4.6 Indirect Argument: Contradiction and Contraposition

Total Page:16

File Type:pdf, Size:1020Kb

4.6 Indirect Argument: Contradiction and Contraposition 4.6 Indirect Argument: Contradiction and Contraposition “Reductio ad absurdum is one of a mathematician’s finest weapons. It is a far finer gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a1 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 false." A Logical Defense “Suppose I did commit the crime. Then, at the time of the crime, I would have to be at the scene of the crime. In fact, at the time of the crime, I was in SM242, far from the scene of the crime, as the midshipmen will testify. This contradicts the assumption that I committed the crime, since it is impossible to be in two places at once. Hence the assumption is “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a2 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 A Logical Defense “Suppose I did commit the crime. Then, at the time of the crime, I would have to be at the scene of the crime. In fact, at the time of the crime, I was in SM242, far from the scene of the crime, as the midshipmen will testify. This contradicts the assumption that I committed the crime, since it is impossible to be in two places at once. Hence the assumption is false." “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a2 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 Suppose not. Then there exists an integer n that is even and odd. By definition of even, n = 2a for some integer a. By definition of odd, n = 2b + 1 for some integer b. Consequently, 1 2a = 2b + 1; and so a − b = : 2 1 Since a and b are integers, a − b is an integer. But a − b is 2 , which is not an integer. Thus a − b is an integer and a − b is not an integer, which is a contradiction. Method of Proof by Contradiction Procedure 1 Suppose the statement to be proved is false. (Suppose the negation of the statement is true.) 2 Show that this supposition leads to a logical contradiction. 3 Conclude that the statement to be proved is true. Theorem 4.6.2. There is no integer that is both even and odd. Proof: “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a3 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 Then there exists an integer n that is even and odd. By definition of even, n = 2a for some integer a. By definition of odd, n = 2b + 1 for some integer b. Consequently, 1 2a = 2b + 1; and so a − b = : 2 1 Since a and b are integers, a − b is an integer. But a − b is 2 , which is not an integer. Thus a − b is an integer and a − b is not an integer, which is a contradiction. Method of Proof by Contradiction Procedure 1 Suppose the statement to be proved is false. (Suppose the negation of the statement is true.) 2 Show that this supposition leads to a logical contradiction. 3 Conclude that the statement to be proved is true. Theorem 4.6.2. There is no integer that is both even and odd. Proof: Suppose not. “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a3 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 By definition of even, n = 2a for some integer a. By definition of odd, n = 2b + 1 for some integer b. Consequently, 1 2a = 2b + 1; and so a − b = : 2 1 Since a and b are integers, a − b is an integer. But a − b is 2 , which is not an integer. Thus a − b is an integer and a − b is not an integer, which is a contradiction. Method of Proof by Contradiction Procedure 1 Suppose the statement to be proved is false. (Suppose the negation of the statement is true.) 2 Show that this supposition leads to a logical contradiction. 3 Conclude that the statement to be proved is true. Theorem 4.6.2. There is no integer that is both even and odd. Proof: Suppose not. Then there exists an integer n that is even and odd. “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a3 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 contradiction. Method of Proof by Contradiction Procedure 1 Suppose the statement to be proved is false. (Suppose the negation of the statement is true.) 2 Show that this supposition leads to a logical contradiction. 3 Conclude that the statement to be proved is true. Theorem 4.6.2. There is no integer that is both even and odd. Proof: Suppose not. Then there exists an integer n that is even and odd. By definition of even, n = 2a for some integer a. By definition of odd, n = 2b + 1 for some integer b. Consequently, 1 2a = 2b + 1; and so a − b = : 2 1 Since a and b are integers, a − b is an integer. But a − b is 2 , which is not an integer. Thus a − b is an integer and a − b is not an integer, which is a “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a3 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 Method of Proof by Contradiction Procedure 1 Suppose the statement to be proved is false. (Suppose the negation of the statement is true.) 2 Show that this supposition leads to a logical contradiction. 3 Conclude that the statement to be proved is true. Theorem 4.6.2. There is no integer that is both even and odd. Proof: Suppose not. Then there exists an integer n that is even and odd. By definition of even, n = 2a for some integer a. By definition of odd, n = 2b + 1 for some integer b. Consequently, 1 2a = 2b + 1; and so a − b = : 2 1 Since a and b are integers, a − b is an integer. But a − b is 2 , which is not an integer. Thus a − b is an integer and a − b is not an integer, which is a contradiction. “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a3 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 Method of Proof by Contradiction Example Use the Proof by Contradiction method to prove that there is no largest integer. “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a4 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 If the animal is a sumo-wrestler, then it is not a duck. Argument Suppose an animal is a sumo-wrestler. Then it follows that this animal is a human being. Therefore the animal is not a duck. Statement to prove: There are no ducks that are sumo-wrestlers. Contrapositive Original: If the animal is a duck, then it is not a sumo-wrestler. Contrapositive: “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a5 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G. H. Hardy, 1877-1947 Argument Suppose an animal is a sumo-wrestler. Then it follows that this animal is a human being. Therefore the animal is not a duck. Statement to prove: There are no ducks that are sumo-wrestlers. Contrapositive Original: If the animal is a duck, then it is not a sumo-wrestler. Contrapositive: If the animal is a sumo-wrestler, then it is not a duck. “Reductio ad absurdum is one of a mathematician’s4.6 Indirect finestArgument: weapons. Contradiction It is a far andfiner Contraposition gambit than any chess gambit: a5 chess/ 7 player may offer the sacrifice of a pawn or even a piece, but the mathematician offers the game." –G.
Recommended publications
  • Dialetheists' Lies About the Liar
    PRINCIPIA 22(1): 59–85 (2018) doi: 10.5007/1808-1711.2018v22n1p59 Published by NEL — Epistemology and Logic Research Group, Federal University of Santa Catarina (UFSC), Brazil. DIALETHEISTS’LIES ABOUT THE LIAR JONAS R. BECKER ARENHART Departamento de Filosofia, Universidade Federal de Santa Catarina, BRAZIL [email protected] EDERSON SAFRA MELO Departamento de Filosofia, Universidade Federal do Maranhão, BRAZIL [email protected] Abstract. Liar-like paradoxes are typically arguments that, by using very intuitive resources of natural language, end up in contradiction. Consistent solutions to those paradoxes usually have difficulties either because they restrict the expressive power of the language, orelse because they fall prey to extended versions of the paradox. Dialetheists, like Graham Priest, propose that we should take the Liar at face value and accept the contradictory conclusion as true. A logical treatment of such contradictions is also put forward, with the Logic of Para- dox (LP), which should account for the manifestations of the Liar. In this paper we shall argue that such a formal approach, as advanced by Priest, is unsatisfactory. In order to make contradictions acceptable, Priest has to distinguish between two kinds of contradictions, in- ternal and external, corresponding, respectively, to the conclusions of the simple and of the extended Liar. Given that, we argue that while the natural interpretation of LP was intended to account for true and false sentences, dealing with internal contradictions, it lacks the re- sources to tame external contradictions. Also, the negation sign of LP is unable to represent internal contradictions adequately, precisely because of its allowance of sentences that may be true and false.
    [Show full text]
  • Chapter 5: Methods of Proof for Boolean Logic
    Chapter 5: Methods of Proof for Boolean Logic § 5.1 Valid inference steps Conjunction elimination Sometimes called simplification. From a conjunction, infer any of the conjuncts. • From P ∧ Q, infer P (or infer Q). Conjunction introduction Sometimes called conjunction. From a pair of sentences, infer their conjunction. • From P and Q, infer P ∧ Q. § 5.2 Proof by cases This is another valid inference step (it will form the rule of disjunction elimination in our formal deductive system and in Fitch), but it is also a powerful proof strategy. In a proof by cases, one begins with a disjunction (as a premise, or as an intermediate conclusion already proved). One then shows that a certain consequence may be deduced from each of the disjuncts taken separately. One concludes that that same sentence is a consequence of the entire disjunction. • From P ∨ Q, and from the fact that S follows from P and S also follows from Q, infer S. The general proof strategy looks like this: if you have a disjunction, then you know that at least one of the disjuncts is true—you just don’t know which one. So you consider the individual “cases” (i.e., disjuncts), one at a time. You assume the first disjunct, and then derive your conclusion from it. You repeat this process for each disjunct. So it doesn’t matter which disjunct is true—you get the same conclusion in any case. Hence you may infer that it follows from the entire disjunction. In practice, this method of proof requires the use of “subproofs”—we will take these up in the next chapter when we look at formal proofs.
    [Show full text]
  • In Defence of Constructive Empiricism: Metaphysics Versus Science
    To appear in Journal for General Philosophy of Science (2004) In Defence of Constructive Empiricism: Metaphysics versus Science F.A. Muller Institute for the History and Philosophy of Science and Mathematics Utrecht University, P.O. Box 80.000 3508 TA Utrecht, The Netherlands E-mail: [email protected] August 2003 Summary Over the past years, in books and journals (this journal included), N. Maxwell launched a ferocious attack on B.C. van Fraassen's view of science called Con- structive Empiricism (CE). This attack has been totally ignored. Must we con- clude from this silence that no defence is possible against the attack and that a fortiori Maxwell has buried CE once and for all, or is the attack too obviously flawed as not to merit exposure? We believe that neither is the case and hope that a careful dissection of Maxwell's reasoning will make this clear. This dis- section includes an analysis of Maxwell's `aberrance-argument' (omnipresent in his many writings) for the contentious claim that science implicitly and per- manently accepts a substantial, metaphysical thesis about the universe. This claim generally has been ignored too, for more than a quarter of a century. Our con- clusions will be that, first, Maxwell's attacks on CE can be beaten off; secondly, his `aberrance-arguments' do not establish what Maxwell believes they estab- lish; but, thirdly, we can draw a number of valuable lessons from these attacks about the nature of science and of the libertarian nature of CE. Table of Contents on other side −! Contents 1 Exordium: What is Maxwell's Argument? 1 2 Does Science Implicitly Accept Metaphysics? 3 2.1 Aberrant Theories .
    [Show full text]
  • Section 2.1: Proof Techniques
    Section 2.1: Proof Techniques January 25, 2021 Abstract Sometimes we see patterns in nature and wonder if they hold in general: in such situations we are demonstrating the appli- cation of inductive reasoning to propose a conjecture, which may become a theorem which we attempt to prove via deduc- tive reasoning. From our work in Chapter 1, we conceive of a theorem as an argument of the form P → Q, whose validity we seek to demonstrate. Example: A student was doing a proof and suddenly specu- lated “Couldn’t we just say (A → (B → C)) ∧ B → (A → C)?” Can she? It’s a theorem – either we prove it, or we provide a counterexample. This section outlines a variety of proof techniques, including direct proofs, proofs by contraposition, proofs by contradiction, proofs by exhaustion, and proofs by dumb luck or genius! You have already seen each of these in Chapter 1 (with the exception of “dumb luck or genius”, perhaps). 1 Theorems and Informal Proofs The theorem-forming process is one in which we • make observations about nature, about a system under study, etc.; • discover patterns which appear to hold in general; • state the rule; and then • attempt to prove it (or disprove it). This process is formalized in the following definitions: • inductive reasoning - drawing a conclusion based on experi- ence, which one might state as a conjecture or theorem; but al- mostalwaysas If(hypotheses)then(conclusion). • deductive reasoning - application of a logic system to investi- gate a proposed conclusion based on hypotheses (hence proving, disproving, or, failing either, holding in limbo the conclusion).
    [Show full text]
  • 'The Denial of Bivalence Is Absurd'1
    On ‘The Denial of Bivalence is Absurd’1 Francis Jeffry Pelletier Robert J. Stainton University of Alberta Carleton University Edmonton, Alberta, Canada Ottawa, Ontario, Canada [email protected] [email protected] Abstract: Timothy Williamson, in various places, has put forward an argument that is supposed to show that denying bivalence is absurd. This paper is an examination of the logical force of this argument, which is found wanting. I. Introduction Let us being with a word about what our topic is not. There is a familiar kind of argument for an epistemic view of vagueness in which one claims that denying bivalence introduces logical puzzles and complications that are not easily overcome. One then points out that, by ‘going epistemic’, one can preserve bivalence – and thus evade the complications. James Cargile presented an early version of this kind of argument [Cargile 1969], and Tim Williamson seemingly makes a similar point in his paper ‘Vagueness and Ignorance’ [Williamson 1992] when he says that ‘classical logic and semantics are vastly superior to…alternatives in simplicity, power, past success, and integration with theories in other domains’, and contends that this provides some grounds for not treating vagueness in this way.2 Obviously an argument of this kind invites a rejoinder about the puzzles and complications that the epistemic view introduces. Here are two quick examples. First, postulating, as the epistemicist does, linguistic facts no speaker of the language could possibly know, and which have no causal link to actual or possible speech behavior, is accompanied by a litany of disadvantages – as the reader can imagine.
    [Show full text]
  • Three Ways of Being Non-Material
    Three Ways of Being Non-Material Vincenzo Crupi, Andrea Iacona May 2019 This paper presents a novel unified account of three distinct non-material inter- pretations of `if then': the suppositional interpretation, the evidential interpre- tation, and the strict interpretation. We will spell out and compare these three interpretations within a single formal framework which rests on fairly uncontro- versial assumptions, in that it requires nothing but propositional logic and the probability calculus. As we will show, each of the three intrerpretations exhibits specific logical features that deserve separate consideration. In particular, the evidential interpretation as we understand it | a precise and well defined ver- sion of it which has never been explored before | significantly differs both from the suppositional interpretation and from the strict interpretation. 1 Preliminaries Although it is widely taken for granted that indicative conditionals as they are used in ordinary language do not behave as material conditionals, there is little agreement on the nature and the extent of such deviation. Different theories tend to privilege different intuitions about conditionals, and there is no obvious answer to the question of which of them is the correct theory. In this paper, we will compare three interpretations of `if then': the suppositional interpretation, the evidential interpretation, and the strict interpretation. These interpretations may be regarded either as three distinct meanings that ordinary speakers attach to `if then', or as three ways of explicating a single indeterminate meaning by replacing it with a precise and well defined counterpart. Here is a rough and informal characterization of the three interpretations. According to the suppositional interpretation, a conditional is acceptable when its consequent is credible enough given its antecedent.
    [Show full text]
  • The Incorrect Usage of Propositional Logic in Game Theory
    The Incorrect Usage of Propositional Logic in Game Theory: The Case of Disproving Oneself Holger I. MEINHARDT ∗ August 13, 2018 Recently, we had to realize that more and more game theoretical articles have been pub- lished in peer-reviewed journals with severe logical deficiencies. In particular, we observed that the indirect proof was not applied correctly. These authors confuse between statements of propositional logic. They apply an indirect proof while assuming a prerequisite in order to get a contradiction. For instance, to find out that “if A then B” is valid, they suppose that the assumptions “A and not B” are valid to derive a contradiction in order to deduce “if A then B”. Hence, they want to establish the equivalent proposition “A∧ not B implies A ∧ notA” to conclude that “if A then B”is valid. In fact, they prove that a truth implies a falsehood, which is a wrong statement. As a consequence, “if A then B” is invalid, disproving their own results. We present and discuss some selected cases from the literature with severe logical flaws, invalidating the articles. Keywords: Transferable Utility Game, Solution Concepts, Axiomatization, Propositional Logic, Material Implication, Circular Reasoning (circulus in probando), Indirect Proof, Proof by Contradiction, Proof by Contraposition, Cooperative Oligopoly Games 2010 Mathematics Subject Classifications: 03B05, 91A12, 91B24 JEL Classifications: C71 arXiv:1509.05883v1 [cs.GT] 19 Sep 2015 ∗Holger I. Meinhardt, Institute of Operations Research, Karlsruhe Institute of Technology (KIT), Englerstr. 11, Building: 11.40, D-76128 Karlsruhe. E-mail: [email protected] The Incorrect Usage of Propositional Logic in Game Theory 1 INTRODUCTION During the last decades, game theory has encountered a great success while becoming the major analysis tool for studying conflicts and cooperation among rational decision makers.
    [Show full text]
  • Conundrums of Conditionals in Contraposition
    Dale Jacquette CONUNDRUMS OF CONDITIONALS IN CONTRAPOSITION A previously unnoticed metalogical paradox about contrapo- sition is formulated in the informal metalanguage of propositional logic, where it exploits a reflexive self-non-application of the truth table definition of the material conditional to achieve semantic di- agonalization. Three versions of the paradox are considered. The main modal formulation takes as its assumption a conditional that articulates the truth table conditions of conditional propo- sitions in stating that if the antecedent of a true conditional is false, then it is possible for its consequent to be true. When this true conditional is contraposed in the conclusion of the inference, it produces the false conditional conclusion that if it is not the case that the consequent of a true conditional can be true, then it is not the case that the antecedent of the conditional is false. 1. The Logic of Conditionals A conditional sentence is the literal contrapositive of another con- ditional if and only if the antecedent of one is the negation of the consequent of the other. The sentence q p is thus ordinarily un- derstood as the literal contrapositive of: p⊃ :q. But the requirement presupposes that the unnegated antecedents⊃ of the conditionals are identical in meaning to the unnegated consequents of their contrapos- itives. The univocity of ‘p’ and ‘q’ in p q and q p can usually be taken for granted within a single context⊃ of: application⊃ : in sym- bolic logic, but in ordinary language the situation is more complicated. To appreciate the difficulties, consider the use of potentially equivo- cal terms in the following conditionals whose reference is specified in particular speech act contexts: (1.1) If the money is in the bank, then the money is safe.
    [Show full text]
  • Deduction (I) Tautologies, Contradictions And
    D (I) T, & L L October , Tautologies, contradictions and contingencies Consider the truth table of the following formula: p (p ∨ p) () If you look at the final column, you will notice that the truth value of the whole formula depends on the way a truth value is assigned to p: the whole formula is true if p is true and false if p is false. Contrast the truth table of (p ∨ p) in () with the truth table of (p ∨ ¬p) below: p ¬p (p ∨ ¬p) () If you look at the final column, you will notice that the truth value of the whole formula does not depend on the way a truth value is assigned to p. The formula is always true because of the meaning of the connectives. Finally, consider the truth table table of (p ∧ ¬p): p ¬p (p ∧ ¬p) () This time the formula is always false no matter what truth value p has. Tautology A statement is called a tautology if the final column in its truth table contains only ’s. Contradiction A statement is called a contradiction if the final column in its truth table contains only ’s. Contingency A statement is called a contingency or contingent if the final column in its truth table contains both ’s and ’s. Let’s consider some examples from the book. Can you figure out which of the following sentences are tautologies, which are contradictions and which contingencies? Hint: the answer is the same for all the formulas with a single row. () a. (p ∨ ¬p), (p → p), (p → (q → p)), ¬(p ∧ ¬p) b.
    [Show full text]
  • Leibniz's Ontological Proof of the Existence of God and the Problem Of
    Leibniz’s Ontological Proof of the Existence of God and the Problem of »Impossible Objects« Wolfgang Lenzen (Osnabrück) Abstract The core idea of the ontological proof is to show that the concept of existence is somehow contained in the concept of God, and that therefore God’s existence can be logically derived – without any further assumptions about the external world – from the very idea, or definition, of God. Now, G.W. Leibniz has argued repeatedly that the traditional versions of the ontological proof are not fully conclusive, because they rest on the tacit assumption that the concept of God is possible, i.e. free from contradiction. A complete proof will rather have to consist of two parts. First, a proof of premise (1) God is possible. Second, a demonstration of the “remarkable proposition” (2) If God is possible, then God exists. The present contribution investigates an interesting paper in which Leibniz tries to prove proposition (2). It will be argued that the underlying idea of God as a necessary being has to be interpreted with the help of a distinguished predicate letter ‘E’ (denoting the concept of existence) as follows: (3) g =df ιxE(x). Principle (2) which Leibniz considered as “the best fruit of the entire logic” can then be formalized as follows: (4) ◊E(ιxE(x)) → E(ιxE(x)). At first sight, Leibniz’s proof appears to be formally correct; but a closer examination reveals an ambiguity in his use of the modal notions. According to (4), the possibility of the necessary being has to be understood in the sense of something which possibly exists.
    [Show full text]
  • Contrastive Empiricism
    Elliott Sober Contrastive Empiricism I Despite what Hegel may have said, syntheses have not been very successful in philosophical theorizing. Typically, what happens when you combine a thesis and an antithesis is that you get a mishmash, or maybe just a contradiction. For example, in the philosophy of mathematics, formalism says that mathematical truths are true in virtue of the way we manipulate symbols. Mathematical Platonism, on the other hand, holds that mathematical statements are made true by abstract objects that exist outside of space and time. What would a synthesis of these positions look like? Marks on paper are one thing, Platonic forms an­ other. Compromise may be a good idea in politics, but it looks like a bad one in philosophy. With some trepidation, I propose in this paper to go against this sound advice. Realism and empiricism have always been contradictory tendencies in the philos­ ophy of science. The view I will sketch is a synthesis, which I call Contrastive Empiricism. Realism and empiricism are incompatible, so a synthesis that merely conjoined them would be a contradiction. Rather, I propose to isolate important elements in each and show that they combine harmoniously. I will leave behind what I regard as confusions and excesses. The result, I hope, will be neither con­ tradiction nor mishmash. II Empiricism is fundamentally a thesis about experience. It has two parts. First, there is the idea that experience is necessary. Second, there is the thesis that ex­ perience suffices. Necessary and sufficient for what? Usually this blank is filled in with something like: knowledge of the world outside the mind.
    [Show full text]
  • Immediate Inference
    Immediate Inference Dr Desh Raj Sirswal, Assistant Professor (Philosophy) P.G. Govt. College for Girls, Sector-11, Chandigarh http://drsirswal.webs.com . Inference Inference is the act or process of deriving a conclusion based solely on what one already knows. Inference has two types: Deductive Inference and Inductive Inference. They are deductive, when we move from the general to the particular and inductive where the conclusion is wider in extent than the premises. Immediate Inference Deductive inference may be further classified as (i) Immediate Inference (ii) Mediate Inference. In immediate inference there is one and only one premise and from this sole premise conclusion is drawn. Immediate inference has two types mentioned below: Square of Opposition Eduction Here we will know about Eduction in details. Eduction The second form of Immediate Inference is Eduction. It has three types – Conversion, Obversion and Contraposition. These are not part of the square of opposition. They involve certain changes in their subject and predicate terms. The main concern is to converse logical equivalence. Details are given below: Conversion An inference formed by interchanging the subject and predicate terms of a categorical proposition. Not all conversions are valid. Conversion grounds an immediate inference for both E and I propositions That is, the converse of any E or I proposition is true if and only if the original proposition was true. Thus, in each of the pairs noted as examples either both propositions are true or both are false. Steps for Conversion Reversing the subject and the predicate terms in the premise. Valid Conversions Convertend Converse A: All S is P.
    [Show full text]