Inferring Evolutionary Process from Phylogenetic Tree Shape

Total Page:16

File Type:pdf, Size:1020Kb

Inferring Evolutionary Process from Phylogenetic Tree Shape VOLUME 72, No. 1 THE QUARTERLY REVIEW OF BIOLOGY MARCH 1997 INFERRING EVOLUTIONARY PROCESS FROM PHYLOGENETIC TREE SHAPE ARNE 0. MOOERS Departmentof Zoology, Universityof British Columbia 6270 UniversityBoulevard, Vancouver, V6T 1Z4 Canada STEPHEN B. HEARD Departmentof Biological Sciences, Universityof Iowa 138 BiologyBuilding, Iowa City,Iowa 52242-1324 USA ABSTRACT Inferencesabout macroevolutionary processes have traditionallydepended solely on thefossil record,but such inferencescan bestrengthened by also consideringthe shapes of the phylogenetic treesthat link extant taxa. The realizationthat phylogenies reflect macroevolutionary processes has led to a growingliterature of theoretical and comparativestudies of tree shape. Two aspects oftree shape are particularly important: tree balance and thedistribution of branch lengths. We examineand evaluaterecent developments in and connectionsbetween these two aspects, and suggestdirections forfuture research. Studiesof tree shape promise useful and powerfultests of macroevolutionary hypotheses. With appropriatefurther research, tree shape may help us detectmass extinctions and adaptiveradia- tions,measure continuous variation in speciationand extinctionrates, and associatechanges in theserates with ecological or biogeographical causes. The usefulnessof treeshape extendswell beyondthe study of macroevolution.We discuss applicationsto otherareas ofbiology, including coevolution, phylogenetic inference, population biology,and developmentalbiology. INTRODUCTION Why are there so many species of passerine HERE IS probably no greater nor more birds (e.g., Raikow1986; Kochmer and Wagner T 1988) or beetles (e.g., Evans 1975)?J B S Hal- fundamental problem in ecology and dane's famous quip about God's inordinate evolutionarybiology than explaining the di- fondnessfor beetles can onlybe partof the story. versityof life on Earth. A comprehensive ex- Questions about the relativediversity of evo- planation of this diversityshould account for lutionarygroups are often posed in termsof not onlythe regulation of diversity in extanteco- taxonomies (see literaturereviewed byAnder- logical communities (Ricklefs and Schluter son 1974). Ultimately, however, these are 1993), but also provide an understanding of questions aboutvariationin speciation and ex- what factorshave determined historical pat- tinction rates, and their signatures in the terns of diversificationamong evolutionary shapes of phylogenetic trees. The recent ex- groups. This latterquestion is a familiarone: plosion in the availabilityof phylogeneticdata The QuarterlyReview of Bzology, March 1997, Vol. 72, No. 1 Copyright? 1997 by The Universityof Chicago. All rightsreserved. 0033-5770/97/7201-0002$1 .00 31 This content downloaded from 131.202.42.30 on Fri, 26 Apr 2013 09:59:50 AM All use subject to JSTOR Terms and Conditions 32 THE QUARTERLY REVIEW OF BIOLOGY VOLUME 72 (fueled in part by the molecular revolution) 450' has given us a new and powerfulapproach for Leaf beetles studyingtempo and mode in evolution:phylo- 350 - genetic trees as historiesof the diversification of clades. The availabilityof these data has in turn led to dramatic growthin the study of , 250- phylogenetictree shape, whichprovides a pos- sible new approach to the studyof evolution and diversification(there are other applica- g 150- tions of tree shape, but we touch on them only z briefly).The time is ripe for an appraisal of the power and prospects of the studyof tree 50 shape. Here we outline the historybehind the use of tree shape, provide some necessary 00 10 20 30 40 50 60 70 80 90 100 technical background, and consider current Numberof speciesper genus descriptionsof and proposed explanations for FIGURE 1. A HOLLOW CURVE DISTRIBUTION OF the shapes we observe.We then conclude with THE NUMBER OF GENERA CONTAINING suggestionsfor future study. VARIOUS NUMBERS OF SPECIES OF LEAF BEETLE (CHRYSOMELIDAE). HISTORICAL SKETCH Data fromWilliams (1964, Table 50). Branching diagrams were considered fit- ting representations of organismal affinities long before Darwin (Panchen 1992). How- (Fisher et al. 1943), or log-normalseries (Wil- ever, Darwin is usually recognized as the first liams 1964), and saw in them the stamp of de- to consider trees explicitlyas representations terministicprocesses (Williams 1964; Ander- ofactual genealogies ofspecies, and his theory son 1974). Walters (1961; see also Cronk of natural selection gave him definiteideas as 1989) considered them merelypsychohistori- to theirshape (Darwin 1859:110). Faced with cal artifacts.Yule (1924) and Wright (1941) limited data, however, Darwin turned to pointed to a stochasticor probabilisticexpla- taxonomies instead of phylogenies for evi- nation for the hollow curve pattern. Ecologi- dence to support his hypotheses (Darwin cal theory-e.g., MacArthur's(1957) "broken- 1859:110). The use of taxonomies as reflec- stick" model of ecological diversity,which is tions of phylogeneticpattern continues up to also probabilistic-was adapted to explain the present. hollow curves,most prominentlybyAnderson Willis (1922) noted the concave shape of (1974). Recent investigatorshave even de- many frequency distributionsof taxonomic scribed the hollow curves in terms of fractal units containingvarious numbers of subunits geometry(Burlando 1990; Minelli et al. 1991; (e.g., species per genus), when units are or- see also Nee et al. 1992). Information-rich,rig- dered fromthose withthe greatestnumber to orous phylogenies have now largelyreplaced those withfewest subunits, and called this the the use of taxonomic listsin the studyof mac- "hollow curve"distribution. For example, Fig- roevolution (but see exceptions in Dial and ure 1 shows the sizes of chrysomelidbeetle Marzluff1989; Ricklefsand Renner 1994; Tiff- genera (from Williams 1964; based on data ney and Mazer 1995). collected by Willis). It plots the number of The modern study of phylogenetic tree chrysomelidbeetle genera withvarying num- shape and macroevolution can be traced to a bers of species. The hollow curve phenome- set of meetingsof paleontologistsand popula- non is familiarto anyone who has noticed the tion biologists at Woods Hole in the early conspicuous abundance of,for example, bee- 1970s (Raup et al. 1973; Gould et al. 1977; tles among insects,passerines among birds,or Schopf 1979), and to a biogeographic study teleostsamong fish. (Rosen 1978; Simberloffet al. 1981; Simber- Earlyauthors described these hollow curves loff1987). Both setsof investigatorswere seek- as hyperbolic(Chamberlin 1924), logarithmic ing falsifiablehypotheses of phylogenetictree This content downloaded from 131.202.42.30 on Fri, 26 Apr 2013 09:59:50 AM All use subject to JSTOR Terms and Conditions MARCH 1997 PHYLOGENETIC TREE SHAPE 33 shape. The "Woods Hole group" (coined by and unsupported null expectation that all la- Slowinski and Guyer 1989) was concerned beled cladograms were equally likely,and pre- thatpaleontologists took an overlydescriptive sented two other null distributions(see the and deterministicapproach when consider- section below on null models fortree balance, ing the patternsof fossildiversity. The group p 35). Simberloffet al. (1981) highlightedthe felt that some deductive methodology was necessity of using clear null models when needed, with a view to formulatinggeneral studyingcongruence among phylogenies,and evolutionarylaws (Raup et al. 1973). Taking showed how certain shapes of trees mightbe their cue from ecology (Simberloff 1972), expected to arise in nature. Together, the theycreated a simple stochasticmodel of mac- Woods Hole group's agenda of a quantitative roevolution (with lineages splittingand be- approach to paleontological studies of tempo coming extinct) and used it to simulate phy- and mode, and the response to the use of null logenies evolving through geological time. models in testsof biogeography,set the stage Because the distribution of shapes of real forthe modern use ofphylogenetic tree shape clades fromthe literatureresembled the simu- in the studyof macroevolution. The two ap- lated random clades, Raup et al. (1973; Gould proaches also highlight two differentbut et al. 1977) held that deterministicexplana- closely related aspects of tree shape: changes tions for clade shape were unnecessary.How- in diversificationrates through time,and dif- ever, Stanley et al. (1981) found that with ferences in diversificationpatterns among more realistic parameter values the histories contemporaryclades. These mightbe thought of clades fromthe fossil record could not be of as two differentaxes of variation.We con- reproduced with simple stochastic models. sider the latter aspect first,beginning with a The Woods Hole studiesare partof a richliter- briefsummary of terminologyand the statisti- ature concerning the course of diversityin the cal approaches used. fossil record, but we will not review it here. Currentstudies of phylogenetic tree shape are TERMINOLOGY FOR PHYLOGENETIC generally intellectual descendants of the TREE SHAPE Woods Hole group and itsuse of a simulation- Most biological taxa have arisenby a branch- driven,stochastic model of tree production. ing evolutionaryprocess of descent withmodi- The biogeographic approach owes much to fication (we are stilla long wayfrom a proper Hennig (1966), who postulated a series of bio- account of reticulation in phylogenetic the- geographic "rules" (summarized by Ashlock ory). While taxonomies generally reflect (to 1974) by which cladograms could be used to various degrees) historical relationships be-
Recommended publications
  • Interpreting the History of Evolutionary Biology Through a Kuhnian Prism: Sense Or Nonsense?
    Interpreting the History of Evolutionary Biology through a Kuhnian Prism: Sense or Nonsense? Koen B. Tanghe Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Lieven Pauwels Department of Criminology, Criminal Law and Social Law, Universiteit Gent, Belgium Alexis De Tiège Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Johan Braeckman Department of Philosophy and Moral Sciences, Universiteit Gent, Belgium Traditionally, Thomas S. Kuhn’s The Structure of Scientific Revolutions (1962) is largely identified with his analysis of the structure of scientific revo- lutions. Here, we contribute to a minority tradition in the Kuhn literature by interpreting the history of evolutionary biology through the prism of the entire historical developmental model of sciences that he elaborates in The Structure. This research not only reveals a certain match between this model and the history of evolutionary biology but, more importantly, also sheds new light on several episodes in that history, and particularly on the publication of Charles Darwin’s On the Origin of Species (1859), the construction of the modern evolutionary synthesis, the chronic discontent with it, and the latest expression of that discon- tent, called the extended evolutionary synthesis. Lastly, we also explain why this kind of analysis hasn’t been done before. We would like to thank two anonymous reviewers for their constructive review, as well as the editor Alex Levine. Perspectives on Science 2021, vol. 29, no. 1 © 2021 by The Massachusetts Institute of Technology https://doi.org/10.1162/posc_a_00359 1 Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/posc_a_00359 by guest on 30 September 2021 2 Evolutionary Biology through a Kuhnian Prism 1.
    [Show full text]
  • Macroevolutionary Diversification Rates Show Time Dependency
    Macroevolutionary diversification rates show time dependency L. Francisco Henao Diaza,b, Luke J. Harmonc, Mauro T. C. Sugawaraa,b, Eliot T. Millerd, and Matthew W. Pennella,b,1 aDepartment of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; bBiodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; cDepartment of Biological Sciences, University of Idaho, Moscow, ID 83844; and dCornell Lab of Ornithology, Cornell University, Ithaca, NY 14850 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved February 28, 2019 (received for review October 22, 2018) For centuries, biologists have been captivated by the vast disparity time dependence, with the fastest rates estimated over the shortest in species richness between different groups of organisms. time scales. This time scale dependence is apparent in rates of Variation in diversity is widely attributed to differences between molecular (12) and trait evolution (13, 14) and has even been groups in how fast they speciate or go extinct. Such macroevolu- observed when estimating long-term rates of sedimentation (15). tionary rates have been estimated for thousands of groups and The prevalence of time scaling of rate estimates in other types of have been correlated with an incredible variety of organismal data, along with previous hints of a possible similar pattern in traits. Here we analyze a large collection of phylogenetic trees and speciation rates (16–20), suggest that a broader comparison is fossil time series and describe a hidden generality among these needed. Here we explore the time scaling of diversification rates seemingly idiosyncratic results: speciation and extinction rates using both phylogenetic data from the tree of life and paleobio- follow a scaling law in which both depend on the age of the group logical data from the fossil record and find evidence that there are in which they are measured, with the fastest rates in the youngest indeed general scaling laws that govern macroevolutionary dy- clades.
    [Show full text]
  • The Structure of Evolutionary Theory: Beyond Neo-Darwinism, Neo
    1 2 3 The structure of evolutionary theory: Beyond Neo-Darwinism, 4 Neo-Lamarckism and biased historical narratives about the 5 Modern Synthesis 6 7 8 9 10 Erik I. Svensson 11 12 Evolutionary Ecology Unit, Department of Biology, Lund University, SE-223 62 Lund, 13 SWEDEN 14 15 Correspondence: [email protected] 16 17 18 19 1 20 Abstract 21 The last decades have seen frequent calls for a more extended evolutionary synthesis (EES) that 22 will supposedly overcome the limitations in the current evolutionary framework with its 23 intellectual roots in the Modern Synthesis (MS). Some radical critics even want to entirely 24 abandon the current evolutionary framework, claiming that the MS (often erroneously labelled 25 “Neo-Darwinism”) is outdated, and will soon be replaced by an entirely new framework, such 26 as the Third Way of Evolution (TWE). Such criticisms are not new, but have repeatedly re- 27 surfaced every decade since the formation of the MS, and were particularly articulated by 28 developmental biologist Conrad Waddington and paleontologist Stephen Jay Gould. 29 Waddington, Gould and later critics argued that the MS was too narrowly focused on genes and 30 natural selection, and that it ignored developmental processes, epigenetics, paleontology and 31 macroevolutionary phenomena. More recent critics partly recycle these old arguments and 32 argue that non-genetic inheritance, niche construction, phenotypic plasticity and developmental 33 bias necessitate major revision of evolutionary theory. Here I discuss these supposed 34 challenges, taking a historical perspective and tracing these arguments back to Waddington and 35 Gould. I dissect the old arguments by Waddington, Gould and more recent critics that the MS 36 was excessively gene centric and became increasingly “hardened” over time and narrowly 37 focused on natural selection.
    [Show full text]
  • Max Planck Institute for the History of Science Making Mutations
    MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science 2010 PREPRINT 393 Luis Campos and Alexander von Schwerin (eds.) Making Mutations: Objects, Practices, Contexts Table of Contents The Making of “Making Mutations”.........................................................................................3 Alexander von Schwerin & Luis Campos Identifying Mutation Women in Mutation Studies: The Role of Gender in the Methods, Practices, and Results of Early Twentieth-Century Genetics ......................................................................................11 Marsha L. Richmond Mutant Sexuality: The Private Life of a Plant.........................................................................49 Luis Campos Generating Plants and Women: Intersecting Conceptions of Biological and Social Mutations in Susan Glaspell's “The Verge” (1921)................................................................71 Jörg Thomas Richter Non-Evolutionary Mutants? A Note on the Castorrex Rabbit ................................................85 Thierry Hoquet Organisms Tracing the Totsuzen in Tanaka's Silkworms: An Exploration of the Establishment of Bombyx Mori Mutant Stocks................................................................................................ 109 Lisa A. Onaga Supporting the Balance View: Dobzhansky’s Construction of Drosophila pseudoobscura ...................................................................................................................... 119 Matt Dunn The First
    [Show full text]
  • Macroevolutionary Diversification Rates Show Time Dependency
    Macroevolutionary diversification rates show time dependency L. Francisco Henao Diaza,b, Luke J. Harmonc, Mauro T. C. Sugawaraa,b, Eliot T. Millerd, and Matthew W. Pennella,b,1 aDepartment of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; bBiodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z4; cDepartment of Biological Sciences, University of Idaho, Moscow, ID 83844; and dCornell Lab of Ornithology, Cornell University, Ithaca, NY 14850 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved February 28, 2019 (received for review October 22, 2018) For centuries, biologists have been captivated by the vast disparity time dependence, with the fastest rates estimated over the shortest in species richness between different groups of organisms. time scales. This time scale dependence is apparent in rates of Variation in diversity is widely attributed to differences between molecular (12) and trait evolution (13, 14) and has even been groups in how fast they speciate or go extinct. Such macroevolu- observed when estimating long-term rates of sedimentation (15). tionary rates have been estimated for thousands of groups and The prevalence of time scaling of rate estimates in other types of have been correlated with an incredible variety of organismal data, along with previous hints of a possible similar pattern in traits. Here we analyze a large collection of phylogenetic trees and speciation rates (16–20), suggest that a broader comparison is fossil time series and describe a hidden generality among these needed. Here we explore the time scaling of diversification rates seemingly idiosyncratic results: speciation and extinction rates using both phylogenetic data from the tree of life and paleobio- follow a scaling law in which both depend on the age of the group logical data from the fossil record and find evidence that there are in which they are measured, with the fastest rates in the youngest indeed general scaling laws that govern macroevolutionary dy- clades.
    [Show full text]
  • Science Journals — AAAS
    SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2020 The Authors, some rights reserved; The dynamics of stem and crown groups exclusive licensee Graham E. Budd1*† and Richard P. Mann2,3† American Association for the Advancement of Science. No claim to The fossil record of the origins of major groups such as animals and birds has generated considerable controversy, original U.S. Government especially when it conflicts with timings based on molecular clock estimates. Here, we model the diversity of “stem” Works. Distributed (basal) and “crown” (modern) members of groups using a “birth-death model,” the results of which qualitatively under a Creative match many large-scale patterns seen in the fossil record. Typically, the stem group diversifies rapidly until the Commons Attribution crown group emerges, at which point its diversity collapses, followed shortly by its extinction. Mass extinctions NonCommercial can disturb this pattern and create long stem groups such as the dinosaurs. Crown groups are unlikely to emerge License 4.0 (CC BY-NC). either cryptically or just before mass extinctions, in contradiction to popular hypotheses such as the “phylogenetic fuse”. The patterns revealed provide an essential context for framing ecological and evolutionary explanations for how major groups originate, and strengthen our confidence in the reliability of the fossil record. INTRODUCTION We note that stem and crown groups are hierarchical concepts so Downloaded from The fossil record shows many notable patterns (1) that have been that within a particular crown group are nested and smaller stem addressed by hypotheses such as mass extinctions (2), diversity- and crown groups. dependent diversification (DDD) (3), and competitive displacement The origins and fates of crown groups are of particular interest (4, 5).
    [Show full text]
  • Science Journals — AAAS
    SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2020 The Authors, some rights reserved; The dynamics of stem and crown groups exclusive licensee Graham E. Budd1*† and Richard P. Mann2,3† American Association for the Advancement of Science. No claim to The fossil record of the origins of major groups such as animals and birds has generated considerable controversy, original U.S. Government especially when it conflicts with timings based on molecular clock estimates. Here, we model the diversity of “stem” Works. Distributed (basal) and “crown” (modern) members of groups using a “birth-death model,” the results of which qualitatively under a Creative match many large-scale patterns seen in the fossil record. Typically, the stem group diversifies rapidly until the Commons Attribution crown group emerges, at which point its diversity collapses, followed shortly by its extinction. Mass extinctions NonCommercial can disturb this pattern and create long stem groups such as the dinosaurs. Crown groups are unlikely to emerge License 4.0 (CC BY-NC). either cryptically or just before mass extinctions, in contradiction to popular hypotheses such as the “phylogenetic fuse”. The patterns revealed provide an essential context for framing ecological and evolutionary explanations for how major groups originate, and strengthen our confidence in the reliability of the fossil record. INTRODUCTION We note that stem and crown groups are hierarchical concepts so The fossil record shows many notable patterns (1) that have been that within a particular crown group are nested and smaller stem addressed by hypotheses such as mass extinctions (2), diversity- and crown groups. dependent diversification (DDD) (3), and competitive displacement The origins and fates of crown groups are of particular interest (4, 5).
    [Show full text]
  • Holism and Evolution
    HOLISM AND EVOLUTION BY GENERAL THE RIGHT HON. J. ,C. SMUTS :IlllRD EDJ:IJD.JV MACMILLAN AND CO., LIM ITED ST. MAR TIN'S STREET, LONDON I936 · .. B.L.No.64. Imperial Institute of Veterinary Research Library, S t'\\.) I~OO MUKTESAR. rJ Class. SC..ience,,' in General. Register No. .3062 n.oom ·Np. Inward No. 268& ~ Shelf No. Received. 21-12-1936 Book No. :I'd G I1W-S7-I II ·6.1'22-6·12·32-2CO• .~ HOLISM AND EVOLUTION MACMILLAN AND COo, LIMITED LONDON 0 BOMBAY 0 CALCUTTA 0 MADRAS MELBOURN°E THE MACMILLAN COMPANY NEW YORK. 0 BOSTON 0 CHICACO , DALLAS 0 ATLANTA 0 SAN FRANCISCO THE MACMILLAN COMPANY OF CANADA, LIMITED TOIWNTO COPYRIGHT First Edition I9.6 Second Edition. '9'7 Third Edition . I936 PRINTED IN GREAT BRITAIN To 'YS16p.oov dE1 ,,'rOVEl' ~"ov· WO'T€ O~7'£ olJalav olYr€ ,,'v£a,v cOs oJuav 8e, 1Tpouayopw£Lv 'TO ~Aov lv "o's oJu, p.~ ..,OlV1"a. "That which comes to be always does so as a whole; so that if a man does not count the whole among realities he ought not to speak of substance or of coming-to-be as real. "-Plato, Sophist (p. 245 d). PREFACE TO THIRD EDITION THE second edition of this book has been out of print for some time, but the demand for it continues. In spite there­ fore of some hesitation on my part, I have accepted the invitation of my publishers to issue a third edition. After all, the book has broken new ground. It has added a new word to the dictionary, and definitely opened up a new viewpoint both in science and philosophy which many have considered important.
    [Show full text]
  • An Exploration of Models of Diversification and the Tempo
    AN EXPLORATION OF MODELS OF DIVERSIFICATION AND THE TEMPO OF DIVERSIFICATION USING LINEAGES THROUGH TIME PLOTS by Dennis Ho-Jay Wong BSc., Simon Fraser University, 2002 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science In the Graduate Academic Unit of Biology Supervisor: Stephen B. Heard, PhD, Department of Biology, Univeristy of New Brunswick Examining Board: Stephen B. Heard, PhD Department of Biology, Chair Linley Jesson, PhD, Department of Biology External Examiner: R. Steve Turner, PhD, Department of History This thesis is accepted Dean of Graduate Studies THE UNIVERSITY OF NEW BRUNSWICK May, 2007 ©Dennis Ho-Jay Wong, 2007 DEDICATION I dedicate this work to my friends and family, but especially my late grandmother who always encouraged me to never forget family. ii ABSTRACT Explaining species richness is one of the major goals in evolutionary biology. One approach to explain species richness is through models of species level diversification, and recent attention has been placed on testing for instances of non-constant rates of diversification. Translated from phylogenies, lineages through time (LTT) plots are one way to examine rates of diversification. However, the degree which LTT data reflect a model of diversification is unknown. I conducted a simulation study that determines the power of LTT plots to distinguish different models from each other. The results generally show that LTT plots can identify non-constant diversification, although, power is low. There was also low power for LTT plots to distinguish alternative models from each other, and alternative models of extinction from a constant background rate.
    [Show full text]
  • Survival and Selection Biases in Early Animal Evolution and a Source of Systematic Overestimation in Molecular Clocks
    Survival and selection biases in early animal evolution and a source of systematic overestimation in molecular clocks Graham E. Budd1 and Richard P. Mann2;3 1 Dept of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden, SE 752 36. [email protected] 2Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom. [email protected] 3The Alan Turing Institute, London NW1 2DB, United Kingdom 1 Abstract 2 Important evolutionary events such as the Cambrian Explosion have inspired many 3 attempts at explanation: why do they happen when they do? What shapes them, 4 and why do they eventually come to an end? However, much less attention has 5 been paid to the idea of a “null hypothesis” – that certain features of such diver- 6 sifications arise simply through their statistical structure. Looking back from our 7 own perspective to the origins of large groups such as the arthropods, or even the 8 animals themselves, will expose features that look causal but are in fact inevitable. 9 Here we review these features with particular regard to the Cambrian explosion. We 10 conclude that the fossil record of the late Ediacaran to Cambrian is very likely to 11 be recording a true evolutionary radiation at this time; and show how the unusually 12 rapid nature of this event leads to characteristic over-estimation of its time of origin 13 by molecular clock methods - an artefact that is likely to apply to other unusually 14 fast radiations too. 15 16 Keywords: Crown groups, diversification rates, the push of the past, molecular 17 clocks, Cambrian explosion.
    [Show full text]
  • The Effect of the Push of the Past on the Fossil Record
    bioRxiv preprint doi: https://doi.org/10.1101/194753; this version posted October 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. History is written by the victors: the effect of the push of the past on the fossil record Graham E. Budd1 and Richard P. Mann2 1 Dept of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden, SE 752 36. [email protected] 2Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom. [email protected] Abstract Phylogenies may be modelled using “birth-death” models for speciation and extinc- tion, but even when a homogeneous rate of diversification is used, survivorship biases can generate remarkable rate heterogeneities through time. One such bias has been termed the “push of the past”, by which the length of time a clade has survived is conditioned on the rate of diversification that happened to pertain at its origin. This creates the illusion of a secular rate slow-down through time that is, rather, a reversion to the mean. Here we model the controls on the push of the past, and the effect it has on clade origination times, and show that it largely depends on underly- ing extinction rates. Crown group origins tend to become later and more dispersed as the size of the push of the past increases. An extra effect increasing early rates in lineages is also seen in large clades. The push of the past is an important but relatively neglected bias that affects many aspects of diversification patterns, such as diversification spikes after mass extinctions and at the origins of clades; it also influences rates of fossilisation, changes in rates of phenotypic evolution and even molecular clocks.
    [Show full text]
  • Estimating the Early Evolution of Brachiopods Using an Integrated Approach Combining Genomics and Fossils
    Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 471 Estimating the Early Evolution of Brachiopods Using an Integrated Approach Combining Genomics and Fossils En uppskattning av armfotingarnas tidiga evolution – med hjälp av genomik och fossil Chloé Robert INSTITUTIONEN FÖR GEOVETENSKAPER DEPARTMENT OF EARTH SCIENCES Examensarbete vid Institutionen för geovetenskaper Degree Project at the Department of Earth Sciences ISSN 1650-6553 Nr 471 Estimating the Early Evolution of Brachiopods Using an Integrated Approach Combining Genomics and Fossils En uppskattning av armfotingarnas tidiga evolution – med hjälp av genomik och fossil Chloé Robert ISSN 1650-6553 Copyright © Chloé Robert Published at Department of Earth Sciences, Uppsala University (www.geo.uu.se), Uppsala, 2019 Abstract Estimating the Early Evolution of Brachiopods Using an Integrated Approach Combining Genomics and Fossils Chloé Robert The Brachiopoda, a major group of the Lophotrochozoa, experienced a rapid early evolutionary diversification during the well-known Cambrian explosion and subsequently dominated the Palaeozoic benthos with its diversity and abundance. Even though the phylogeny of the Lophotrochozoa is still hotly debated, it is now known that the Brachiopoda are a monophyletic grouping. However, the early evolutionary rates for the Brachiopoda have never been studied in the framework of a study combining molecular data and fossil time calibration points. In order to investigate the expected higher evolutionary rates of the Phylum at its origin, we conducted phylogenetic studies combining different methodologies and datasets. This work has at its foundation Maximum Likelihood and Bayesian analyses of 18S and 28S rRNA datasets followed by analyses of phylogenomic sequences.
    [Show full text]