such as sub-Saharan Africa, resulting in in more than 625,000 deaths per year worldwide. C. neoformans survives in the environment within soil, trees, and bird guano, where it can interact with wild animals or microbial predators, maintaining its virulence. Human infection is thought to be acquired by inhalation of desiccated yeast cells or spores from an environmental source. C. neoformans can colonize the host respiratory tract without producing any disease. Infection is typically asymptomatic, and it can be either cleared or enter a dormant, latent form. When host immunity is compromised, the dormant form can be reactivated and disseminate hematogenously to cause systemic infection. C. neoformans can infect or spread to any organ to cause localized infections involving the skin, eyes, myocardium, bones, joints, lungs, prostate gland, or urinary tract, in addition to its propensity to infect the central nervous systems. The following diseases and medications are risk factors for C. neoformans infection and are associated with at least some degree of immunosuppression: Ø HIV/AIDs (CD4 < 100cells/mm) Ø Corticosteroids or other immunosuppressive medications for cancer, chemotherapy, or organ transplants Ø Solid organ transplantations Ø Diabetes mellitus Ø Heart, lung, or liver disease Ø Pregnancy Even otherwise healthy, fully immunocompetent individuals can develop cryptococcosis, as may well be the case in a lab accident.
    [Show full text]
  • Yeasts Diversity in Brazilian Cerrado Soils: Study of the Enzymatic Activities
    Vol. 7(32), pp. 4176-4190, 9 August, 2013 DOI: 10.5897/AJMR2013.5752 ISSN 1996-0808 ©2013 Academic Journals African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper Yeasts diversity in Brazilian Cerrado soils: Study of the enzymatic activities Fernanda Paula Carvalho1, Angélica Cristina de Souza1, Karina Teixeira Magalhães-Guedes1*, Disney Ribeiro Dias2, Cristina Ferreira Silva1 and Rosane Freitas Schwan1 1Department of Biology, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000, Lavras, MG, Brazil. 2Department of Food Science, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000, Lavras, MG, Brazil. Accepted 22 July, 2013 A total of 307 yeasts strains were isolated from native Cerrado (Brazilian Savannah) soils collected at Passos, Luminárias and Arcos areas in Minas Gerais State, Brazil. The soils were chemically characterized. Ten yeast genera (Candida, Cryptococcus, Debaryomyces, Kazachstania, Kodamaea, Lindnera, Pichia, Schwanniomyces, Torulaspora and Trichosporon) and 23 species in both rainy and dry seasons were identified. All genera were abundant during the dry season. The pH values of the soil from the Passos, Luminárias and Arcos areas varied from 4.1 to 5.5. There were no significant differences in the concentrations of phosphorus, magnesium and organic matter in the soils among the studied areas. The Arcos area contained large amounts of aluminum during the rainy season and both hydrogen and aluminum in the rainy and dry seasons. The yeast populations identified seemed to be unaffected by the high levels of aluminum in the soil. The API ZYM® (BioMérieux, France) system was employed to characterize the extracellular enzymatic activity profiles of the yeast isolates.
    [Show full text]
  • Zymobiomics Microbial Community DNA Standard II (Log Distribution)
    INSTRUCTION MANUAL ZymoBIOMICS™ Microbial Community DNA Standard II (Log Distribution) Catalog No. D6311 Highlights • Log abundance distribution: assess detection limit of as low as DNA of three microbes. • Accurate composition: cross-validated with multiple types of measurements. • Microbiomics QC: ideal for quality control of microbiome measurements Contents Product Contents ...................................................... 1 Product Specifications .............................................. 1 Product Description .................................................. 2 Strain Information ..................................................... 3 Protocol .................................................................... 4 Bioinformatics Analysis Recommendations ........ 4 Ordering Information ................................................. 5 Appendix A: Additional Strain Information ................. 6 Ordering Information and Related Products ............. 7 For Research Use Only Ver. 1.0.3 ZYMO RESEARCH CORP. Phone: (949) 679-1190 ▪ Toll Free: (888) 882-9682 ▪ Fax: (949) 266-9452 ▪ [email protected] ▪ www.zymoresearch.com Page 1 Satisfaction of all Zymo Product Contents Research products is guaranteed. If you are Storage dissatisfied with this product, Product Name D6311 please call 1-888-882-9682. Temperature ZymoBIOMICS™ Microbial Community Note – Integrity of kit 220ng / 20µl -20°C components is guaranteed DNA Standard II (Log Distribution) for up to one year from date of purchase. Product Specifications Source: genomic
    [Show full text]
  • Environmental Factors That Contribute to the Maintenance of Cryptococcus Neoformans Pathogenesis
    microorganisms Review Environmental Factors That Contribute to the Maintenance of Cryptococcus neoformans Pathogenesis Maphori Maliehe, Mathope A. Ntoi, Shayanki Lahiri, Olufemi S. Folorunso , Adepemi O. Ogundeji , Carolina H. Pohl and Olihile M. Sebolai * Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, Free State, South Africa; [email protected] (M.M.); [email protected] (M.A.N.); [email protected] (S.L.); [email protected] (O.S.F.); [email protected] (A.O.O.); [email protected] (C.H.P.) * Correspondence: [email protected]; Tel.: +27-(0)51-401-2004 Received: 15 November 2019; Accepted: 11 December 2019; Published: 28 January 2020 Abstract: The ability of microorganisms to colonise and display an intracellular lifestyle within a host body increases their fitness to survive and avoid extinction. This host–pathogen association drives microbial evolution, as such organisms are under selective pressure and can become more pathogenic. Some of these microorganisms can quickly spread through the environment via transmission. The non-transmittable fungal pathogens, such as Cryptococcus, probably return into the environment upon decomposition of the infected host. This review analyses whether re-entry of the pathogen into the environment causes restoration of its non-pathogenic state or whether environmental factors and parameters assist them in maintaining pathogenesis. Cryptococcus (C.) neoformans is therefore used as a model organism to evaluate the impact of environmental stress factors that aid the survival and pathogenesis of C. neoformans intracellularly and extracellularly. Keywords: Cryptococcus; environmental factors; pathogenesis; survival; virulence factors; transcriptional factors; signalling factors 1. Introduction The genus Cryptococcus is defined by basidiomycetous fungi that can transform into a yeast state [1].
    [Show full text]
  • Evolutionary Affinities of Heterobasidiomycetous Yeasts Estimated from 185 and 255 Ribosomal RNA Sequence Divergence
    6349 System. Appl. Microbiol. 12, 230-236 (1989) Evolutionary Affinities of Heterobasidiomycetous Yeasts Estimated from 185 and 255 Ribosomal RNA Sequence Divergence 2 2 EVELINE GUEHO\ CLETUS P. KURTZMAN , and STEPHEN W. PETERSON J lnstitut Pasteur, Unite de Mycologie, 75724 Paris Cedex 15, France Northern Regional Research Center, U.S. Department of Agriculture, Peoria, IL 61604, USA Received May 20, 1989 Summary Phylogenetic relationships among heterobasidiomycetous yeasts, including anamorphic and teleomorphic taxa, have been compared from the sequence similarity of small (18S) and large (25S) subunit ribosomal RNA. Species examined were Cystofilobasidium capitatum, Filobasidiella neoformans, Fi/obasidium floriforme, Leucosporidium scottii, Malassezia furfur, M. pachydermatis, Phaffia rhodozyma, Rhodos­ poridium toru/oides, Sporidiobolus johnsonii, Sterigmatosporidium polymorphum, Trichosporon beige/ii, T. cutaneum and T. pullulans. The taxa cluster into three main groups. One group contains the non­ teliospore forming genera Sterigmatosporidium, Filobasidiella, Filobasidium and the anamorphic species T. beigeIii and T. cutaneum. The teliospore formers Leucosporidium, Rhodosporidium and Sporidiobo/us, all of which have simple septal pores, cluster into a single group, despite the heterogeneity of carotenoid formation. By contrast, C. capitatum appears separate, not only from Rhodosporidium, but also from the Filobasidiaceae with which it shares a primitive dolipore septum. The uniqueness of the genus Malassezia among yeasts is confirmed,
    [Show full text]