Atomistic Empiricism Or Holistic Empiricism?*

Total Page:16

File Type:pdf, Size:1020Kb

Atomistic Empiricism Or Holistic Empiricism?* ATOMISTIC EMPIRICISM OR HOLISTIC EMPIRICISM?∗ I. Atomistic Empiricism Traditional empiricism was atomistic: it assumed that scientific knowledge may be tested through direct comparison of the “atoms” of knowledge, i.e. particular sentences, with the “atoms” of experience, that is separate results of observation and experiments, or through the confrontation of small units (if only sensible) of knowledge with small units (“elementary” units) of experience. “Atomistic” tendencies in empiricism can be best observed in positivism. Especially the so-called doctrine of logical atomism in which the notions of atomic sentence and molecular sentence come to the fore, proclaimed mainly by Russell and Wittgenstein, represents decisively the viewpoint of atomistic empiricism. One of the fundamental dogmas of neopositivism is the thesis on the possibility of empirical confirmation or refutation of every statement, taken separately, by means of particular elements of experience.1 In principle, the thesis is also shared by a critic of some of other dogmas of logical empiricism – K.R. Popper. II. The Concept of Holistic Empiricism It appears that the systemic character of knowledge makes it impossible to juxtapose separate theoretical statements with experimental data; what is more, theoretical hypotheses (laws) are not only and cannot be on the whole separately tested but mostly are not (and cannot be) separated ∗ Translation of “Empiryzm atomistyczny czy empiryzm holistyczny?” Studia Filozoficzne, 12, 1975, 149-160. 1 W. Mejbaum writes that empiricism of neopositivists is based on a conviction about the divisibility of experimental material into particular building blocks: impressions in the subjectivist version, and facts in the objectivist version. We subordinate sentences to those events, and a set of those sentences may be considered to be a starting point of a programme of logical reconstruction of knowledge. The programme of reconstruction itself consists in the search for rules which would allow, on the basis of elementary sentences, to justify the whole of human knowledge which we want to consider as basic (Mejbaum 1960, p. 345). 272 Part Four: Problems of Verification of Knowledge proposed.2 For example, the Galileo-Newton principle of inertia is so much in contradiction with direct observation made in everyday life that it could not be formulated and adopted (accepted) in a different way than only in connection with those other hypotheses, which later entered into the composition of Newtonian dynamic and his theory of gravitation. It was only thanks to drawing from it, in connection with those other hypotheses (or thanks to the deduction from the system into which it was incorporated) of empirical conclusions and their confrontation with the results of experiments, it was carefully tested, or to put it more precisely, the theoretical system of statements encompassing it was tested.3 It also appears that such a “complex” indirect testing through the deduction of common consequences is generally more precise and more certain than the testing of a law taken separately. Indeed, the principle of inertia may be tested in isolation from other statements of the system, as it was done by Galileo when observing the behaviour of bodies moving on an inclined plane, or as it was done by those who immediately followed him when they studied the behaviour of bodies in a relative vacuum and the like. However, as shown by Newton, testing of this kind has never achieved, even in approximation, the degree of preciseness that is accessible when testing it together with other principles of dynamics (and Newton’s theory of gravitation), e.g. when applied to the motion of planets or the moving missile (in which case the movement of an object “is divided” into its vector components, i.e. projects on the co-ordinate axis). Apart from that, thanks to the derivation from a given law, together with other hypotheses, of conclusions and predictions in various fields, we gain a possibility of confronting that set of initial premises (thus also of the law being tested) with experience at “various points” of its application to solving various problems, so that also “the line of junction” of this law with experience becomes many-sided. As a result, we obtain testing that is more precise, versatile and reliable than in the case of testing of a law taken in isolation. This is connected with the fact that a given experimental situation, which determines the fate of a given theoretical system, usually does not consist 2 Also with this respect “the context of discovery” and “the context of justification” reveal their similarity in spite of neo-positivism. On other aspects of relationships between “the context of discovery” and “the context of justification,” see Lakatos (1970). 3 The same concerns Galileo’s law of fall of bodies. An experiment consisting in throwing objects from the Leaning Tower of Pisa, which was as if to begin it, has probably never been conducted (see, e.g., on this question: Butterfield 1958, Part V). This law was formulated as an element of a new physical conception, which at the same time allowed its experimental testing. It is worth noting that facts of this kind, taken from the history of science, speak in favour of both holistic empiricism (holism) and the method of idealization and hypotheticism: those laws could not be the inductive results of generalizations of empirical data. .
Recommended publications
  • Chapter 5: Methods of Proof for Boolean Logic
    Chapter 5: Methods of Proof for Boolean Logic § 5.1 Valid inference steps Conjunction elimination Sometimes called simplification. From a conjunction, infer any of the conjuncts. • From P ∧ Q, infer P (or infer Q). Conjunction introduction Sometimes called conjunction. From a pair of sentences, infer their conjunction. • From P and Q, infer P ∧ Q. § 5.2 Proof by cases This is another valid inference step (it will form the rule of disjunction elimination in our formal deductive system and in Fitch), but it is also a powerful proof strategy. In a proof by cases, one begins with a disjunction (as a premise, or as an intermediate conclusion already proved). One then shows that a certain consequence may be deduced from each of the disjuncts taken separately. One concludes that that same sentence is a consequence of the entire disjunction. • From P ∨ Q, and from the fact that S follows from P and S also follows from Q, infer S. The general proof strategy looks like this: if you have a disjunction, then you know that at least one of the disjuncts is true—you just don’t know which one. So you consider the individual “cases” (i.e., disjuncts), one at a time. You assume the first disjunct, and then derive your conclusion from it. You repeat this process for each disjunct. So it doesn’t matter which disjunct is true—you get the same conclusion in any case. Hence you may infer that it follows from the entire disjunction. In practice, this method of proof requires the use of “subproofs”—we will take these up in the next chapter when we look at formal proofs.
    [Show full text]
  • In Defence of Constructive Empiricism: Metaphysics Versus Science
    To appear in Journal for General Philosophy of Science (2004) In Defence of Constructive Empiricism: Metaphysics versus Science F.A. Muller Institute for the History and Philosophy of Science and Mathematics Utrecht University, P.O. Box 80.000 3508 TA Utrecht, The Netherlands E-mail: [email protected] August 2003 Summary Over the past years, in books and journals (this journal included), N. Maxwell launched a ferocious attack on B.C. van Fraassen's view of science called Con- structive Empiricism (CE). This attack has been totally ignored. Must we con- clude from this silence that no defence is possible against the attack and that a fortiori Maxwell has buried CE once and for all, or is the attack too obviously flawed as not to merit exposure? We believe that neither is the case and hope that a careful dissection of Maxwell's reasoning will make this clear. This dis- section includes an analysis of Maxwell's `aberrance-argument' (omnipresent in his many writings) for the contentious claim that science implicitly and per- manently accepts a substantial, metaphysical thesis about the universe. This claim generally has been ignored too, for more than a quarter of a century. Our con- clusions will be that, first, Maxwell's attacks on CE can be beaten off; secondly, his `aberrance-arguments' do not establish what Maxwell believes they estab- lish; but, thirdly, we can draw a number of valuable lessons from these attacks about the nature of science and of the libertarian nature of CE. Table of Contents on other side −! Contents 1 Exordium: What is Maxwell's Argument? 1 2 Does Science Implicitly Accept Metaphysics? 3 2.1 Aberrant Theories .
    [Show full text]
  • Deduction (I) Tautologies, Contradictions And
    D (I) T, & L L October , Tautologies, contradictions and contingencies Consider the truth table of the following formula: p (p ∨ p) () If you look at the final column, you will notice that the truth value of the whole formula depends on the way a truth value is assigned to p: the whole formula is true if p is true and false if p is false. Contrast the truth table of (p ∨ p) in () with the truth table of (p ∨ ¬p) below: p ¬p (p ∨ ¬p) () If you look at the final column, you will notice that the truth value of the whole formula does not depend on the way a truth value is assigned to p. The formula is always true because of the meaning of the connectives. Finally, consider the truth table table of (p ∧ ¬p): p ¬p (p ∧ ¬p) () This time the formula is always false no matter what truth value p has. Tautology A statement is called a tautology if the final column in its truth table contains only ’s. Contradiction A statement is called a contradiction if the final column in its truth table contains only ’s. Contingency A statement is called a contingency or contingent if the final column in its truth table contains both ’s and ’s. Let’s consider some examples from the book. Can you figure out which of the following sentences are tautologies, which are contradictions and which contingencies? Hint: the answer is the same for all the formulas with a single row. () a. (p ∨ ¬p), (p → p), (p → (q → p)), ¬(p ∧ ¬p) b.
    [Show full text]
  • Leibniz's Ontological Proof of the Existence of God and the Problem Of
    Leibniz’s Ontological Proof of the Existence of God and the Problem of »Impossible Objects« Wolfgang Lenzen (Osnabrück) Abstract The core idea of the ontological proof is to show that the concept of existence is somehow contained in the concept of God, and that therefore God’s existence can be logically derived – without any further assumptions about the external world – from the very idea, or definition, of God. Now, G.W. Leibniz has argued repeatedly that the traditional versions of the ontological proof are not fully conclusive, because they rest on the tacit assumption that the concept of God is possible, i.e. free from contradiction. A complete proof will rather have to consist of two parts. First, a proof of premise (1) God is possible. Second, a demonstration of the “remarkable proposition” (2) If God is possible, then God exists. The present contribution investigates an interesting paper in which Leibniz tries to prove proposition (2). It will be argued that the underlying idea of God as a necessary being has to be interpreted with the help of a distinguished predicate letter ‘E’ (denoting the concept of existence) as follows: (3) g =df ιxE(x). Principle (2) which Leibniz considered as “the best fruit of the entire logic” can then be formalized as follows: (4) ◊E(ιxE(x)) → E(ιxE(x)). At first sight, Leibniz’s proof appears to be formally correct; but a closer examination reveals an ambiguity in his use of the modal notions. According to (4), the possibility of the necessary being has to be understood in the sense of something which possibly exists.
    [Show full text]
  • Contrastive Empiricism
    Elliott Sober Contrastive Empiricism I Despite what Hegel may have said, syntheses have not been very successful in philosophical theorizing. Typically, what happens when you combine a thesis and an antithesis is that you get a mishmash, or maybe just a contradiction. For example, in the philosophy of mathematics, formalism says that mathematical truths are true in virtue of the way we manipulate symbols. Mathematical Platonism, on the other hand, holds that mathematical statements are made true by abstract objects that exist outside of space and time. What would a synthesis of these positions look like? Marks on paper are one thing, Platonic forms an­ other. Compromise may be a good idea in politics, but it looks like a bad one in philosophy. With some trepidation, I propose in this paper to go against this sound advice. Realism and empiricism have always been contradictory tendencies in the philos­ ophy of science. The view I will sketch is a synthesis, which I call Contrastive Empiricism. Realism and empiricism are incompatible, so a synthesis that merely conjoined them would be a contradiction. Rather, I propose to isolate important elements in each and show that they combine harmoniously. I will leave behind what I regard as confusions and excesses. The result, I hope, will be neither con­ tradiction nor mishmash. II Empiricism is fundamentally a thesis about experience. It has two parts. First, there is the idea that experience is necessary. Second, there is the thesis that ex­ perience suffices. Necessary and sufficient for what? Usually this blank is filled in with something like: knowledge of the world outside the mind.
    [Show full text]
  • Logic, Proofs
    CHAPTER 1 Logic, Proofs 1.1. Propositions A proposition is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: “Paris is in France” (true), “London is in Denmark” (false), “2 < 4” (true), “4 = 7 (false)”. However the following are not propositions: “what is your name?” (this is a question), “do your homework” (this is a command), “this sentence is false” (neither true nor false), “x is an even number” (it depends on what x represents), “Socrates” (it is not even a sentence). The truth or falsehood of a proposition is called its truth value. 1.1.1. Connectives, Truth Tables. Connectives are used for making compound propositions. The main ones are the following (p and q represent given propositions): Name Represented Meaning Negation p “not p” Conjunction p¬ q “p and q” Disjunction p ∧ q “p or q (or both)” Exclusive Or p ∨ q “either p or q, but not both” Implication p ⊕ q “if p then q” Biconditional p → q “p if and only if q” ↔ The truth value of a compound proposition depends only on the value of its components. Writing F for “false” and T for “true”, we can summarize the meaning of the connectives in the following way: 6 1.1. PROPOSITIONS 7 p q p p q p q p q p q p q T T ¬F T∧ T∨ ⊕F →T ↔T T F F F T T F F F T T F T T T F F F T F F F T T Note that represents a non-exclusive or, i.e., p q is true when any of p, q is true∨ and also when both are true.
    [Show full text]
  • Logic, Sets, and Proofs David A
    Logic, Sets, and Proofs David A. Cox and Catherine C. McGeoch Amherst College 1 Logic Logical Statements. A logical statement is a mathematical statement that is either true or false. Here we denote logical statements with capital letters A; B. Logical statements be combined to form new logical statements as follows: Name Notation Conjunction A and B Disjunction A or B Negation not A :A Implication A implies B if A, then B A ) B Equivalence A if and only if B A , B Here are some examples of conjunction, disjunction and negation: x > 1 and x < 3: This is true when x is in the open interval (1; 3). x > 1 or x < 3: This is true for all real numbers x. :(x > 1): This is the same as x ≤ 1. Here are two logical statements that are true: x > 4 ) x > 2. x2 = 1 , (x = 1 or x = −1). Note that \x = 1 or x = −1" is usually written x = ±1. Converses, Contrapositives, and Tautologies. We begin with converses and contrapositives: • The converse of \A implies B" is \B implies A". • The contrapositive of \A implies B" is \:B implies :A" Thus the statement \x > 4 ) x > 2" has: • Converse: x > 2 ) x > 4. • Contrapositive: x ≤ 2 ) x ≤ 4. 1 Some logical statements are guaranteed to always be true. These are tautologies. Here are two tautologies that involve converses and contrapositives: • (A if and only if B) , ((A implies B) and (B implies A)). In other words, A and B are equivalent exactly when both A ) B and its converse are true.
    [Show full text]
  • On the Indemonstrability of the Principle of Contradiction
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 6-23-2003 On the Indemonstrability of the Principle of Contradiction Elisabeta Sarca University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Sarca, Elisabeta, "On the Indemonstrability of the Principle of Contradiction" (2003). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1465 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. On the Indemonstrability of the Principle of Contradiction by Elisabeta Sarca A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts Department of Philosophy College of Arts and Sciences University of South Florida Major Professor: John P. Anton, Ph.D. Kwasi Wiredu, Ph.D. Willis Truitt, Ph.D. Eric Winsberg, Ph.D. Date of Approval: June 23, 2003 Keywords: logic, metaphysics, aristotle, mill, russell-whitehead © Copyright 2003, Elisabeta Sarca Acknowledgements I would like to express my gratitude to Dr. John Anton for his invaluable advice and guidance throughout the preparation of this thesis and to Dr. Kwasi Wiredu, Dr. Willis Truitt and Dr. Eric Winsberg for their help and encouragement and for their participation in the defense of my thesis. I want to take this opportunity to thank the Department of Philosophy and the Graduate School for granting me the University Fellowship for graduate studies at University of South Florida.
    [Show full text]
  • Principles of Contradiction, Sufficient Reason, and Identity Of
    Chapter 3 The Principles of Contradiction, Sufficient Reason, and Identity of Indiscernibles1 Gonzalo Rodriguez-Pereyra Leibniz was a philosopher of principles: the principles of Contradiction, of Sufficient Reason, of Identity of Indiscernibles, of Plenitude, of the Best, and of Continuity are among the most famous Leibnizian principles.2 In this article I shall focus on the first three principles; I shall discuss various formulations of the principles (sect. 1), what it means for these theses to have the status of principles or axioms in Leibniz’s philosophy (sect. 2), the fundamental character of the Principles of Contradiction and Sufficient Reason (sect. 3), some attempts to demonstrate the Principles of Contradiction and Sufficient Reason (sect. 4), and one attempt to demonstrate the Principle of Identity of Indiscernibles (sect. 5). The main results of the chapter are summarized in a short conclusion (sect. 6). 1. Formulations of the Principles of Contradiction, Sufficient Reason, and Identity of Indiscernibles. Leibniz gives several different formulations of the Principle of Contradiction, among them the following ones: 1 I am grateful to Maria Rosa Antognazza, Paul Lodge, and Brandon Look for comments on a previous version of this paper. 2 According to Ortega y Gasset Leibniz is both the philosopher who used the greatest number of maximally general principles and the philosopher who introduced the greatest number of new principles (1979: 12). 2 PC1: For any two contradictory propositions p and q, one is true and the other is false (GP VI 413).3 PC2: For any proposition p, p is either true or false (A 6 4 670/MP 93; GP VII 299/L225; GP VII 420/LC 96; A 6 6 362/NE 362).4 PC3: For any proposition p, p is not both true and false (GP VII 299/L 225; GP VII 355/LC 15).
    [Show full text]
  • The History of Logic
    c Peter King & Stewart Shapiro, The Oxford Companion to Philosophy (OUP 1995), 496–500. THE HISTORY OF LOGIC Aristotle was the first thinker to devise a logical system. He drew upon the emphasis on universal definition found in Socrates, the use of reductio ad absurdum in Zeno of Elea, claims about propositional structure and nega- tion in Parmenides and Plato, and the body of argumentative techniques found in legal reasoning and geometrical proof. Yet the theory presented in Aristotle’s five treatises known as the Organon—the Categories, the De interpretatione, the Prior Analytics, the Posterior Analytics, and the Sophistical Refutations—goes far beyond any of these. Aristotle holds that a proposition is a complex involving two terms, a subject and a predicate, each of which is represented grammatically with a noun. The logical form of a proposition is determined by its quantity (uni- versal or particular) and by its quality (affirmative or negative). Aristotle investigates the relation between two propositions containing the same terms in his theories of opposition and conversion. The former describes relations of contradictoriness and contrariety, the latter equipollences and entailments. The analysis of logical form, opposition, and conversion are combined in syllogistic, Aristotle’s greatest invention in logic. A syllogism consists of three propositions. The first two, the premisses, share exactly one term, and they logically entail the third proposition, the conclusion, which contains the two non-shared terms of the premisses. The term common to the two premisses may occur as subject in one and predicate in the other (called the ‘first figure’), predicate in both (‘second figure’), or subject in both (‘third figure’).
    [Show full text]
  • Hegel's Twofold Critique of Empiricism
    Hegel’s Twofold Critique of Empiricism: Cognition, Ontology and the Question of Universality Sebastian Stein Ruprecht-Karls Universität Heidelberg ABSTRACT: Hegel’s seemingly contradictory assessment of empiricism can be rendered consistent if one distinguishes between two ways in which he interprets it: Firstly, as a theory of cognition and secondly, as a theory of ontological truth. While Hegel argues that the former undermines itself due to its inability to establish the universal and necessary validity of its own perspective, he praises the latter for defending the irreducibility of particularity. Still, from Hegel’s own stance, a successful notion of ontological truth must accommodate what empiricism lacks: A dynamic notion of universality that forms a negative unity with particularity, in which both moments are acknowledged but neither is prioritised. Hegel calls this unity ‘the concept’ and deduces his own notion of cognition from it, thus equipping it with the universal and necessary status that he finds empiricism’s notion of cognition unable to account for. KEYWORDS: Hegel, Empiricism, Hume, Spinoza, Rationalism, Cognition, Universality, Particularity, Concept. 1. Introduction The relationship between Hegel’s idealism and empiricism continues to engage researchers.1 While some contrast Hegel from Kant by arguing that the former has a notion of Article received on 30/10/2015 and accepted for publication on 24/12/2015. This paper could not have been written without the enriching exchanges I have had on the topics under discussion with friends, colleagues and students. In particular, I would like to thank (in alphabetical order): Resgar Beraderi, Thom Brooks, Frank Carle, Frank Chouraqui, Tobias Dangel, Daniel Dragicevic, Katerinal Deligiorgi, Markus Gabriel, Michael Greene, Jens Halfwassen, Susanne Herrmann-Sinai, Michael Inwood, Anton Friedrich Koch, Christian Martin, David Merrill, Sebastian Ostritsch, Robert Pippin, Felix Stein, Klaus Vieweg, Roberto Vinco, Joshua Wretzel, Lucia Ziglioli, the participants of Prof.
    [Show full text]
  • Logic, Ontological Neutrality, and the Law of Non-Contradiction
    Logic, Ontological Neutrality, and the Law of Non-Contradiction Achille C. Varzi Department of Philosophy, Columbia University, New York [Final version published in Elena Ficara (ed.), Contradictions. Logic, History, Actuality, Berlin: De Gruyter, 2014, pp. 53–80] Abstract. As a general theory of reasoning—and as a theory of what holds true under every possi- ble circumstance—logic is supposed to be ontologically neutral. It ought to have nothing to do with questions concerning what there is, or whether there is anything at all. It is for this reason that tra- ditional Aristotelian logic, with its tacit existential presuppositions, was eventually deemed inade- quate as a canon of pure logic. And it is for this reason that modern quantification theory, too, with its residue of existentially loaded theorems and inferential patterns, has been claimed to suffer from a defect of logical purity. The law of non-contradiction rules out certain circumstances as impossi- ble—circumstances in which a statement is both true and false, or perhaps circumstances where something both is and is not the case. Is this to be regarded as a further ontological bias? If so, what does it mean to forego such a bias in the interest of greater neutrality—and ought we to do so? Logic in the Locked Room As a general theory of reasoning, and especially as a theory of what is true no mat- ter what is the case (or in every “possible world”), logic is supposed to be ontolog- ically neutral. It should be free from any metaphysical presuppositions. It ought to have nothing substantive to say concerning what there is, or whether there is any- thing at all.
    [Show full text]