Chapter 8: the Logic of Conditionals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Information Status of English If-Clauses in Natural Discourse*
The Information Status of English If-clauses in Natural Discourse* Chang-Bong Lee 1. Introduction Haiman (1978) once argued that conditionals are uniformly defined as topics. His argument had to suffer from some substantial problems both empirically and theoretically. Despite these problems, his paper was a trailblazing research that opened up the path for the study of conditionals from a discourse point of view. The present paper studies conditionals from a particular aspect of discourse functional perspective by analyzing the information structure of conditional sentences in natural discourse. Ford and Thompson (1986) studied the discourse function of conditionals in the similar vein through a corpus-based research. This paper also attempts to understand the discourse function of conditionals, but it does it under a rather different standpoint, under the framework of the so-called GIVEN-NEW taxonomy as presented in Prince (1992). In this paper, we focus on the definition of topic as an entity that represents the GIVEN or OLD information to be checked against the information in the preceding linguistic context. By analyzing the data of the English if-clauses in natural discourse both in oral and written contexts, we present sufficient evidence to show that conditionals are not simply topics (GIVEN information). It is revealed that the if-clauses *This research was supported by the faculty settlement research fund (Grant No. 20000005) from the Catholic University of Korea in the year of 2000. I wish to express gratitude to the Catholic University of Korea for their financial assistance. The earlier version of this paper was presented at the 6th academic conference organized by the Discourse and Cognitive Ilnguistics Society of Korea in June, 2000. -
Understanding Conditional Sentences
GRAMMAR AND MECHANICS Understanding Conditional Sentences When a dependent or subordinate clause is introduced by words such as “if,” “when,” or “unless,” the complete sentence expresses a condition. The dependent or subordinate clause states a condition or cause and is joined with an independent clause, which states the result or effect. Conditional sentences can be factual, predictive, or speculative, which determines the form of the condition and the choice of verb tenses. TYPES OF CONDITIONAL SENTENCES Factual In a factual conditional sentence, the relationship between the dependent or subordinate clause and the independent clause describes a condition that is or was habitually true: if the condition applies, the independent clause states the result or effect. Both clauses use simple verb forms either in present or past tense. If you find a blue and white sweater, it belongs to me. When he plays his music too loud, the neighbors complain. Unless there is a question, the class is dismissed. Predictive In a predictive conditional sentence, the relationship between the two clauses is promised or possible but not certain. Use a present-tense verb in the dependent or subordinate clause, and in the independent clause use modal auxiliaries “will,” “can,” “may,” “should,” or “might” with the base form of the verb. If the weather is good tomorrow, we will go to the park. If your roommate decides not to come with us, we can go by ourselves. When the lease on the apartment ends, we may want to move to another building. When she misses one of the meetings, she should notify her supervisor. -
Section 2.1: Proof Techniques
Section 2.1: Proof Techniques January 25, 2021 Abstract Sometimes we see patterns in nature and wonder if they hold in general: in such situations we are demonstrating the appli- cation of inductive reasoning to propose a conjecture, which may become a theorem which we attempt to prove via deduc- tive reasoning. From our work in Chapter 1, we conceive of a theorem as an argument of the form P → Q, whose validity we seek to demonstrate. Example: A student was doing a proof and suddenly specu- lated “Couldn’t we just say (A → (B → C)) ∧ B → (A → C)?” Can she? It’s a theorem – either we prove it, or we provide a counterexample. This section outlines a variety of proof techniques, including direct proofs, proofs by contraposition, proofs by contradiction, proofs by exhaustion, and proofs by dumb luck or genius! You have already seen each of these in Chapter 1 (with the exception of “dumb luck or genius”, perhaps). 1 Theorems and Informal Proofs The theorem-forming process is one in which we • make observations about nature, about a system under study, etc.; • discover patterns which appear to hold in general; • state the rule; and then • attempt to prove it (or disprove it). This process is formalized in the following definitions: • inductive reasoning - drawing a conclusion based on experi- ence, which one might state as a conjecture or theorem; but al- mostalwaysas If(hypotheses)then(conclusion). • deductive reasoning - application of a logic system to investi- gate a proposed conclusion based on hypotheses (hence proving, disproving, or, failing either, holding in limbo the conclusion). -
Conditionals in Political Texts
JOSIP JURAJ STROSSMAYER UNIVERSITY FACULTY OF HUMANITIES AND SOCIAL SCIENCES Adnan Bujak Conditionals in political texts A corpus-based study Doctoral dissertation Advisor: Dr. Mario Brdar Osijek, 2014 CONTENTS Abstract ...........................................................................................................................3 List of tables ....................................................................................................................4 List of figures ..................................................................................................................5 List of charts....................................................................................................................6 Abbreviations, Symbols and Font Styles ..........................................................................7 1. Introduction .................................................................................................................9 1.1. The subject matter .........................................................................................9 1.2. Dissertation structure .....................................................................................10 1.3. Rationale .......................................................................................................11 1.4. Research questions ........................................................................................12 2. Theoretical framework .................................................................................................13 -
'The Denial of Bivalence Is Absurd'1
On ‘The Denial of Bivalence is Absurd’1 Francis Jeffry Pelletier Robert J. Stainton University of Alberta Carleton University Edmonton, Alberta, Canada Ottawa, Ontario, Canada [email protected] [email protected] Abstract: Timothy Williamson, in various places, has put forward an argument that is supposed to show that denying bivalence is absurd. This paper is an examination of the logical force of this argument, which is found wanting. I. Introduction Let us being with a word about what our topic is not. There is a familiar kind of argument for an epistemic view of vagueness in which one claims that denying bivalence introduces logical puzzles and complications that are not easily overcome. One then points out that, by ‘going epistemic’, one can preserve bivalence – and thus evade the complications. James Cargile presented an early version of this kind of argument [Cargile 1969], and Tim Williamson seemingly makes a similar point in his paper ‘Vagueness and Ignorance’ [Williamson 1992] when he says that ‘classical logic and semantics are vastly superior to…alternatives in simplicity, power, past success, and integration with theories in other domains’, and contends that this provides some grounds for not treating vagueness in this way.2 Obviously an argument of this kind invites a rejoinder about the puzzles and complications that the epistemic view introduces. Here are two quick examples. First, postulating, as the epistemicist does, linguistic facts no speaker of the language could possibly know, and which have no causal link to actual or possible speech behavior, is accompanied by a litany of disadvantages – as the reader can imagine. -
Three Ways of Being Non-Material
Three Ways of Being Non-Material Vincenzo Crupi, Andrea Iacona May 2019 This paper presents a novel unified account of three distinct non-material inter- pretations of `if then': the suppositional interpretation, the evidential interpre- tation, and the strict interpretation. We will spell out and compare these three interpretations within a single formal framework which rests on fairly uncontro- versial assumptions, in that it requires nothing but propositional logic and the probability calculus. As we will show, each of the three intrerpretations exhibits specific logical features that deserve separate consideration. In particular, the evidential interpretation as we understand it | a precise and well defined ver- sion of it which has never been explored before | significantly differs both from the suppositional interpretation and from the strict interpretation. 1 Preliminaries Although it is widely taken for granted that indicative conditionals as they are used in ordinary language do not behave as material conditionals, there is little agreement on the nature and the extent of such deviation. Different theories tend to privilege different intuitions about conditionals, and there is no obvious answer to the question of which of them is the correct theory. In this paper, we will compare three interpretations of `if then': the suppositional interpretation, the evidential interpretation, and the strict interpretation. These interpretations may be regarded either as three distinct meanings that ordinary speakers attach to `if then', or as three ways of explicating a single indeterminate meaning by replacing it with a precise and well defined counterpart. Here is a rough and informal characterization of the three interpretations. According to the suppositional interpretation, a conditional is acceptable when its consequent is credible enough given its antecedent. -
The Incorrect Usage of Propositional Logic in Game Theory
The Incorrect Usage of Propositional Logic in Game Theory: The Case of Disproving Oneself Holger I. MEINHARDT ∗ August 13, 2018 Recently, we had to realize that more and more game theoretical articles have been pub- lished in peer-reviewed journals with severe logical deficiencies. In particular, we observed that the indirect proof was not applied correctly. These authors confuse between statements of propositional logic. They apply an indirect proof while assuming a prerequisite in order to get a contradiction. For instance, to find out that “if A then B” is valid, they suppose that the assumptions “A and not B” are valid to derive a contradiction in order to deduce “if A then B”. Hence, they want to establish the equivalent proposition “A∧ not B implies A ∧ notA” to conclude that “if A then B”is valid. In fact, they prove that a truth implies a falsehood, which is a wrong statement. As a consequence, “if A then B” is invalid, disproving their own results. We present and discuss some selected cases from the literature with severe logical flaws, invalidating the articles. Keywords: Transferable Utility Game, Solution Concepts, Axiomatization, Propositional Logic, Material Implication, Circular Reasoning (circulus in probando), Indirect Proof, Proof by Contradiction, Proof by Contraposition, Cooperative Oligopoly Games 2010 Mathematics Subject Classifications: 03B05, 91A12, 91B24 JEL Classifications: C71 arXiv:1509.05883v1 [cs.GT] 19 Sep 2015 ∗Holger I. Meinhardt, Institute of Operations Research, Karlsruhe Institute of Technology (KIT), Englerstr. 11, Building: 11.40, D-76128 Karlsruhe. E-mail: [email protected] The Incorrect Usage of Propositional Logic in Game Theory 1 INTRODUCTION During the last decades, game theory has encountered a great success while becoming the major analysis tool for studying conflicts and cooperation among rational decision makers. -
Conundrums of Conditionals in Contraposition
Dale Jacquette CONUNDRUMS OF CONDITIONALS IN CONTRAPOSITION A previously unnoticed metalogical paradox about contrapo- sition is formulated in the informal metalanguage of propositional logic, where it exploits a reflexive self-non-application of the truth table definition of the material conditional to achieve semantic di- agonalization. Three versions of the paradox are considered. The main modal formulation takes as its assumption a conditional that articulates the truth table conditions of conditional propo- sitions in stating that if the antecedent of a true conditional is false, then it is possible for its consequent to be true. When this true conditional is contraposed in the conclusion of the inference, it produces the false conditional conclusion that if it is not the case that the consequent of a true conditional can be true, then it is not the case that the antecedent of the conditional is false. 1. The Logic of Conditionals A conditional sentence is the literal contrapositive of another con- ditional if and only if the antecedent of one is the negation of the consequent of the other. The sentence q p is thus ordinarily un- derstood as the literal contrapositive of: p⊃ :q. But the requirement presupposes that the unnegated antecedents⊃ of the conditionals are identical in meaning to the unnegated consequents of their contrapos- itives. The univocity of ‘p’ and ‘q’ in p q and q p can usually be taken for granted within a single context⊃ of: application⊃ : in sym- bolic logic, but in ordinary language the situation is more complicated. To appreciate the difficulties, consider the use of potentially equivo- cal terms in the following conditionals whose reference is specified in particular speech act contexts: (1.1) If the money is in the bank, then the money is safe. -
Immediate Inference
Immediate Inference Dr Desh Raj Sirswal, Assistant Professor (Philosophy) P.G. Govt. College for Girls, Sector-11, Chandigarh http://drsirswal.webs.com . Inference Inference is the act or process of deriving a conclusion based solely on what one already knows. Inference has two types: Deductive Inference and Inductive Inference. They are deductive, when we move from the general to the particular and inductive where the conclusion is wider in extent than the premises. Immediate Inference Deductive inference may be further classified as (i) Immediate Inference (ii) Mediate Inference. In immediate inference there is one and only one premise and from this sole premise conclusion is drawn. Immediate inference has two types mentioned below: Square of Opposition Eduction Here we will know about Eduction in details. Eduction The second form of Immediate Inference is Eduction. It has three types – Conversion, Obversion and Contraposition. These are not part of the square of opposition. They involve certain changes in their subject and predicate terms. The main concern is to converse logical equivalence. Details are given below: Conversion An inference formed by interchanging the subject and predicate terms of a categorical proposition. Not all conversions are valid. Conversion grounds an immediate inference for both E and I propositions That is, the converse of any E or I proposition is true if and only if the original proposition was true. Thus, in each of the pairs noted as examples either both propositions are true or both are false. Steps for Conversion Reversing the subject and the predicate terms in the premise. Valid Conversions Convertend Converse A: All S is P. -
Towards a Pragmatic Category of Conditionals
19th ICL papers Chi-He ELDER and Kasia M. JASZCZOLT University of Cambridge, United Kingdom [email protected], [email protected] Conditional Utterances and Conditional Thoughts: Towards a Pragmatic Category of Conditionals oral presentation in session: 6B Pragmatics, Discourse and Cognition (Horn & Kecskes) Published and distributed by: Département de Linguistique de l’Université de Genève, Rue de Candolle 2, CH-1205 Genève, Switzerland Editor: Département de Linguistique de l’Université de Genève, Switzerland ISBN:978-2-8399-1580-9 Travaux du 19ème CIL | Travaux 20-27 Juillet 2013 Genève des Linguistes, International Congrès 20-27 July 2013 Geneva of Linguists, Congress International 1" " Conditional Utterances and Conditional Thoughts: Towards a Pragmatic Category of Conditionals Chi-Hé Elder and Kasia M. Jaszczolt Department of Theoretical and Applied Linguistics University of Cambridge Cambridge CB3 9DA United Kingdom [email protected] [email protected] 1. Rationale and objectives The topic of this paper is the pragmatic and conceptual category of conditionality. Our primary interest is how speakers express conditional meanings in discourse and how this diversity of forms can be accounted for in a theory of discourse meaning. In other words, we are concerned not only with conditional sentences speakers utter in discourse (sentences of the form ‘if p (then) q’), but predominantly with conditional thoughts, expressed in a variety of ways, by discourse participants. The category of conditionality has given rise to many discussions and controversies in formal semantics, cognitive semantics and post-Gricean pragmatics. In formal semantics, pragmatic considerations have often been appealed to in order to demonstrate that conditionals in natural language do, or do not, essentially stem out of material conditionals on the level of their logical form. -
On the Analysis of Indirect Proofs: Contradiction and Contraposition
On the analysis of indirect proofs: Contradiction and contraposition Nicolas Jourdan & Oleksiy Yevdokimov University of Southern Queensland [email protected] [email protected] roof by contradiction is a very powerful mathematical technique. Indeed, Premarkable results such as the fundamental theorem of arithmetic can be proved by contradiction (e.g., Grossman, 2009, p. 248). This method of proof is also one of the oldest types of proof early Greek mathematicians developed. More than two millennia ago two of the most famous results in mathematics: The irrationality of 2 (Heath, 1921, p. 155), and the infinitude of prime numbers (Euclid, Elements IX, 20) were obtained through reasoning by contradiction. This method of proof was so well established in Greek mathematics that many of Euclid’s theorems and most of Archimedes’ important results were proved by contradiction. In the 17th century, proofs by contradiction became the focus of attention of philosophers and mathematicians, and the status and dignity of this method of proof came into question (Mancosu, 1991, p. 15). The debate centred around the traditional Aristotelian position that only causality could be the base of true scientific knowledge. In particular, according to this traditional position, a mathematical proof must proceed from the cause to the effect. Starting from false assumptions a proof by contradiction could not reveal the cause. As Mancosu (1996, p. 26) writes: “There was thus a consensus on the part of these scholars that proofs by contradiction were inferior to direct Australian Senior Mathematics Journal vol. 30 no. 1 proofs on account of their lack of causality.” More recently, in the 20th century, the intuitionists went further and came to regard proof by contradiction as an invalid method of reasoning. -
Dissertations, Department of Linguistics
UC Berkeley Dissertations, Department of Linguistics Title A Cognitive Approach to Mandarin Conditionals Permalink https://escholarship.org/uc/item/5qw934z5 Author Yang, Fan-Pei Publication Date 2007 eScholarship.org Powered by the California Digital Library University of California A Cognitive Approach To Mandarin Conditionals By Fan-Pei Gloria Yang B.A. (National Taiwan Normal Univeristy) 1998 M.A. (University of California, Berkeley) 2003 A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy in Linguistics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Eve Sweetser, Chair Professor George Lakoff Professor Jerome Feldman Spring 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. A Cognitive Approach To Mandarin Conditionals Copyright © 2007 By Fan-Pei Gloria Yang Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Abstract A Cognitive Approach To Mandarin Conditionals By Fan-Pei Gloria Yang Doctor of Philosophy in Linguistics University of California, Berkeley Professor Eve Sweetser, Chair This dissertation provides a description of some of the common Mandarin conditional constructions, with a focus on describing the contributions of the linking devices to the conditional interpretations and their interactions with other elements in constructions. The analyses are based on corpus data and include studies on the pragmatic uses of conditionals. The discussion endeavors to show how cognitive structures link to linguistic structures and how spaces are built and frames evoked. Consequently, the research does not just provide a syntactic description, but offers an in-depth discussion of epistemic stance and grounding of information indicated by the linking devices.