Potential Role of HMGCS2 in Tumor Angiogenesis in Colorectal Cancer and Its Potential Use As a Diagnostic Marker

Total Page:16

File Type:pdf, Size:1020Kb

Potential Role of HMGCS2 in Tumor Angiogenesis in Colorectal Cancer and Its Potential Use As a Diagnostic Marker Hindawi Canadian Journal of Gastroenterology and Hepatology Volume 2019, Article ID 8348967, 8 pages https://doi.org/10.1155/2019/8348967 Research Article Potential Role of HMGCS2 in Tumor Angiogenesis in Colorectal Cancer and Its Potential Use as a Diagnostic Marker Kejian Zou,1 Yan Hu,2 Musheng Li,3 Hongli Wang,3 Yuhua Zhang,4 Ling Huang,3 Yuanwen Xie,5 Songyu Li,6 Xingui Dai,7 Wanfu Xu ,3,8 Zhiyong Ke ,9 Sitang Gong ,3,8 and Yaodong Wang 10 1 Department of General Surgery, Hainan General Hospital, Haikou 570311, China 2 Department of Anesthesiology, Hainan General Hospital, Haikou 570311, China 3 Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China 4 Department of Pediatrics, Te Ninety-Five Hospital of PLA, Putian 351164, China 5 Department of Anorectal, Qionghai Hospital of Traditional Chinese Medicine, Qionghai 571400, China 6 Department of Clinical Laboratory, Qionghai Hospital of Traditional Chinese Medicine, Qionghai 571400, China 7 Department of Critical Care Medicine, Institute of Transitional Medicine, Te First People’s Hospital of Chenzhou, Chenzhou 423000, China 8 Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China 9 Department of Cell Biology, School of Basic Medical, Southern Medical University, Guangzhou 510515, China 10Kunshan Afliated Hospital of Nanjing University of Chinese Medicine, Kunshan 215300, China Correspondence should be addressed to Wanfu Xu; [email protected], Zhiyong Ke; [email protected], Sitang Gong; [email protected], and Yaodong Wang; [email protected] Received 12 February 2019; Revised 28 March 2019; Accepted 14 April 2019; Published 1 July 2019 Academic Editor: Joseph Feuerstein Copyright © 2019 Kejian Zou et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Objective. HMGCS2 is the rate-limiting enzyme of ketogenesis, which is vital for tumor initiation or metastasis. Te aim of this study is to determine the relationship between HMGCS2 and tumor angiogenesis. Materials and Methods.Testudyconsistedof 100 cases with colorectal cancer and healthy control, the expression of HMGCS2 and the microvessel density (MVD) (marker: CD31) were analyzed by immunohistochemistry and tube formation, and the centration of �-hydroxybutyrate in serum was assessed by biochemical analysis. Results. Te results showed that HMGCS2 expression is signifcantly reduced in colorectal cancer compared with healthy control, which is inversely correlated with MVD in colorectal cancer by IHC analysis. What is more, knockdown HMGCS2 expression in HT-29 cells signifcantly contributed endothelial cell tube formation. Conclusion. Tese fndings implying HMGCS2 may have a negative regulation of tumor angiogenesis and provide an approach to inhibit tumor angiogenesis. 1. Introduction ketone body [3, 4]. Emerging evidence indicates that fun- damental diferences exist between the metabolic pathways Colorectal cancer is a characterized as a group of metabolic of normal and malignant cells [5, 6]. In contrast to normal reprogramming, an emerging hallmark of cancer cells [1], and cells, which derive most of their usable energy through immune-mediated disorders of intestinal tissue. Enhanced oxidative phosphorylation, cancer cells depend heavily on aerobic glycolysis (Warburg efect) is the main metabolic substrate phosphorylation pathways to meet energy demands characteristics of malignant tumors [2]. Accumulating evi- [1]. Te convincing evidence showed that lactate and suc- dence showed that metabolic rewiring in cancer not only is cinate, higher than normal levels in tumor cells, pro- limited to glucose metabolism, but also included lipid and mote tumor growth whereas �-hydroxybutyrate, lower than 2 Canadian Journal of Gastroenterology and Hepatology normal levels, suppresses tumor growth [7]. Interestingly, 2.2. Patients and Biopsies. Based on the declaration of the expression of the rate-limiting enzyme in the synthe- Helsinki as refected in a prior approval by the institution’s sis of �-hydroxybutyrate, 3-hydroxy-3-methyl glutaryl CoA human research committee, this study was conducted in a synthase 2 (HMGCS2), is repressed by the oncogene c- cohort of patients with colorectal cancer (CRC) in Hainan Myc [8], and SIRT3, associated with tumor suppression General Hospital approved by the Medical Ethical Review function, is responsible for the maintenance of HMGCS2 Board. A number of 100 cases (20 cases healthy control in the deacetylated state, thus keeping the enzyme in opti- vs80casesCRC)wereincludedinthisstudy;thedetailed mally active form [9]. All these fndings point to a tumor- information was supplied in Supplementary Materials Table suppressive role for �-hydroxybutyrate in colon. However, 1. Te intestinal tissue was drawn from each patient by elec- mitochondria are the sites of multiple metabolism, such as tronic colonoscopy afer we got the informed consent from pyruvate oxidation, citric acid cycle, oxidative phosphoryla- the patients diagnosed with CRC. Written informed consent tion, ketogenesis, and fatty acid oxidation, which is critical was obtained from all participants, which are not publicly role in tumorigenesis [7]. Dysfunction of mitochondrial available since the database is currently not anonymous and function is one hallmark of tumor that directly linked to contains all patient’s name; however, it could be available oncogenesis, angiogenesis, Warburg efect, and epigenet- upon request. ics. Recently, a large number of evidences showed that 2.3. Measurement of �-Hydroxybutyrate Level. Te blood was HMGCS2, a regulatory point converting acetyl-CoA to collected from the patients with colorectal cancer and ana- ketone bodies in the pathway [10, 11], enhanced invasion lyzed by biochemical analysis to detect �-hydroxybutyrate and metastasis via direct interaction with PPAR� to acti- level. vate Src signaling in colorectal cancer and oral cancer [12] and represented a potential novel prognostic biomarker for 2.4. Antibodies and Reagents. PBS and other chemical ESCC patients [13]. Expressed in liver and a number of reagents used in this study were from Sigma (St. Louis, extrahepatic tissues, like colon, HMGCS2 has also been MO, USA), HMGCS2 (E-AB-13296) was from Elabscience reported to play a crucial preventive role in several cancers, (Wuhan, China), and a-tubulin and CD31 (Abclonal, A11525) such as rectal cancer, breast cancer, and prostate cancer were purchased from Abclonal (Wuhan, China). [14–16]. What is more, a strong correlation between dis- tant metastasis in advanced CRC and tumor metabolism, 2.5. Immunohistochemistry. Slides were heated in an oven angiogenesis, and tumor vasculature is one of the pri- ∘ for 2 hours at 60 C, dewaxed, distilled with water for 2 mary targets for CRC therapy. Despite the strong research minutes, and followed by high pressure steam distillation. concerning the function of HMGCS2 in tumor, data are Afer blocking with a peroxidase in 3% H2O2 solution for lacking in the potential relationship between HMGCS2 and 10 minutes, washing 3 times with phosphate-bufered saline tumor angiogenesis. We aimed to seek evidence to eluci- (PBS) for 5 minutes, the mixture was supplemented with a date the possible relationship between HMGCS2 expres- ∘ primary antibody and incubated at 37 Cfor60minutes.Afer sion and colorectal cancer prognosis. In this study, we PBS washing in the same manner, secondary antibodies to aimed to seek evidence to elucidate the possible relationship HMGCS2 (Elabscience, E-AB-13296) and CD31 (Abclonal, between HMGCS2 and tumor angiogenesis in development ∘ A11525), respectively, were added. Afer incubation at 37 Cfor of CRC. 60 minutes in PBS, samples were washed 3 times with PBS for 5 minutes. Each section was colored by diaminobenzidine for 1 to 2 minutes. Each slice was photographed microscopically, 2. Materials and Methods and the images were analyzed by IPP6.0 image analysis 2.1. Cell Culture and siRNA Transfection. Te HT29 and sofware. HUVEC cell line was purchased from the Shanghai Insti- tute of Biological Sciences, Chinese Academy of Sciences 2.6. IHC Scoring and Microvascular Density. HMGCS2 stain- (Beijing, China), and cultured in Dulbecco’s modifed Eagle’s ing intensities with scores of 0 and 1 were defned as low medium (Termo Fisher Scientifc, Inc., Waltham, MA) expression of HMGCS2, while scores of 2 and 3 were supplemented with 10% fetal bovine serum (Termo Fisher defned as high expression. 5–8 felds of view were selected Scientifc, Inc.), Te HMGCS2-specifc siRNA was pur- and photographed from each section microvascular density chased from Genepharma (Shanghai, China) used in Hu (MVD). et.al study [17]. Te interfering sequences for HMGCS2 � wereasfollows:sense,5-GACUUCUACAAACCAAACUtt- 2.7. Tube Formation Assay by HUVEC Cocultured with HT29 � � � 3 and antisense, 5 -AGUUUGGUUUGUAGAAGUCtt-3 . Cells. Te tube formation assay was performed in pervious Te interfering sequences for nontargeting siRNA were as study [18, 19]. Briefy, tumor cells were cultured on Transwell � � follows:sense,5-UUCUUCGAACGUGUCACGUtt-3 and inserts (12 mm diameter, polycarbonate membranes with � � antisense, 5 -ACGUGACACGUUCGGAGAAtt-3 ,which 0.4 �m pores; Corning, Lowell, MA, USA). Afer 24 h the were used as the negative control. siRNA were transfected inserts
Recommended publications
  • Altered Expression and Function of Mitochondrial Я-Oxidation Enzymes
    0031-3998/01/5001-0083 PEDIATRIC RESEARCH Vol. 50, No. 1, 2001 Copyright © 2001 International Pediatric Research Foundation, Inc. Printed in U.S.A. Altered Expression and Function of Mitochondrial ␤-Oxidation Enzymes in Juvenile Intrauterine-Growth-Retarded Rat Skeletal Muscle ROBERT H. LANE, DAVID E. KELLEY, VLADIMIR H. RITOV, ANNA E. TSIRKA, AND ELISA M. GRUETZMACHER Department of Pediatrics, UCLA School of Medicine, Mattel Children’s Hospital at UCLA, Los Angeles, California 90095, U.S.A. [R.H.L.]; and Departments of Internal Medicine [D.E.K., V.H.R.] and Pediatrics [R.H.L., A.E.T., E.M.G.], University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, Pennsylvania 15213, U.S.A. ABSTRACT Uteroplacental insufficiency and subsequent intrauterine creased in IUGR skeletal muscle mitochondria, and isocitrate growth retardation (IUGR) affects postnatal metabolism. In ju- dehydrogenase activity was unchanged. Interestingly, skeletal venile rats, IUGR alters skeletal muscle mitochondrial gene muscle triglycerides were significantly increased in IUGR skel- expression and reduces mitochondrial NADϩ/NADH ratios, both etal muscle. We conclude that uteroplacental insufficiency alters of which affect ␤-oxidation flux. We therefore hypothesized that IUGR skeletal muscle mitochondrial lipid metabolism, and we gene expression and function of mitochondrial ␤-oxidation en- speculate that the changes observed in this study play a role in zymes would be altered in juvenile IUGR skeletal muscle. To test the long-term morbidity associated with IUGR. (Pediatr Res 50: this hypothesis, mRNA levels of five key mitochondrial enzymes 83–90, 2001) (carnitine palmitoyltransferase I, trifunctional protein of ␤-oxi- dation, uncoupling protein-3, isocitrate dehydrogenase, and mi- Abbreviations tochondrial malate dehydrogenase) and intramuscular triglycer- CPTI, carnitine palmitoyltransferase I ides were quantified in 21-d-old (preweaning) IUGR and control IUGR, intrauterine growth retardation rat skeletal muscle.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • ATP-Citrate Lyase Has an Essential Role in Cytosolic Acetyl-Coa Production in Arabidopsis Beth Leann Fatland Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2002 ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis Beth LeAnn Fatland Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Molecular Biology Commons, and the Plant Sciences Commons Recommended Citation Fatland, Beth LeAnn, "ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis " (2002). Retrospective Theses and Dissertations. 1218. https://lib.dr.iastate.edu/rtd/1218 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. ATP-citrate lyase has an essential role in cytosolic acetyl-CoA production in Arabidopsis by Beth LeAnn Fatland A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Plant Physiology Program of Study Committee: Eve Syrkin Wurtele (Major Professor) James Colbert Harry Homer Basil Nikolau Martin Spalding Iowa State University Ames, Iowa 2002 UMI Number: 3158393 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Supplementary Materials
    1 Supplementary Materials: Supplemental Figure 1. Gene expression profiles of kidneys in the Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice. (A) A heat map of microarray data show the genes that significantly changed up to 2 fold compared between Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice (N=4 mice per group; p<0.05). Data show in log2 (sample/wild-type). 2 Supplemental Figure 2. Sting signaling is essential for immuno-phenotypes of the Fcgr2b-/-lupus mice. (A-C) Flow cytometry analysis of splenocytes isolated from wild-type, Fcgr2b-/- and Fcgr2b-/-. Stinggt/gt mice at the age of 6-7 months (N= 13-14 per group). Data shown in the percentage of (A) CD4+ ICOS+ cells, (B) B220+ I-Ab+ cells and (C) CD138+ cells. Data show as mean ± SEM (*p < 0.05, **p<0.01 and ***p<0.001). 3 Supplemental Figure 3. Phenotypes of Sting activated dendritic cells. (A) Representative of western blot analysis from immunoprecipitation with Sting of Fcgr2b-/- mice (N= 4). The band was shown in STING protein of activated BMDC with DMXAA at 0, 3 and 6 hr. and phosphorylation of STING at Ser357. (B) Mass spectra of phosphorylation of STING at Ser357 of activated BMDC from Fcgr2b-/- mice after stimulated with DMXAA for 3 hour and followed by immunoprecipitation with STING. (C) Sting-activated BMDC were co-cultured with LYN inhibitor PP2 and analyzed by flow cytometry, which showed the mean fluorescence intensity (MFI) of IAb expressing DC (N = 3 mice per group). 4 Supplemental Table 1. Lists of up and down of regulated proteins Accession No.
    [Show full text]
  • Fatty Acid Biosynthesis
    BI/CH 422/622 ANABOLISM OUTLINE: Photosynthesis Carbon Assimilation – Calvin Cycle Carbohydrate Biosynthesis in Animals Gluconeogenesis Glycogen Synthesis Pentose-Phosphate Pathway Regulation of Carbohydrate Metabolism Anaplerotic reactions Biosynthesis of Fatty Acids and Lipids Fatty Acids contrasts Diversification of fatty acids location & transport Eicosanoids Synthesis Prostaglandins and Thromboxane acetyl-CoA carboxylase Triacylglycerides fatty acid synthase ACP priming Membrane lipids 4 steps Glycerophospholipids Control of fatty acid metabolism Sphingolipids Isoprene lipids: Cholesterol ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1 ANABOLISM II: Biosynthesis of Fatty Acids & Lipids 1. Biosynthesis of fatty acids 2. Regulation of fatty acid degradation and synthesis 3. Assembly of fatty acids into triacylglycerol and phospholipids 4. Metabolism of isoprenes a. Ketone bodies and Isoprene biosynthesis b. Isoprene polymerization i. Cholesterol ii. Steroids & other molecules iii. Regulation iv. Role of cholesterol in human disease ANABOLISM II: Biosynthesis of Fatty Acids & Lipids Lipid Fat Biosynthesis Catabolism Fatty Acid Fatty Acid Degradation Synthesis Ketone body Isoprene Utilization Biosynthesis 2 Catabolism Fatty Acid Biosynthesis Anabolism • Contrast with Sugars – Lipids have have hydro-carbons not carbo-hydrates – more reduced=more energy – Long-term storage vs short-term storage – Lipids are essential for structure in ALL organisms: membrane phospholipids • Catabolism of fatty acids –produces acetyl-CoA –produces reducing
    [Show full text]
  • Lipid Metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives
    cancers Review Lipid metabolic Reprogramming: Role in Melanoma Progression and Therapeutic Perspectives 1, 1, 1 2 1 Laurence Pellerin y, Lorry Carrié y , Carine Dufau , Laurence Nieto , Bruno Ségui , 1,3 1, , 1, , Thierry Levade , Joëlle Riond * z and Nathalie Andrieu-Abadie * z 1 Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, tgrCS 53717, 31037 Toulouse CEDEX 1, France; [email protected] (L.P.); [email protected] (L.C.); [email protected] (C.D.); [email protected] (B.S.); [email protected] (T.L.) 2 Institut de Pharmacologie et de Biologie Structurale, CNRS, Université Toulouse III Paul-Sabatier, UMR 5089, 205 Route de Narbonne, 31400 Toulouse, France; [email protected] 3 Laboratoire de Biochimie Métabolique, CHU Toulouse, 31059 Toulouse, France * Correspondence: [email protected] (J.R.); [email protected] (N.A.-A.); Tel.: +33-582-7416-20 (J.R.) These authors contributed equally to this work. y These authors jointly supervised this work. z Received: 15 September 2020; Accepted: 23 October 2020; Published: 27 October 2020 Simple Summary: Melanoma is a devastating skin cancer characterized by an impressive metabolic plasticity. Melanoma cells are able to adapt to the tumor microenvironment by using a variety of fuels that contribute to tumor growth and progression. In this review, the authors summarize the contribution of the lipid metabolic network in melanoma plasticity and aggressiveness, with a particular attention to specific lipid classes such as glycerophospholipids, sphingolipids, sterols and eicosanoids.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • New Mechanisms That Regulate the Expression of Genes Implicated in the Process of Ketogenesis
    Isabel Alexandra Pinto Carrilho do Rosário Licenciatura em Bioquímica New mechanisms that regulate the expression of genes implicated in the process of ketogenesis Dissertação para obtenção do Grau de Mestre em Biotecnologia Orientador: Prof. Dr. Pedro F. Marrero González, Prof. Titular, Facultat de Farmàcia, Universitat de Barcelona Co-orientador: Prof. Dr. Diego Haro Bautista, Prof. Catedrático, Facultat de Farmàcia, Universitat de Barcelona Presidente: Prof. Doutora Isabel Maria Godinho de Sá Nogueira Arguente: Prof. Doutor Pedro Miguel Ribeiro Viana Baptista Setembro, 2012 Isabel Alexandra Pinto Carrilho do Rosário Licenciatura em Bioquímica New mechanisms that regulate the expression of genes implicated in the process of ketogenesis Dissertação para obtenção do Grau de Mestre em Biotecnologia Orientador: Prof. Dr. Pedro F. Marrero González, Prof. Titular, Facultat de Farmàcia, Universitat de Barcelona Co-orientador: Prof. Dr. Diego Haro Bautista, Prof. Catedrático, Facultat de Farmàcia, Universitat de Barcelona Setembro, 2012 Copyright New mechanisms that regulate the expression of genes implicated in the process of ketogenesis © Isabel Alexandra Pinto Carrilho do Rosário FCT/UNL UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição, com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. i ii Ninguém sabe que coisa quer. Ninguém conhece que alma tem, Nem o que é mal nem o que o bem.
    [Show full text]
  • Murine Neonatal Ketogenesis Preserves Mitochondrial Energetics by Preventing Protein Hyperacetylation
    ARTICLES https://doi.org/10.1038/s42255-021-00342-6 Murine neonatal ketogenesis preserves mitochondrial energetics by preventing protein hyperacetylation Yuichiro Arima 1,2,13 ✉ , Yoshiko Nakagawa3,13, Toru Takeo 3,13, Toshifumi Ishida 1, Toshihiro Yamada1, Shinjiro Hino4, Mitsuyoshi Nakao4, Sanshiro Hanada 2, Terumasa Umemoto 2, Toshio Suda2, Tetsushi Sakuma 5, Takashi Yamamoto5, Takehisa Watanabe6, Katsuya Nagaoka6, Yasuhito Tanaka6, Yumiko K. Kawamura7,8, Kazuo Tonami7, Hiroki Kurihara7, Yoshifumi Sato9, Kazuya Yamagata9,10, Taishi Nakamura 1,11, Satoshi Araki1, Eiichiro Yamamoto1, Yasuhiro Izumiya1,12, Kenji Sakamoto1, Koichi Kaikita1, Kenichi Matsushita 1, Koichi Nishiyama2, Naomi Nakagata3 and Kenichi Tsujita1,10 Ketone bodies are generated in the liver and allow for the maintenance of systemic caloric and energy homeostasis during fasting and caloric restriction. It has previously been demonstrated that neonatal ketogenesis is activated independently of starvation. However, the role of ketogenesis during the perinatal period remains unclear. Here, we show that neonatal ketogen- esis plays a protective role in mitochondrial function. We generated a mouse model of insufficient ketogenesis by disrupting the rate-limiting hydroxymethylglutaryl-CoA synthase 2 enzyme gene (Hmgcs2). Hmgcs2 knockout (KO) neonates develop microvesicular steatosis within a few days of birth. Electron microscopic analysis and metabolite profiling indicate a restricted energy production capacity and accumulation of acetyl-CoA in Hmgcs2 KO mice. Furthermore,
    [Show full text]
  • Dissertation
    Mechanism and dynamics of acyl-CoA mediated protein lysine acylation in mitochondria Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät I – Biowissenschaften – der Martin-Luther-Universität Halle Wittenberg, vorgelegt von Herrn Zeljko Simic geb. am 04.02.1982 in Bajina Basta Gutachter: Prof. Dr. Mike Schutkowski Prof. Dr. Wolfgang Sippl Prof. Dr. Dirk Schwarzer Tag der öffentlichen Verteidigung: 13.10.2016 Table of contents Abbreviations list ....................................................................................................................................... iv List of figures ............................................................................................................................................ viii List of tables ............................................................................................................................................... xi Introduction .................................................................................................................................................. 1 Lysine acetylation ................................................................................................................................... 1 Protein lysine acetylation in mitochondria .......................................................................................... 3 Induction of mitochondrial protein hyperacetylation .......................................................................... 5
    [Show full text]
  • Ketogenesis Prevents Diet-Induced Fatty Liver Injury and Hyperglycemia David G
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2014 Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia David G. Cotter Washington University School of Medicine in St. Louis Baris Ercal Washington University School of Medicine in St. Louis Xiaojing Huang Washington University School of Medicine in St. Louis Jamison M. Leid Washington University School of Medicine in St. Louis Andre d'Avignon Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Cotter, David G.; Ercal, Baris; Huang, Xiaojing; Leid, Jamison M.; d'Avignon, Andre; Graham, Mark J.; Dietzen, Dennis J.; Brunt, Elizabeth M.; Patti, Gary J.; and Crawford, Peter A., ,"Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia." The Journal of Clinical Investigation.124,12. 5175-5190. (2014). https://digitalcommons.wustl.edu/open_access_pubs/3617 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors David G. Cotter, Baris Ercal, Xiaojing Huang, Jamison M. Leid, Andre d'Avignon, Mark J. Graham, Dennis J. Dietzen, Elizabeth M. Brunt, Gary J. Patti, and Peter A. Crawford This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3617 Downloaded from http://www.jci.org on January 7, 2015. http://dx.doi.org/10.1172/JCI76388 The Journal of Clinical Investigation RESEARCH ARTICLE Ketogenesis prevents diet-induced fatty liver injury and hyperglycemia David G.
    [Show full text]
  • MULTIPLE ENZYME COMPLEXES Dr. Tijani A. S
    MULTIPLE ENZYME COMPLEXES Dr. Tijani A. S. Learning objectives This topic exposes the students to: Multienzyme complexes and where they are found Give examples of multienzyme complexes Composition of some multienzyme complexes Their mechanisms of actions Multienzyme Complex In a number of metabolic pathways, several enzymes which catalyze different stages of the process have been found to be associated non-covalently, giving a multienzyme complex. The proximity of the different types of enzymes increases the efficiency of the pathway; The overall reaction rate is increased with respect to catalysis by unassociated units, and Side reactions are minimized. In some cases molecular mechanisms have been identified for the transfer of metabolites from one enzyme to the next within the complex. Multienzyme complex is the structural and functional entity that is formed by the association of several different enzymes which catalyze a sequence of closely related reactions. A multi enzyme complex is a protein possessing more than one catalytic domain contributed by distinct parts of a polypeptide chain or by distinct subunits. The regulation of this enzyme complex illustrates how a combination of covalent modification and allosteric regulation results in specific regulated flux through a metabolic step. Multienzyme Complex Examples include: (1) Pyruvate dehydrogenase complex (PDHC) (2) Pyruvate carboxylase (3) Fatty acid synthase Pyruvate Dehydrogenase Complex (PDHC) This multienzyme complex contains: 3 enzyme subunits and 5 coenzymes and other proteins. The pyruvate dehydrogenase complex catalyzes the oxidative decarboxylation of pyruvate to acetyl CoA. It is an organized assembly of 3 different catalytic subunits of this complex enzyme. The reaction catalyzed is summarized thus, Pyruvate + CoASH + NAD+ → CO₂ + Acetyl CoA + NADH + H+ It has coenzymes namely, CoA, lipoamide, NAD, thiamine PPO₄ and FAD.
    [Show full text]