Dissolved Rhenium in the Yamuna River System and the Ganga in the Himalaya: Role of Black Shale Weathering on the Budgets of Re, Os, and U in Rivers And

Total Page:16

File Type:pdf, Size:1020Kb

Dissolved Rhenium in the Yamuna River System and the Ganga in the Himalaya: Role of Black Shale Weathering on the Budgets of Re, Os, and U in Rivers And Geochimica et Cosmochimica Acta, Vol. 66, No. 1, pp. 29–43, 2002 Copyright © 2002 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/02 $22.00 ϩ .00 PII S0016-7037(01)00747-5 Dissolved rhenium in the Yamuna River System and the Ganga in the Himalaya: Role of black shale weathering on the budgets of Re, Os, and U in rivers and CO2 in the atmosphere † TARUN K. DALAI,SUNIL K. SINGH, J. R. TRIVEDI, and S. KRISHNASWAMI* Physical Research Laboratory, Ahmedabad 380 009, India (Received January 16, 2001; accepted in revised form July 3, 2001) Abstract—Extensive measurements of dissolved Re and major ion abundances in the Yamuna River System (YRS), a major tributary of the Ganga, have been performed along its entire stretch in the Himalaya, from its source near the Yamunotri Glacier to its outflow at the foothills of the Himalaya at Saharanpur. In addition, Re analysis has been made in granites and Precambrian carbonates, some of the major lithologies of the drainage basin. These data, coupled with those available for black shales in the Lesser Himalaya, allow an assessment of these lithologies’ contributions to the Re budget of the YRS. The Re concentrations in the YRS range from 0.5 to 35.7 pM with a mean of 9.4 pM, a factor of ϳ4 higher than that reported for its global average concentration in rivers. Dissolved Re and ⌺Cations* (ϭ Na*ϩKϩCaϩMg) are strongly correlated in the YRS, indicating that they are released to these waters in roughly the same proportion throughout their course. The Re/⌺Cations* in most of these rivers are one to two orders of magnitude higher than the (Re/NaϩKϩMgϩCa) measured in granites of the Yamuna basin. This leads to the conclusion that, on average, granites/crystallines make only minor contributions to the dissolved Re budget of the YRS on a basin-wide scale, though they may be important for rivers with low dissolved Re. Similarly, Precambrian carbonates of the Lesser Himalaya do not seem to be a major contributor to dissolved Re in these rivers, as their Re/(CaϩMg) is much less than those in the rivers. The observation that Re concentrations in rivers flowing through black shales and in groundwaters percolating through phosphorite- black shale-carbonate layers in phosphorite mines are high, and that Re and SO4 are significantly correlated in YRS, seems to suggest that the bulk of the dissolved Re is derived from black shale/carbonaceous sediments. Material balance considerations, based on average Re of 30 ng gϪ1 in black shales from the Lesser Himalaya, require that its abundance in the drainage basin of the YRS needs to be a few percent to yield average Re of 9.4 pM. Furthermore, the positive correlation between Re and ⌺Cations* would require that these Re-rich sediments (e.g., black shales) and Re-poor lithologies (e.g., crystallines, Precambrian carbon- ates) contribute Re and cations in roughly the same proportion throughout the drainage basin. The available data on the abundance and distribution of black shales in the basin are not adequate to test if these requirements can be met. The annual fluxes of dissolved Re at the base of the Himalaya from the Yamuna are ϳ150 mol at Batamandi and ϳ100 mol at Saharanpur, compared to ϳ120 mol from the Ganga at Rishikesh. The total flux from the Yamuna and the Ganga account for ϳ0.4% of the global riverine Re flux, much higher than their contribution to global water discharge. This is also borne out from the mobilization rate of Re: ϳ1to3gkmϪ2 yϪ1 in the Ganga and Yamuna basins in the Himalaya, compared to the global average of ϳ0.1gkmϪ2 yϪ1. Black shale weathering can also significantly influence the budgets of Os and U in rivers and CO2 in rivers and the atmosphere. Using dissolved Re in rivers as a proxy, it is estimated that ϳ(6–9) ϫ 108 kg yϪ1 of black shales are being weathered in the Ganga and Yamuna basins in the Himalaya. Weathering of such amounts of black shales can account for the reported concentrations of Os and U in these rivers. Furthermore, if the ϳ ϫ 5 weathering results in the conversion of organic carbon in the black shales to CO2, it would release 2 10 Ϫ2 Ϫ1 mol of CO2 km y in the Yamuna and Ganga basins in the Himalaya, comparable to the CO2 consumption from silicate weathering. Copyright © 2002 Elsevier Science Ltd 1. INTRODUCTION Pegram et al., 1992). In support of this suggestion, it has been found that the rivers draining the Himalaya have Sr and Os The rivers draining the Himalaya contribute significantly to isotopic compositions, which are generally more radiogenic water, sediment, and elemental budgets of the oceans, thereby influencing the marine elemental and isotopic makeup. Weath- than other major rivers of the world (Palmer and Edmond, ering in the Himalaya has been suggested as an important 1989; Krishnaswami et al., 1992; Levasseur et al., 1999; 187 188 driver in determining the steady rise of 87Sr/86Sr and 187Os/ Sharma et al., 1999). The Os/ Os of rivers is determined 188Os in seawater through the Cenozoic (Richter et al., 1992; by the Re/Os ratios and age of the basins drained by them. Relatively higher 187Os/188Os can be expected in rivers flowing through basins containing black shales, which are known to * Author to whom correspondence should be addressed (swami@ have high Re/Os. Considering that weathering of black shales prl.ernet.in). † Present address: Centre de Recherches Petrographiques et by oxic river waters would also release Re to solution as Geochimiques-CNRS, B.P. 20, 54501 Vandoeuvre-les-Nancy, France. perrhenate oxyanion (Brookins, 1986; Koide et al., 1986), the 29 30 T. K. Dalai, S. K. Singh, J. R. Trivedi, and S. Krishnaswami Fig. 1. (a) Water sampling locations in the Yamuna River System. Samples were collected during October 1998 (post monsoon), June 1999 (premonsoon), and September 1999 (monsoon). The sample numbers given are those from the October 1998 collection. (b) Lithologic map of the Yamuna catchment (Valdiya, 1980). Only some of the tributaries are shown (Fig. 1a). In the upper reaches, the Yamuna flows through HHC. The bulk of its drainage basin is in the Lesser Himalaya, which is abundant in silicates of sedimentary origin and Precambrian carbonates. Many of these sedimentary deposits are reported to have carbonaceous material in them. The streams in the lower reaches of the Yamuna, in particular the tributaries Aglar, Bata, and Giri, flow through black shale occurrences. concentration of Re in such rivers is expected to be relatively standing its geochemical behavior in the surficial weathering high. Hence, data on the abundance of Re in river waters in the environment have implications in the use of 187Re-187Os iso- Himalaya can aid not only in constraining their sources but also tope pair for geochronology. The application of this pair for age by providing a better understanding of the comparative geo- determination requires, among other conditions, closed-system chemistry of Re and Os during weathering. behavior of Re and Os in the rock/sediment system to be dated Knowledge of the sources of Re in river waters and under- (Ravizza and Turekian, 1989, 1991; Allegre et al., 1999; Cohen Dissolved Re in the Yamuna River system, Himalaya 31 Fig. 1. (b) (continued) et al., 1999; Singh et al., 1999; Peucker-Ehrenbrink and Han- NTIMS and ICP-MS for Re measurements (Anbar et al., 1992; nigan, 2000). Studies of Re in rivers is one approach for Colodner et al., 1993a, b), have contributed to recent studies of learning about the extent of its mobility from various rock types Re in natural waters. Colodner et al. (1993b), in their recon- during surficial weathering and its possible consequences to naissance study of the geochemical cycle of Re, observed that Re-Os chronometry. rivers draining black shales, such as those in the Venezuelan Some of these considerations, coupled with the availability Andes, have higher dissolved Re concentrations. Hodge et al. of highly sensitive and precise techniques, such as the ID- (1996), on the other hand, proposed carbonates to be an im- 32 T. K. Dalai, S. K. Singh, J. R. Trivedi, and S. Krishnaswami portant source of Re to groundwaters based on their observa- In the Lesser Himalaya, occurrences of grayish-black, black, tion that Re/Mo/U ratios in groundwaters from Palaeozoic and bleached shales are reported in the Infra Krol, the Lower carbonate aquifers in the Southern Great Basin (USA) and Tal, the Deoban, and the Mandhali Formations (Gansser, 1964; seawater are quite similar. This finding led them to suggest Valdiya, 1980). These are exposed at a number of locations in quantitative uptake of these elements from seawater by carbon- the Yamuna and the Tons catchment (Fig. 1b), the largest being ates during their precipitation and their subsequent release to at Maldeota and Durmala around Dehradun, where phosphorite groundwater during dissolution. is mined economically (Singh, 1999). In the Tons catchment, In this paper we report Re abundances in the Yamuna (the black shales occur in areas around Tiuni and Lokhandi areas on major tributary of the Ganga) and in many of its major as well the Chakrata-Tiuni road. The Krol dolomites are known to as minor tributaries in the Himalaya (Fig. 1a) sampled during contain pockets of gypsum (Valdiya, 1980), the one in Sha- three different periods. In addition, we have analyzed various hashradhara near Dehradun being economically workable. source rocks from the catchment, such as carbonates and gran- There are occurrences of geothermal springs in and around the ites, and a few groundwaters percolating through a phosphorite- source region, Janaki chatti and Yamunotri, upstream of Ha- black shale-carbonate sequence in the Maldeota phosphorite numan chatti (Fig.
Recommended publications
  • The Alaknanda Basin (Uttarakhand Himalaya): a Study on Enhancing and Diversifying Livelihood Options in an Ecologically Fragile Mountain Terrain”
    Enhancing and Diversifying Livelihood Options ICSSR PDF A Final Report On “The Alaknanda Basin (Uttarakhand Himalaya): A Study on Enhancing and Diversifying Livelihood Options in an Ecologically Fragile Mountain Terrain” Under the Scheme of General Fellowship Submitted to Indian Council of Social Science Research Aruna Asaf Ali Marg JNU Institutional Area New Delhi By Vishwambhar Prasad Sati, Ph. D. General Fellow, ICSSR, New Delhi Department of Geography HNB Garhwal University Srinagar Garhwal, Uttarakhand E-mail: [email protected] Vishwambhar Prasad Sati 1 Enhancing and Diversifying Livelihood Options ICSSR PDF ABBREVIATIONS • AEZ- Agri Export Zones • APEDA- Agriculture and Processed food products Development Authority • ARB- Alaknanda River Basin • BDF- Bhararisen Dairy Farm • CDPCUL- Chamoli District Dairy Production Cooperative Union Limited • FAO- Food and Agricultural Organization • FDA- Forest Development Agency • GBPIHED- Govind Ballabh Pant Institute of Himalayan Environment and Development • H and MP- Herbs and Medicinal Plants • HAPPRC- High Altitude Plant Physiology Center • HDR- Human Development Report • HDRI- Herbal Research and Development Institute • HMS- Himalayan Mountain System • ICAR- Indian Council of Agricultural Research • ICIMOD- International Center of Integrated Mountain and Development • ICSSR- Indian Council of Social Science Research LSI- Livelihood Sustainability Index • IDD- Iodine Deficiency Disorder • IMDP- Intensive Mini Dairy Project • JMS- Journal of Mountain Science • MPCA- Medicinal Plant
    [Show full text]
  • Recent and Past Floods in the Alaknanda Valley: Causes and Consequences
    COMMENTARY Recent and past floods in the Alaknanda valley: causes and consequences Naresh Rana, Sunil Singh, Y. P. Sundriyal and Navin Juyal Uttarakhand Himalaya in general and wide at the summit1,2. It was estimated (district surveyor of Garhwal), helped to Alaknanda and Bhagirathi valleys in par- that the lake would have taken at least a meticulously estimate the magnitude of ticular have experienced one of the worst year to fill. The dam would partially downstream inundation. An excellent forms of disaster in recent times (Figure breach only after the water began to top- telegraph system was installed between 1). Flash floods are common in the ple it, which would cause flash floods Birahi Ganga and Haridwar for real-time Himalaya, but the kind of destruction in the downstream till Haridwar. The monitoring and timely warning of the witnessed this time was unparalleled in untiring efforts of Pulford, the then flood. Around May 1894, pilgrim traffic recent history. Houses collapsed like a superintending engineer and his team, on the way to Kedarnath and Badrinath pack of cards and the roads and bridges particularly Pandit Hari Krishen Pant was diverted to the new pedestrian route swept away in the turbulent flood waters. Probably the worst causality of the cen- tury was the destruction of Kedarnath valley. According to the data published in various national dailies, nearly 4000 people were either killed or lost, 2232 houses were damaged, 1520 roads in dif- ferent parts of Garhwal were badly dam- aged and about 170 bridges have been washed away. According to economists, the tourism industry in Uttarakhand will suffer a loss of ~12,000 crore rupees, which is around 30% of the state’s GDP.
    [Show full text]
  • Flood Management Strategy for Ganga Basin Through Storage
    Flood Management Strategy for Ganga Basin through Storage by N. K. Mathur, N. N. Rai, P. N. Singh Central Water Commission Introduction The Ganga River basin covers the eleven States of India comprising Bihar, Jharkhand, Uttar Pradesh, Uttarakhand, West Bengal, Haryana, Rajasthan, Madhya Pradesh, Chhattisgarh, Himachal Pradesh and Delhi. The occurrence of floods in one part or the other in Ganga River basin is an annual feature during the monsoon period. About 24.2 million hectare flood prone area Present study has been carried out to understand the flood peak formation phenomenon in river Ganga and to estimate the flood storage requirements in the Ganga basin The annual flood peak data of river Ganga and its tributaries at different G&D sites of Central Water Commission has been utilised to identify the contribution of different rivers for flood peak formations in main stem of river Ganga. Drainage area map of river Ganga Important tributaries of River Ganga Southern tributaries Yamuna (347703 sq.km just before Sangam at Allahabad) Chambal (141948 sq.km), Betwa (43770 sq.km), Ken (28706 sq.km), Sind (27930 sq.km), Gambhir (25685 sq.km) Tauns (17523 sq.km) Sone (67330 sq.km) Northern Tributaries Ghaghra (132114 sq.km) Gandak (41554 sq.km) Kosi (92538 sq.km including Bagmati) Total drainage area at Farakka – 931000 sq.km Total drainage area at Patna - 725000 sq.km Total drainage area of Himalayan Ganga and Ramganga just before Sangam– 93989 sq.km River Slope between Patna and Farakka about 1:20,000 Rainfall patten in Ganga basin
    [Show full text]
  • Estimation of Paleo-Discharge of the Lost Saraswati River, North West India
    EGU2020-21212 https://doi.org/10.5194/egusphere-egu2020-21212 EGU General Assembly 2020 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Estimation of paleo-discharge of the lost Saraswati River, north west India Zafar Beg, Kumar Gaurav, and Sampat Kumar Tandon Indian Institute of Science Education and Research Bhopal, Earth and Environment Sciences, India ([email protected], [email protected], [email protected] ) The lost Saraswati has been described as a large perennial river which was 'lost' in the desert towards the end of the 'Indus-Saraswati civilisation'. It has been suggested that this paleo river flowed in the Sutlej-Yamuna interfluve, parallel to the present-day Indus River. Today, in this interfluve an ephemeral river- the Ghaggar flows along the abandoned course of the ‘lost’ Saraswati River. We examine the hypothesis given by Yashpal et al. (1980) that two Himalayan-fed rivers Sutlej and Yamuna were the tributaries of the lost Saraswati River, and constituted the bulk of its paleo-discharge. Subsequently, the recognition of the occurrence of thick fluvial sand bodies in the subsurface and the presence of a large number of Harappan sites in the interfluve region have been used to suggest that the Saraswati River was a large perennial river. Further, the wider course of about 4-7 km recognised from satellite imagery of Ghaggar-Hakra belt in between Suratgarh and Anupgarh in the Thar strengthens this hypothesis. In this study, we have developed a methodology to estimate the paleo-discharge and paleo- width of the lost Saraswati River.
    [Show full text]
  • Floral and Faunal Diversity in Alaknanda River Mana to Devprayag
    Report Code: 033_GBP_IIT_ENB_DAT_11_Ver 1_Jun 2012 Floral and Faunal Diversity in Alaknanda River Mana to Devprayag GRBMP : Ganga River Basin Management Plan by Indian Institutes of Technology IIT IIT IIT IIT IIT IIT IIT Bombay Delhi Guwahati Kanpur Kharagpur Madras Roorkee Report Code: 033_GBP_IIT_ENB_DAT_11_Ver 1_Jun 2012 2 | P a g e Report Code: 033_GBP_IIT_ENB_DAT_11_Ver 1_Jun 2012 Preface In exercise of the powers conferred by sub-sections (1) and (3) of Section 3 of the Environment (Protection) Act, 1986 (29 of 1986), the Central Government has constituted National Ganga River Basin Authority (NGRBA) as a planning, financing, monitoring and coordinating authority for strengthening the collective efforts of the Central and State Government for effective abatement of pollution and conservation of the river Ganga. One of the important functions of the NGRBA is to prepare and implement a Ganga River Basin Management Plan (GRBMP). A Consortium of 7 Indian Institute of Technology (IIT) has been given the responsibility of preparing Ganga River Basin Management Plan (GRBMP) by the Ministry of Environment and Forests (MoEF), GOI, New Delhi. Memorandum of Agreement (MoA) has been signed between 7 IITs (Bombay, Delhi, Guwahati, Kanpur, Kharagpur, Madras and Roorkee) and MoEF for this purpose on July 6, 2010. This report is one of the many reports prepared by IITs to describe the strategy, information, methodology, analysis and suggestions and recommendations in developing Ganga River Basin Management Plan (GRBMP). The overall Frame Work for documentation of GRBMP and Indexing of Reports is presented on the inside cover page. There are two aspects to the development of GRBMP. Dedicated people spent hours discussing concerns, issues and potential solutions to problems.
    [Show full text]
  • Conceptual Model for the Vulnerability Assessment of Springs in the Indian Himalayas
    climate Article Conceptual Model for the Vulnerability Assessment of Springs in the Indian Himalayas Denzil Daniel 1 , Aavudai Anandhi 2 and Sumit Sen 1,3,* 1 Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology Roorkee, Roorkee 247667, India; [email protected] 2 Biological Systems Engineering Program, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL 32307, USA; [email protected] 3 Department of Hydrology, Indian Institute of Technology Roorkee, Roorkee 247667, India * Correspondence: [email protected]; Tel.: +91-1332-284754 Abstract: The Indian Himalayan Region is home to nearly 50 million people, more than 50% of whom are dependent on springs for their sustenance. Sustainable management of the nearly 3 million springs in the region requires a framework to identify the springs most vulnerable to change agents which can be biophysical or socio-economic, internal or external. In this study, we conceptualize vulnerability in the Indian Himalayan springs. By way of a systematic review of the published literature and synthesis of research findings, a scheme of identifying and quantifying these change agents (stressors) is presented. The stressors are then causally linked to the characteristics of the springs using indicators, and the resulting impact and responses are discussed. These components, viz., stressors, state, impact, and response, and the linkages are used in the conceptual framework to assess the vulnerability of springs. A case study adopting the proposed conceptual model is discussed Citation: Daniel, D.; Anandhi, A.; for Mathamali spring in the Western Himalayas. The conceptual model encourages quantification Sen, S.
    [Show full text]
  • Current Condition of the Yamuna River - an Overview of Flow, Pollution Load and Human Use
    Current condition of the Yamuna River - an overview of flow, pollution load and human use Deepshikha Sharma and Arun Kansal, TERI University Introduction Yamuna is the sub-basin of the Ganga river system. Out of the total catchment’s area of 861404 sq km of the Ganga basin, the Yamuna River and its catchment together contribute to a total of 345848 sq. km area which 40.14% of total Ganga River Basin (CPCB, 1980-81; CPCB, 1982-83). It is a large basin covering seven Indian states. The river water is used for both abstractive and in stream uses like irrigation, domestic water supply, industrial etc. It has been subjected to over exploitation, both in quantity and quality. Given that a large population is dependent on the river, it is of significance to preserve its water quality. The river is polluted by both point and non-point sources, where National Capital Territory (NCT) – Delhi is the major contributor, followed by Agra and Mathura. Approximately, 85% of the total pollution is from domestic source. The condition deteriorates further due to significant water abstraction which reduces the dilution capacity of the river. The stretch between Wazirabad barrage and Chambal river confluence is critically polluted and 22km of Delhi stretch is the maximum polluted amongst all. In order to restore the quality of river, the Government of India (GoI) initiated the Yamuna Action Plan (YAP) in the1993and later YAPII in the year 2004 (CPCB, 2006-07). Yamuna river basin River Yamuna (Figure 1) is the largest tributary of the River Ganga. The main stream of the river Yamuna originates from the Yamunotri glacier near Bandar Punch (38o 59' N 78o 27' E) in the Mussourie range of the lower Himalayas at an elevation of about 6320 meter above mean sea level in the district Uttarkashi (Uttranchal).
    [Show full text]
  • Team ( For) Team ( Against) Topic Slot JUDGES Mississipi
    Team ( for) Team ( Against) Topic Slot JUDGES Are parents to be held responsible for the actions of their Mississipi - thames Kaveri children? 10:00-10:30 Aparna-Ananya Should MLAs and MPs should have a minimum level of Yamuna - tapi Krishna educational qualification? 17 apil- 10:00-10:30 prashasti-jay sandhiya- Mahanadhi Tigris Is Indian culture decaying? 5:00- 5:30 shailendra Should we make cartoons and TV a part of the educational Koshi Narmada process in elementary school? 10:45-11:15 shrishty-shivam Homework at school: should be banned or it is an essential Rupnarayan Sindhu part of our studies that teaches us to work independently. 11:30-12:00 Aparna-Ananya Jordan Jhelum - Indus Social media has improved human communication and reach. 11:30-12:00 prashasti-jay Patriotism is doing more harm than good when it comes to sandhiya- Danube Betwa International relations. 12:15-12:45 shailendra Government shouldn't have the access to personal information Colorado Brahmaputra of citizens through the linking of Adhaar. 12:15-12:45 shrishty-shivam Alknanda Tista Does 'NOTA' option in elections really make sense? 1:00-1:30 Aparna-Ananya Tests on animals: should animals be used for scientific Godavari Shinano achievements 1:00-1:30 Prashasti-jay sandhiya- Amazon Irtysh Film versions are never as good as the original books. 1:30-2:00 shailendra Sutlej Gandak Zoos should be banned. 1:30-2:00 shrishty-shivam Ganga Umngot Online system of education is a boon than a bane. 2:00-2:30 Aparna-Ananya zambezi- WILD CARD Team Team Winning Slot Jugdes Topics Social media comments should be Mississipi + Thames Kaveri Kaveri (A) 12:00- 12:30 p.m.
    [Show full text]
  • On the Brink: Water Governance in the Yamuna River Basin in Haryana By
    Water Governance in the Yamuna River Basin in Haryana August 2010 For copies and further information, please contact: PEACE Institute Charitable Trust 178-F, Pocket – 4, Mayur Vihar, Phase I, Delhi – 110 091, India Society for Promotion of Wastelands Development PEACE Institute Charitable Trust P : 91-11-22719005; E : [email protected]; W: www.peaceinst.org Published by PEACE Institute Charitable Trust 178-F, Pocket – 4, Mayur Vihar – I, Delhi – 110 091, INDIA Telefax: 91-11-22719005 Email: [email protected] Web: www.peaceinst.org First Edition, August 2010 © PEACE Institute Charitable Trust Funded by Society for Promotion of Wastelands Development (SPWD) under a Sir Dorabji Tata Trust supported Water Governance Project 14-A, Vishnu Digambar Marg, New Delhi – 110 002, INDIA Phone: 91-11-23236440 Email: [email protected] Web: www.watergovernanceindia.org Designed & Printed by: Kriti Communications Disclaimer PEACE Institute Charitable Trust and Society for Promotion of Wastelands Development (SPWD) cannot be held responsible for errors or consequences arising from the use of information contained in this report. All rights reserved. Information contained in this report may be used freely with due acknowledgement. When I am, U r fine. When I am not, U panic ! When I get frail and sick, U care not ? (I – water) – Manoj Misra This publication is a joint effort of: Amita Bhaduri, Bhim, Hardeep Singh, Manoj Misra, Pushp Jain, Prem Prakash Bhardwaj & All participants at the workshop on ‘Water Governance in Yamuna Basin’ held at Panipat (Haryana) on 26 July 2010 On the Brink... Water Governance in the Yamuna River Basin in Haryana i Acknowledgement The roots of this study lie in our research and advocacy work for the river Yamuna under a civil society campaign called ‘Yamuna Jiye Abhiyaan’ which has been an ongoing process for the last three and a half years.
    [Show full text]
  • Uttarakhand Emergency Assistance Project (UEAP)
    Initial Environment Examination Project Number: 47229-001 July 2016 IND: Uttarakhand Emergency Assistance Project (UEAP) Package: Construction of FRP huts in disaster affected district of Kumaon (District Bageshwar) Uttarakhand Submitted by Project implementation Unit –UEAP, Tourism (Kumaon), Nainital This initial environment examination report has been submitted to ADB by Project implementation Unit – UEAP, Tourism (Kumaon), Nainital and is made publicly available in accordance with ADB’s public communications policy (2011). It does not necessarily reflect the views of ADB. This initial environment examination report is a document of the borrower. The views expressed herein do not necessarily represent those of ADB's Board of Directors, Management, or staff, and may be preliminary in nature. In preparing any country program or strategy, financing any project, or by making any designation of or reference to a particular territory or geographic area in this document, the Asian Development Bank does not intend to make any judgments as to the legal or other status of any territory or area. ADB Project Number: 3055-IND April 2016 IND: Uttarakhand Emergency Assistance Project Submitted by Project implementation Unit, UEAP, Kumaon Mandal Vikas Nigam limited, Nainital 1 This report has been submitted to ADB by the Project implementation Unit, UEAP, Kumaon Mandal Vikas Nigam, Nainital and is made publicly available in accordance with ADB’s public communications policy (2011). It does not necessarily reflect the views of ADB. Asian Development Bank 2 Initial Environmental Examination April 2016 INDIA: CONSTRUCTION OF FRP HUTS IN DISASTER AFFECTED DISTRICT OF KUMAON (DISTRICT BAGESHWAR) UTTARAKHAND Prepared by State Disaster Management Authority, Government of India, for the Asian Development Bank.
    [Show full text]
  • Longitudinal Distribution of the Fish Fauna in the River Ganga from Gangotri to Kanpur
    AL SCI UR EN 63 T C A E N F D O N U A N D D A E I Journal of Applied and Natural Science 5 (1): 63-68 (2013) T L I O P N P A JANS ANSF 2008 Longitudinal distribution of the fish fauna in the river Ganga from Gangotri to Kanpur Prakash Nautiyal*, Asheesh Shivam Mishra, K.R. Singh1 and Upendra Singh Aquatic Biodiversity Unit, Department of Zoology and Biotechnology, HNB Garhwal University Srinagar- 246174 (Uttarakhand), INDIA 1K.L. Degree College, Allahabad- 211002( UP), INDIA *Corresponding author. E-mail: [email protected] Received:October 1, 2012; Revised received: January 31, 2013; Accepted:February 25, 2013 Abstract: Fish fauna of the river Ganga from Gangotri to Kanpur consisted of 140 fish species from 9 orders and 25 families; 63 fish species from 6 orders and 12 families in the mountain section (MS), while 122 species from 9 orders and 25 families in the Plains section (PS) of Upper Ganga. Cypriniformes and Cyprinidae were most species rich order and family in both sections. Forty six fish species primarily Cypriniformes and Siluriformes are common to both sections, only 17 in MS and 76 in PS. Orders Tetradontiformes, Osteoglossiformes and Clupeiformes were present in PS only. The taxonomic richness in the MS was low compared to PS. Probably motility and physiological requirements in respect of tolerance for temperature restrict faunal elements. Keywords: Cyprinidae, Fish distribution, Gangetic plains, Himalaya, River continuum INTRODUCTION available on the longitudinal distribution of fish fauna in Distributional patterns of organisms are controlled by the Ganga river especially from mountain (Gangotri to dispersal mechanism, historical factors (connecting Haridwar) to upper plain section (Haridwar to Kanpur).
    [Show full text]
  • Ganga As Perceived by Some Ganga Lovers Mother Ganga's Rights Are Our Rights
    Ganga as Perceived by Some Ganga Lovers Mother Ganga’s Rights Are Our Rights Pujya Swami Chidanand Saraswati Nearly 500 million people depend every day on the Ganga and Her tributaries for life itself. Like the most loving of mothers, She has served us, nourished us and enabled us to grow as a people, without hesitation, without discrimination, without vacation for millennia. Regardless of what we have done to Her, the Ganga continues in Her steady fl ow, providing the waters that offer nourishment, livelihoods, faith and hope: the waters that represents the very life-blood of our nation. If one may think of the planet Earth as a body, its trees would be its lungs, its rivers would be its veins, and the Ganga would be its very soul. For pilgrims, Her course is a lure: From Gaumukh, where she emerges like a beacon of hope from icy glaciers, to the Prayag of Allahabad, where Mother Ganga stretches out Her glorious hands to become one with the Yamuna and Saraswati Rivers, to Ganga Sagar, where She fi nally merges with the ocean in a tender embrace. As all oceans unite together, Ganga’s reach stretches far beyond national borders. All are Her children. For perhaps a billion people, Mother Ganga is a living goddess who can elevate the soul to blissful union with the Divine. She provides benediction for infants, hope for worshipful adults, and the promise of liberation for the dying and deceased. Every year, millions come to bathe in Ganga’s waters as a holy act of worship: closing their eyes in deep prayer as they reverently enter the waters equated with Divinity itself.
    [Show full text]