Anti-Robo4 Antibodies and Uses Therefor

Total Page:16

File Type:pdf, Size:1020Kb

Anti-Robo4 Antibodies and Uses Therefor (19) TZZ T (11) EP 2 468 776 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 27.06.2012 Bulletin 2012/26 C07K 16/30 (2006.01) A61K 39/395 (2006.01) A61P 35/00 (2006.01) C07K 16/28 (2006.01) (21) Application number: 11195237.0 (22) Date of filing: 08.02.2008 (84) Designated Contracting States: • Koch, Alexander W. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Millbrae, CA 94030 (US) HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT • Wu, Yan RO SE SI SK TR Foster City, CA 94404 (US) Designated Extension States: • Stawicki, Scott AL BA MK RS San Francisco, CA 94105 (US) • Carano, Richard (30) Priority: 09.02.2007 US 88921407 P San Ramon, CA 94583 (US) 23.02.2007 US 89147507 P (74) Representative: Woolley, Lindsey Claire et al (62) Document number(s) of the earlier application(s) in Mewburn Ellis LLP accordance with Art. 76 EPC: 33 Gutter Lane 08729348.6 / 2 125 896 London EC2V 8AS (GB) (71) Applicant: Genentech, Inc. South San Francisco, CA 94080 (US) Remarks: •This application was filed on 22-12-2011 as a (72) Inventors: divisional application to the application mentioned • Peale, Jr. Franklin V. under INID code 62. San Carlos, CA 94070 (US) •Claims filed after the date of filing of the application • Watts, Ryan J. / after the date of receipt of the divisional application San Mateo, CA 94402 (US) (Rule 68(4) EPC). (54) Anti-Robo4 antibodies and uses therefor (57) The invention provides anti-Robo4 antibodies, ods of using these antibodies, including diagnostic and and compositions comprising the antibodies and meth- therapeutic methods. EP 2 468 776 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 468 776 A2 Description RELATED APPLICATIONS 5 [0001] This application claims the benefit of U.S. Provisional Patent Applications Nos. 60/889,214, filed February 9, 2007 and 60/891,475, filed February 23, 2007, the disclosures of which are hereby incorporated by reference in their entirety for all purposes. FIELD OF THE INVENTION 10 [0002] The present invention relates generally to the fields of angiogenesis, and endothelial cell proliferation and migration. More specifically, the invention concerns modulators of Robo4, and uses of such modulators. BACKGROUND OF THE INVENTION 15 [0003] The Roundabout family of receptors are molecular guidance molecules which regulate axon guidance, neuronal migration and leukocyte chemotaxis in reponse to interaction with Slit proteins (Suchting et al., FASEB J. 19:121-123 (2005)). Roundabout receptor molecules contain five immunoglobulin and three fibronectin domains in their extracellular region. Magic Roundabout (i.e., Robo4 or endothelial cell-specific molecule 4 (ESCSM4)) is structurally distinct from 20 other roundabout family members. Human Magic Roundabout (Robo4) comprises two immunoglobulin and major his- tocompatibility complex domains (amino acids 46-116 and 151-209), two fibronectin type III domains (amino acids 252-335 and 347-432), a transmembrane region (468-490), and a proline rich region (amino acids 715-772) (see Hu- miniecki et al., Genomics 79(4):547-552 (2002), and Figure 1 therein). Mouse and human Robo4 show 75% nucleotide sequence identity (Huminiecki et al., supra (2002)). 25 [0004] Robo4 expression analysis indicated that Robo4 expression is highly restricted, with strong expression in placenta and tumors including brain, bladder, and colonic metastasis to the liver, where tumor expression is restricted to tumor vasculature (Huminiecki et al., supra (2002)). In addition, Robo4 expression is associated with sites of active angiogenesis, but is not detected in neuronal tissue (Huminiecki, L. et al., supra (2002)). [0005] As a membrane associated receptor with extracellular domains, Robo4 is a useful target for delivering cytotoxic 30 therapeutics for inhibition of vascular endothelial cell proliferation during angiogenesis. Robo4 is also a useful target to delivery of detectable markers to proliferating vascular endothelial cells. Antibody conjugates targeted to Robo4 (also referred to as ECSM4) have also been reported as potential therapeutic compounds where the conjugate comprises a cytotoxin and as potential diagnostic markers where the conjugate comprises a detectable label (see, for example, WO 2002036771). 35 [0006] The use of antibody-drug conjugates for the local delivery of cytotoxic or cytostatic agents, i.e. drugs to kill or inhibit tumor cells in the treatment of cancer (Syrigos and Epenetos, Anticancer Res. 19:605-614 (1999); Niculescu- Duvaz and Springer, Adv. Drg Del. Rev. 26:151-172 (1997); U.S. Patent No. 4,975,278) allows targeted delivery of the drug moiety to tumors, and intracellular accumulation of the drugs. [0007] A number of antibody-drug conjugates that target other molecules have been or are being developed. For 40 example, ZEVALIN® (ibritumomab tiuxetan, Biogen/Idec) is an antibody-radioisotope conjugate composed of a murine IgG1 kappa monoclonal antibody directed against the CD20 antigen found on the surface of normal and malignant B lymphocytes and 111In or 90Y radioisotope bound by a thiourea linker-chelator (Wiseman et al., Eur. Jour. Nucl. Med. 27(7):766-77 (2000); Wiseman et al. Blood 99(12):4336-42 (2002); Witzig et al., J. Clin. Oncol. 20(10):2453-63 (2002); Witzig et al., J. Clin. Oncol. 20(15):3262-69 (2002)). Although ZEVALIN has activity against B-cell non-Hodgkin’s Lym- 45 phoma (NHL), administration results in severe and prolonged cytopenias in most patients. MYLOTARG™ (gemtuzumab ozogamicin, Wyeth Pharmaceuticals), composed of a huCD33 antibody linked to calicheamicin, was approved in 2000 for the treatment of acute myeloid leukemia by injection (Drugs of the Future (2000) 25(7):686; U.S. Patent Nos. 4,970,198; 5,079,233; 5,585,089; 5,606,040; 5,693,762; 5,739,116; 5,767,285; 5,773,001). Cantuzumab mertansine (Immunogen, Inc.), composed of a huC242 antibody linked via the disulfide linker SPP to the maytansinoid drug moiety, DM1, is being 50 developed for the treatment of cancers that express CanAg antigen, such as colon, pancreatic, gastric, and others. MLN-2704 (Millennium Pharm., BZL Biologics, Immunogen Inc.), composed of an anti-prostate specific membrane antigen (PSMA) monoclonal antibody linked to the maytansinoid drug moiety, DM1, is being developed for the potential treatment of prostate tumors. The same maytansinoid drug moiety, DM1, was linked through a non-disulfide noncleavable linker, SMCC, to a mouse murine monoclonal antibody, TA.1 (Chari et al., Cancer Res. 52:127-131 (1992)). This conjugate 55 was reported to be 200-fold less potent than the corresponding disulfide linker conjugate. [0008] The auristatin peptides, auristain E (AE) and monomethylauristatin (MMAE), synthetic analogs of dolastatin, have been conjugated to: (i) cBR96, a chimeric monoclonal antibody specific for Lewis Y on carcinomas; (ii) cAC10 which is specific to CD30 on hematological malignancies (Klussman et al., Bioconjugate Chemistry 15(4):765-773 (2004); 2 EP 2 468 776 A2 Doronina et al. Nature Biotech. 21(7):778-784 (2003); Francisco et al. Blood 102(4):1458-1465 (2003); U.S. Patent Publication No. 2004/0018194; (iii) anti-CD20 antibodies such as Rituxan® (rituximab) (WO 04/032828) for the treatment of CD20-expressing cancers and immune disorders; (iv) anti-EphB2 antibodies 2H9 and anti-IL-8 for treatment of color- ectal cancer (Mao et al. Cancer Res. 64(3):781-788 (2004)); (v) E-selectin antibody (Bhaskar et al. Cancer Res. 63: 5 6387-6394 (2003)); and (vi) other anti-CD30 antibodies (WO 03/043583). Monomethylauristatin (MMAE) has also been conjugated to 2H9, an antibody against EphB2R which is a type 1 TM tyrosine kinase receptor with close homology between mouse and human, and is over-expressed in colorectal cancer cells (Mao et al., Cancer Res. 64:781-788 (2004)). [0009] Monomethylauristatin MMAF, a variant of auristatin E (MMAE) with a phenylalanine at the C-terminus (U.S. Patent Nos. 5,767,237 and 6,124,431), has been reported to be less potent than MMAE, but more potent when conjugated 10 to monoclonal antibodies (Senter et al, Proceedings of the American Association for Cancer Research, Volume 45, Abstract Number 623, presented March 28, 2004). Auristatin F phenylene diamine (AFP); a phenylalanine variant of MMAE was linked to an anti-CD70 mAb, 1F6, through the C-terminus of 1F6 via a phenylene diamine spacer (Law et al, Proceedings of the American Association for Cancer Research, Volume 45, Abstract Number 625, presented March 28, 2004). 15 [0010] There exists a need in the art for additional drugs to treat diseases and disorders associated angiogenesis including, e.g., aberrant angiogenesis associated with cancers dependent on the growth and proliferation of vasculature of endothelial origin. There also exists a need in the art for additional endothelial cell-targeted anti-Robo4 antibody-drug conjugates for the detection and visualization of blood vessel growth and proliferation in, for example, cancers or ocular disorders supported or caused by excess proliferation of blood vessels, as well as in disorders or other physiological 20 states in which monitoring blood vessel growth is useful in understanding or treating the physiological state. The present invention meets these and other needs. SUMMARY OF THE INVENTION 25 [0011] The invention provides antibodies that specifically bind to Robo4 (including, e.g., primate and/or rodent Robo4, such as human and/or mouse Robo4) and diagnostic and therapeutic methods using such antibodies. In some embod- iments, the antibodies are humanized or human. In some embodiments, the antibody is selected from the group consisting of: an intact antibody, an antibody variant, and antibody derivative, a Fab, a Fab’, a (Fab’)2, and an Fv. In one embodiment, the invention provides an anti-Robo4 antibody having affinity and specificity for human Robo4 and, optionally, murine 30 Robo4, the antibody comprising, consisting of or consisting essentially of hypervariable regions (HVRs) of a light chain and heavy chain variable domain sequence as depicted in Figures 1A, 1B, 2A, and 2B (SEQ ID NOS:1-8, 17-71).
Recommended publications
  • Cloning and Functional Studies of a Novel Gene Aberrantly Expressed in RB-Deficient Embryos
    Developmental Biology 207, 62–75 (1999) Article ID dbio.1998.9141, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cloning and Functional Studies of a Novel Gene Aberrantly Expressed in RB-Deficient Embryos Shyng-Shiou F. Yuan,* Laura A. Cox,*,1 Gopal K. Dasika,* and Eva Y.-H. P. Lee*,2 *Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245 The tumor suppressor RB regulates diverse cellular processes such as G1/S transition, cell differentiation, and cell survival. Indeed, Rb-knockout mice exhibit phenotypes including ectopic mitosis, defective differentiation, and extensive apoptosis in the neurons. Using differential display, a novel gene, Rig-1, was isolated based on its elevated expression in the hindbrain and spinal cord of Rb-knockout embryos. The longest open reading frame of Rig-1 encoded a polypeptide that consists of a putative extracellular segment with five immunoglobulin-like domains and three fibronectin III-like domains, a putative transmembrane domain, and a distinct intracellular segment. The Rig-1 sequence was 40% identical to the recently identified roundabout protein. Consistent with the predicted transmembrane nature of the protein, Rig-1 protein was present in the membranous fraction. Antisera raised against the putative extracellular and intracellular segments of Rig-1 reacted with an ;210-kDa protein in mouse embryonic CNS. Rig-1 mRNA was transiently expressed in the embryonic hindbrain and spinal cord. Elevated levels of Rig-1 mRNA and protein were found in Rb2/2 embryos.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Robo4 Is a Vascular-Specific Receptor That Inhibits
    Available online at www.sciencedirect.com R Developmental Biology 261 (2003) 251–267 www.elsevier.com/locate/ydbio Robo4 is a vascular-specific receptor that inhibits endothelial migration Kye Won Park,a,b Clayton M. Morrison,a Lise K. Sorensen,a Christopher A. Jones,a,b Yi Rao,c Chi-Bin Chien,d Jane Y. Wu,e Lisa D. Urness,f and Dean Y. Lia,b,f,* a Program in Human Molecular Biology and Genetics, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA b Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA c Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA d Department of Anatomy and Neurobiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA e Departments of Pediatrics and Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, MO 63110, USA f Division of Cardiology, School of Medicine, University of Utah, Salt Lake City, UT 84112, USA Received for publication 4 December 2002, revised 17 April 2003, accepted 23 April 2003 Abstract Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Molecular Discrimination of Cutaneous Squamous Cell Carcinoma from Actinic Keratosis and Normal Skin
    Modern Pathology (2011) 24, 963–973 & 2011 USCAP, Inc. All rights reserved 0893-3952/11 $32.00 963 Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin Seong Hui Ra, Xinmin Li and Scott Binder Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA Actinic keratosis is widely believed to be a neoplastic lesion and a precursor to invasive squamous cell carcinoma. However, there has been some debate as to whether actinic keratosis is in fact actually squamous cell carcinoma and should be treated as such. As the clinical management and prognosis of patients is widely held to be different for each of these lesions, our goal was to identify unique gene signatures using DNA microarrays to discriminate among normal skin, actinic keratosis, and squamous cell carcinoma, and examine the molecular pathways of carcinogenesis involved in the progression from normal skin to squamous cell carcinoma. Formalin-fixed and paraffin-embedded blocks of skin: five normal skins (pooled), six actinic keratoses, and six squamous cell carcinomas were retrieved. The RNA was extracted and amplified. The labeled targets were hybridized to the Affymetrix human U133plus2.0 array and the acquisition and initial quantification of array images were performed using the GCOS (Affymetrix). The subsequent data analyses were performed using DNA-Chip Analyzer and Partek Genomic Suite 6.4. Significant differential gene expression (42 fold change, Po0.05) was seen with 382 differentially expressed genes between squamous cell carcinoma and normal skin, 423 differentially expressed genes between actinic keratosis and normal skin, and 9 differentially expressed genes between actinic keratosis and squamous cell carcinoma.
    [Show full text]
  • Genome-Wide Linkage Analysis of Human Auditory Cortical Activation Suggests Distinct Loci on Chromosomes 2, 3, and 8
    The Journal of Neuroscience, October 17, 2012 • 32(42):14511–14518 • 14511 Behavioral/Systems/Cognitive Genome-Wide Linkage Analysis of Human Auditory Cortical Activation Suggests Distinct Loci on Chromosomes 2, 3, and 8 Hanna Renvall,1* Elina Salmela,2,3* Minna Vihla,1 Mia Illman,1 Eira Leinonen,2,3 Juha Kere,2,3,4 and Riitta Salmelin1 1Brain Research Unit and MEG Core, O.V. Lounasmaa Laboratory, Aalto University, FI-00076 Aalto, Finland, 2Department of Medical Genetics, Haartman Institute, and Research Programs Unit, Molecular Medicine, University of Helsinki, FI-00014 Helsinki, Finland, 3Folkha¨lsan Institute of Genetics, FI-00014 Helsinki, Finland, and 4Department of Biosciences and Nutrition, and Science for Life Laboratory, Karolinska Institute, SE-14183 Stockholm, Sweden Neural processes are explored through macroscopic neuroimaging and microscopic molecular measures, but the two levels remain primarily detached. The identification of direct links between the levels would facilitate use of imaging signals as probes of genetic function and, vice versa, access to molecular correlates of imaging measures. Neuroimaging patterns have been mapped for a few isolated genes,chosenbasedontheirconnectionwithaclinicaldisorder.Hereweproposeanapproachthatallowsanunrestricteddiscoveryofthe genetic basis of a neuroimaging phenotype in the normal human brain. The essential components are a subject population that is composed of relatives and selection of a neuroimaging phenotype that is reproducible within an individual and similar between relatives but markedly variable across a population. Our present combined magnetoencephalography and genome-wide linkage study in 212 healthy siblings demonstrates that auditory cortical activation strength is highly heritable and, specifically in the right hemisphere, regulatedoligogenicallywithlinkagestochromosomes2q37,3p12,and8q24.TheidentifiedregionsdelimitascandidategenesTRAPPC9, operating in neuronal differentiation, and ROBO1, regulating projections of thalamocortical axons.
    [Show full text]
  • USP33 Mediates Slitrobo Signaling in Inhibiting Colorectal Cancer Cell
    IJC International Journal of Cancer USP33 mediates Slit-Robo signaling in inhibiting colorectal cancer cell migration Zhaohui Huang1,2, Pushuai Wen3, Ruirui Kong3, Haipeng Cheng2, Binbin Zhang1, Cao Quan1, Zehua Bian1, Mengmeng Chen3, Zhenfeng Zhang4, Xiaoping Chen2, Xiang Du5, Jianghong Liu3, Li Zhu3, Kazuo Fushimi2, Dong Hua1 and Jane Y. Wu2,3 1 Wuxi Oncology Institute, the Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China 2 Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 3 State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China 4 State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China 5 Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China Originally discovered in neuronal guidance, the Slit-Robo pathway is emerging as an important player in human cancers. How- ever, its involvement and mechanism in colorectal cancer (CRC) remains to be elucidated. Here, we report that Slit2 expression is reduced in CRC tissues compared with adjacent noncancerous tissues. Extensive promoter hypermethylation of the Slit2 gene has been observed in CRC cells, which provides a mechanistic explanation for the Slit2 downregulation in CRC. Func- tional studies showed that Slit2 inhibits CRC cell migration in a Robo-dependent manner. Robo-interacting ubiquitin-specific protease 33 (USP33) is required for the inhibitory function of Slit2 on CRC cell migration by deubiquitinating and stabilizing Robo1. USP33 expression is downregulated in CRC samples, and reduced USP33 mRNA levels are correlated with increased tumor grade, lymph node metastasis and poor patient survival.
    [Show full text]
  • Mir‑218 Functions As a Tumor Suppressor Gene in Cervical Cancer
    MOLECULAR MEDICINE REPORTS 21: 209-219, 2020 miR‑218 functions as a tumor suppressor gene in cervical cancer ZHEN LIU1, LIN MAO2, LINLIN WANG1, HONG ZHANG2 and XIAOXIA HU1 1Department of Gynecology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021; 2Department of Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China Received October 23, 2018; Accepted April 12, 2019 DOI: 10.3892/mmr.2019.10809 Abstract. Previous microRNA (miR) microarray analysis in regulating cell proliferation, adhesion and migration, and revealed that miR‑218 is downregulated in cervical cancer the cell cycle. In conclusion, the findings of the present study tissues. The present study aimed to further evaluate the suggested that miR‑218 may possess antitumor activities in expression of miR‑218 in cervical cancer specimens, deter- cervical cancer. mine the association between its expression with disease progression, and investigate the roles of miR‑218 in cervical Introduction cancer cells. Tissue specimens were obtained from 80 patients with cervical squamous cell carcinoma, 30 patients with Cervical cancer remains a significant global health problem, high-grade cervical intraepithelial neoplasia [(CIN) II/III] and particularly in developing countries, where cervical cancer is 15 patients with low-grade CIN (CINI); in addition, 60 plasma a leading cause of cancer-associated death in women (1). The samples were obtained from patients with cervical cancer, and risk factors for cervical cancer development primarily include 15 normal cervical tissue specimens and 30 plasma samples human papillomavirus (HPV) infection (accounting for ~90% were obtained from healthy women. These samples were used of cervical cancer cases), tobacco smoking, long-term use of for analysis of miR‑218 expression via reverse transcription‑­ oral contraceptives, multiple pregnancies, and genetic and quantitative PCR.
    [Show full text]
  • In Vivo Functional Analysis of Drosophila Robo1 Fibronectin Type-III Repeats
    INVESTIGATION In Vivo Functional Analysis of Drosophila Robo1 Fibronectin Type-III Repeats Haley E. Brown, Marie C. Reichert,1 and Timothy A. Evans2 Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701 ORCID ID: 0000-0002-2756-8064 (T.A.E.) ABSTRACT The repellant ligand Slit and its Roundabout (Robo) family receptors regulate midline crossing of KEYWORDS axons during development of the embryonic central nervous system (CNS). Slit proteins are produced at the Drosophila midline and signal through Robo receptors to repel axons from the midline. Disruption of Slit-Robo signaling Slit causes ectopic midline-crossing phenotypes in the CNS of a broad range of animals, including insects and Robo vertebrates. While previous studies have investigated the roles of Drosophila melanogaster Robo1’s five axon guidance Immunoglobulin-like (Ig) domains, little is known about the importance of the three evolutionarily conserved midline crossing Fibronectin (Fn) type-III repeats. We have individually deleted each of Drosophila Robo1’s three Fn repeats, fibronectin type-III and then tested these Robo1 variants in vitro to determine their ability to bind Slit in cultured Drosophila cells repeat and in vivo to investigate the requirement for each domain in regulating Robo1’sembryonicexpression pattern, axonal localization, midline repulsive function, and sensitivity to Commissureless (Comm) downregu- lation. We demonstrate that the Fn repeats are not required for Robo1 to bind Slit or for proper expression of Robo1 in Drosophila embryonic neurons. When expressed in a robo1 mutant background, these variants are able to restore midline repulsion to an extent equivalent to full-length Robo1. We identify a novel requirement for Fn3 in the exclusion of Robo1 from commissures and downregulation of Robo1 by Comm.
    [Show full text]
  • The Functional and Structural Analysis of Drosophila Robo2 in Axon Guidance
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2019 The Functional and Structural Analysis of Drosophila robo2 in Axon Guidance LaFreda Janae Howard University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Cell Biology Commons, Computational Biology Commons, Genetics Commons, and the Molecular and Cellular Neuroscience Commons Recommended Citation Howard, LaFreda Janae, "The Functional and Structural Analysis of Drosophila robo2 in Axon Guidance" (2019). Theses and Dissertations. 3379. https://scholarworks.uark.edu/etd/3379 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. The Functional and Structural Analysis of Drosophila robo2 in Axon Guidance A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cell and Molecular Biology by LaFreda Janae Howard Fort Valley State University Bachelor of Science in Biology, 2014 August 2019 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Timothy A. Evans, Ph.D. Dissertation Advisor Jeffrey Lewis, Ph.D. Ines Pinto, Ph.D. Committee Member Committee Member Michael Lehmann, Ph.D. Paul Adams, Ph.D. Committee Member Committee Member ABSTRACT In animals with complex nervous systems such as mammals and insects, signaling pathways are responsible for guiding axons to their appropriate synaptic targets. Importantly, when this process is not successful during the development of an organism, outcomes include catastrophes such as human neurological diseases and disorders.
    [Show full text]
  • Investigation of the Regulation of Roundabout4 by Hypoxia-Inducible Factor-1A in Microvascular Endothelial Cells
    Retina Investigation of the Regulation of Roundabout4 by Hypoxia-Inducible Factor-1a in Microvascular Endothelial Cells Rui Tian,1 Zaoxia Liu,1 Hui Zhang,1 Xuexun Fang,2 Chenguang Wang,1 Shounan Qi,1 Yan Cheng,1 and Guanfang Su1 1Department of Ophthalmology, Second Hospital of Jilin University, Changchun, Jilin, China 2School of Life Science, Jilin University, Changchun, China Correspondence: Guanfang Su, De- PURPOSE. We determined if hypoxia-inducible factor-1a (HIF-1a) and Roundabout4 (Robo4) partment of Ophthalmology, Second colocalized in fibrovascular membranes (FVM) from patients with proliferative diabetic Hospital of Jilin University, 218 retinopathy (PDR), and investigated the regulation of HIF-1a on Robo4 in microvascular Ziqiang Street, Changchun, Jilin, endothelial cells under normoxic and hypoxic conditions in vitro. 130021, China; [email protected]. METHODS. Immunofluorescence and confocal laser scanning microscopy were done to analyze Submitted: March 21, 2014 the colocalization of HIF-1a and Robo4 in the FVM. Expression of HIF-1a was knocked down Accepted: February 27, 2015 by small interfering RNA (siRNA) technology to study its effects on Robo4 expression of human retinal endothelial cells (HREC) and human dermal microvascular endothelial cells Citation: Tian R, Liu Z, Zhang H, et al. (HDMEC) under normoxic and/or hypoxic conditions. Full-length human a gene was Investigation of the regulation of HIF-1 Roundabout4 by hypoxia-inducible transfected into HREC and HDMEC using GFP lentivirus vectors to overexpress HIF-1a under factor-1a in microvascular endothelial normoxic conditions. The HIF-1a and Robo4 mRNA and protein expressions were quantified cells. Invest Ophthalmol Vis Sci. by real-time PCR and Western blot.
    [Show full text]
  • Bret Samelson Thesis 6-9-15 Final
    Regulation of SLIT-Robo Signaling by Scaffolding Proteins Bret K. Samelson A dissertation submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: John Scott, Chair Stanley McKnight Luis Fernando Santana Program authorized to offer degree: Pharmacology © Copyright 2015 Bret K. Samelson University of Washington Abstract Regulation of SLIT-Robo Signaling by Scaffolding Proteins Bret K. Samelson Chair of the Supervisory Committee: Professor John D. Scott Department of Pharmacology Axon guidance receptors in the growth cone respond to secreted molecular cues, directing axons towards their appropriate targets of innervation. Many of these receptors complex with scaffolding proteins which recruit protein kinases and protein phosphatases to control the efficacy, context, and duration of neuronal phosphorylation events. The A-Kinase Anchoring Protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (PP2B, calcineurin) to modulate second messenger signaling events. In a mass spectrometry based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991-1070) interfaces directly with sites on the anchoring protein. Additional studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions including hippocampal region CA1 and the islands of calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330.
    [Show full text]