Electroanalysis and Coulometric Analysis Allen J

Total Page:16

File Type:pdf, Size:1020Kb

Electroanalysis and Coulometric Analysis Allen J Subscriber access provided by University of Texas Libraries Electroanalysis and Coulometric Analysis Allen J. Bard Anal. Chem., 1966, 38 (5), 88-98• DOI: 10.1021/ac60237a006 • Publication Date (Web): 01 May 2002 Downloaded from http://pubs.acs.org on February 19, 2009 More About This Article The permalink http://dx.doi.org/10.1021/ac60237a006 provides access to: • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article Analytical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 fractionating columns are few. Van approach to equilibrium. In most (3) Chem. Eng. Xews 43 (26), June 28, 1965. Sway (17) has developed a fraction packed analytical columns, condenser (4) Elliev, Y. E., Devyatykh, G. G., collector for use in vacuum fractiona- holdup is generally very slight, and Dozorov, 5‘. A., Zh. Fiz. Khim. 37,2179 tion. A piston pump ejects the collected should therefore have only a slight (1963). fractions through a relief valve into effect on rate of equilibration. (5) Ellis, S. R. AI., Porter, XI. C., Jones, K. E., Trans. Znst. Chem. Engrs. (Lon- suitable storage vessels at atmospheric Haring and Knol (7) discuss the don) 41, 212 (1963). pressure. Williams (19) has described influence of reflux ratio on the separating (6) Fair, J. R., Ind. Eng. Chem. 56 (lo), an all-glass fraction cutter with a self- effect in a fractionating column. They October 1964. lubricated valve. This unit is suitable distinguish between separating per- (7).. Haring, H. G., Knol, H. W., Rec. Trav. formance as functioning at partial Chim. 83; 645 (1964). for vacuum operation at temperatures (8) Haughton, C. O., Brit. Chem. Eng. 10, as high as 300’ C. reflux and separating power as function- 237 (1965). Little has been added during the past ing under total reflux. Elliev et al. (4) (9) -James, A. T., Martin, A. J. P., Analyst two years to the fund of knowledge deal- developed equations to establish a 77, 915 (1952). (10) &fair,B. J.,Willingham, C. B., J. Res ing with analytical distillation; not similar relationship. Xatl. Bur. Std. 22, 519 (1939). only has distillation equipment been of Finally, a somewhat optimistic role (11) Martin, A. J. P., Synge, L. M., Bao- minor interest, but operating proce- is predicted for distillation by Wilcox chem. J. (London)35, 1358 (1941). dures and improved techniques have (18). He devised special equations to (12) Morton, F., King, P. J., McLaughlin, A., Trans. Inst. Chem. Engrs. (London) been scarcely considered. Pichler and establish conditions for preparing ultra- 42 (8) T-285-T-295, T-296-T-304, NO. Fetterer (13) have confirmed earlier pure materials. These equations are 182 (1964). findings on the consonance between simpler than those for the usual batch (13) Pichler, H., Fetterer, E., Erdoel continuous and intermittent with- distillation, since the quantity of the Kohle 17, 97 (1964). drawal of distillate from a fractionating second component is assumed to be (14) Romani, J. M., Genie Chim. 90, 29 (1963’l\____ column. very small. This approach may be (15) Tiong, Sie Sevan, Waterman, H. I., Barker, Jenson, and Rustin (1) devel- helpful also for the ultimate recovery in Znsenieur (Utrecht) 72. Ch. 71-82 oped equations for predicting the rate of purest form of compounds separated by (1960). (16) Sperando, A., Richard, M., Huber, approach to equilibrium of a batch dis- preparative GLC where some con- M., Chem. Zngr.-Tech. 37, 322 (1965). tillation column. The equations were tamination by eluted fixed phase from (17) Van Sway, &I., Rev. Sci. Znst?. 35, solved by an analog computer. .4c- the GLC column has occurred. 164 (1964). curacy of the equations was tested with (18) Wilcox, W. R., Ind. Eng. Chem. 3, a methylcyclohexane-toluene test mix- LITERATURE CITED Fundamentals 81 (1964). ture in a 4.5-inch diameter bubble tray (19) Williams, F. E., “Techniques of (1) Barker, P. E., Jenson, V. G., Rustin, A., Organic Chemistry,” Vol. IV, 2nd ed., column. For the column studied, J. Znst. Petrol. 49 (478), 316-27 (1963). Wiley, New York (1965). condenser holdup was the most (2) Chanda, SI., Ghosh, K. K., Chem. Age (20) Ziolkowski, Z., Filip, S., Kawaha, important variable affecting the rate of (India)14, 517 (1963). Z., Przemysl Chem. 42, 512 (1963). Electroanalysis and Coulometric Analysis Allen 1. Bard, Department of Chemistry, The University of Texas, Austin, Texas 7871 2 HIS PAPER surveys the literature Table 7 gives the supporting electrolytes detection technique, so valuable in Tand developments during 1964 and for many coulometric titrations. coulometric titrations. An English through December 1965, although The new edition of “Polarographic translation of the book of Abresch papers published before 1964 which have Techniques” by Meites (179) contains and Claassen on ‘[Coulometric Analysis” not appeared in previous reviews in this sections on controlled potential (1) has appeared, as well as a new book series have also been included. electrolysis and coulometry and coulo- on this subject by Patriarche (207). metric titrations. The description of the Several review articles on electro- BOOKS AND REVIEW ARTICLES techniques involved in controlled analysis have been published. Szabad- A number of books dealing with potential electrolysis measurements and vary’s (264) paper gives brief biog- electroanalytical chemistry and electro- the discussion of perturbing effects in raphies for many of the pioneers and chemistry have appeared since the last coulometry are of special interest. An research workers in the field of electro- review. Volume 2a of “Comprehensive introductory book on electroanalytical analysis. Foreign language reviews of Analytical Chemistry” (296) deals with methods has also appeared (161). electroanalysis (191, 198) (Japanese), electrical methods and contains one Other books dealing with electro- electrogravimetric analysis ($1) chapter on an introduction to electro- chemistry which may be of interest to (Dutch), coulometric analysis (5, 182) chemical analysis and another on workers in the field include “The Ency- (Russian), and controlled potential electrodeposition by A. J. Lindsey. clopedia of Electrochemistry” (105), coulometry (257) (French) have also Purdy’s book, “Electroanalytical Conway’s “Electrode Processes” (53), appeared. Methods in Biochemistry” (218) con- Delahay’s “Double Layer and Electrode , NEW TECHNIQUES tains an elementary discussion of con- Kinetics” (62), and Zuman’s “Organic trolled potential coulometry and coulo- Polarographic Analysis” (SIO), which Flow Electrolytic Methods. In- metric titrations, as well as other electro- discuss the fundamental principles and terest has been revived in techniques analytical methods; Table 6 in this electrode reactions which form the based on electrolysis of flowing streams book lists a number of coulometric basis of electroanalytical techniques. of solutions for analysis or separa- titrations that have been performed, the The recent book, “hperometric tions. Sporadic reports in the past limits of concentration for the deter- Titrations,” by Stock (259) contains have been concerned with attempts at minations, and their accuracy; and numerous examples of this end point carrying out the electrolysis of a flowing 88 R ANALYTICAL CHEMISTRY solution on an electrode contained in a in the flowing solution can then be cal- showed that O2 can be separated from column-a marriage of chromatographic culated by equating the current, i, air and other gas mixtures using cata- and electrodeposition techniques- with the rate of flow of solution into the lytic porous oxygen electrodes and the but recent interest in this method, de- column, G, yielding electrolytes and membranes usually scribed as electrolytic chromatography employed in fuel cells. (84,85), potentiostatic chromatography c=-i Thin Layer Electrolysis. Anson (228),or partition chromatography by nFG and co-workers (46, 47, 113, 114) intro- electrodeposition (24, 25) , may signal a duced the technique of electrolyses more widespread application of the where n is the number of electrons trans- carried out in thin layers (0.02 to 0.1 technique. ferred in the electrode reaction and F is mm.) of solution. Christensen and An- For an electrodeposition on a mercury the faraday. son (46) showed that for electrolysis at electrode, the ratio of the concentration Eckfeldt and Shaffer (75) used this a constant current, i, at an electrode of of nietal in the mercury, C,, and in the technique to determine oxygen (and area A, and a cell thickness, I, the solution, Cm+n, is governed by the suggested the term “constant potential following equation holds : usual type of partition or distribution derivative coulometry” for the method), (Equation 1) : nFAlCO l2 employing a flow cell with silver spheres r=--- (3) as the working electrode. The obvious i 30 _-C, -D=- advantage of this method of analysis C, +n compared to galvanic analyzers with for l2 < TO, where D is the diffusion smaller electrodes is that calibration is coefficient of electroactive species, Co is unnecessary (no unknown calibration its concentration, and T is the transition terms appear in Equation 2) and the time. Under conditions where the term except that the distribution coeffi- current is independent of changes in P/3D is negligible, Equation 3 becomes cient, D, is a function of potential, temperature, electrode surface, solution Q = nFA1C” and, if electrochemical equilibrium is viscosity, etc. Oxygen at the 1-p.p.m. (4) attained, can be calculated by the level was determined by this technique the usual coulometric analysis equatioii, Nernst equation, as shown in Equation with a relative error within 1%; at the which holds for both constant current 1. For depositions on a solid electrode, 0.01-p.p.m. level, the error was - 10%. or constant potential analysis. The a similar equation usually holds in Shropshire (245) used a fritted glass advantage of this technique, as with which C, may be taken as 1 for amounts sparger coated with silver or platinum other electrolytic techniques involving of C, greater than a monolayer.
Recommended publications
  • Polarography.Pdf
    Polarography UNIT V !1. Polarography Principle The simple principle of polarography is the study of solutions or of electrode processes by means of electrolysis with two electrodes, one polarizable and one unpolarizable, the former formed by mercury regularly dropping from a capillary tube. Polarography is a specific type of measurement that falls into the general category of linear-sweep voltammetry where the electrode potential is altered in a linear fashion from the initial potential to the final potential. As a linear sweep method controlled by convection/diffusion mass transport, the current vs. potential response of a polarographic experiment has the typical sigmoidal shape. What makes polarography different from other linear sweep voltammetry measurements is that polarography makes use of the dropping mercury electrode (DME) or the static mercury drop electrode. Ilkovic Equation Ilkovic equation is a relation used in polarography relating the diffusion current (id) and the concentration of the depolarizer (c), which is the substance reduced or oxidized at the dropping mercury electrode. The Ilkovic equation has the form id = k n D1/3m2/3t1/6c Where k is a constant which includes Faraday constant, π and the density of mercury, and has been evaluated at 708 for max current and 607 for average current, D is the diffusion coefficient of the depolarizer in the medium (cm2/s), n is the number of electrons exchanged in the electrode reaction, m is the mass flow rate of Hg through the capillary (mg/sec), and t is the drop lifetime in seconds, and c is depolarizer concentration in mol/cm3. The equation is named after the scientist who derived it, the Slovak chemist, Dionýz Ilkovič 1907-1980).
    [Show full text]
  • 07 Chapter2.Pdf
    22 METHODOLOGY 2.1 INTRODUCTION TO ELECTROCHEMICAL TECHNIQUES Electrochemical techniques of analysis involve the measurement of voltage or current. Such methods are concerned with the interplay between solution/electrode interfaces. The methods involve the changes of current, potential and charge as a function of chemical reactions. One or more of the four parameters i.e. potential, current, charge and time can be measured in these techniques and by plotting the graphs of these different parameters in various ways, one can get the desired information. Sensitivity, short analysis time, wide range of temperature, simplicity, use of many solvents are some of the advantages of these methods over the others which makes them useful in kinetic and thermodynamic studies1-3. In general, three electrodes viz., working electrode, the reference electrode, and the counter or auxiliary electrode are used for the measurement in electrochemical techniques. Depending on the combinations of parameters and types of electrodes there are various electrochemical techniques. These include potentiometry, polarography, voltammetry, cyclic voltammetry, chronopotentiometry, linear sweep techniques, amperometry, pulsed techniques etc. These techniques are mainly classified into static and dynamic methods. Static methods are those in which no current passes through the electrode-solution interface and the concentration of analyte species remains constant as in potentiometry. In dynamic methods, a current flows across the electrode-solution interface and the concentration of species changes such as in voltammetry and coulometry4. 2.2 VOLTAMMETRY The field of voltammetry was developed from polarography, which was invented by the Czechoslovakian Chemist Jaroslav Heyrovsky in the early 1920s5. Voltammetry is an electrochemical technique of analysis which includes the measurement of current as a function of applied potential under the conditions that promote polarization of working electrode6.
    [Show full text]
  • Hydrodynamic Electrodes and Microelectrodes
    CHEM465/865, 2004-3, Lecture 20, 27 th Sep., 2004 Hydrodynamic Electrodes and Microelectrodes So far we have been considering processes at planar electrodes. We have focused on the interplay of diffusion and kinetics (i.e. charge transfer as described for instance by the different formulations of the Butler-Volmer equation). In most cases, diffusion is the most significant transport limitation. Diffusion limitations arise inevitably, since any reaction consumes reactant molecules. This consumption depletes reactant (the so-called electroactive species) in the vicinity of the electrode, which leads to a non-uniform distribution (see the previous notes). ______________________________________________________________________ Note: In principle, we would have to consider the accumulation of product species in the vicinity of the electrode as well. This would not change the basic phenomenology, i.e. the interplay between kinetics and transport would remain the same. But it would make the mathematical formalism considerably more complicated. In order to simplify things, we, thus, focus entirely on the reactant distribution, as the species being consumed. ______________________________________________________________________ In this part, we are considering a semiinfinite system: The planar electrode is assumed to have a huge surface area and the solution is considered to be an infinite reservoir of reactant. This simple system has only one characteristic length scale: the thickness of the diffusion layer (or mean free path) δδδ. Sometimes the diffusion layer is referred to as the “Nernst layer” . Now: let’s consider again the interplay of kinetics and diffusion limitations. Kinetic limitations are represented by the rate constant k 0 (or equivalently by the 0=== 0bα b 1 −−− α exchange current density j nFkcred c ox ).
    [Show full text]
  • Μstat 4000P Multi Potentiostat
    µStat 4000P Multi Potentiostat 01 Ref. STAT4000P Following the format of our multipotentiostats with a size of only 22x20x7 cm, includes 4 channels that can act at the same time as 4 independent potentiostats; it also includes one multichannel that can act as a poten- tiostat where up to 4 working electrodes share an auxiliary and a reference electrode. With µStat 4000P users can perform up to 4 different electrochemical techniques at the same time; or carry out the study of one technique’s parameter in just one step by applying the same electrochemical technique in several channels but selecting different values for the parameter under study. These are just exam- ples of the enormous capabilities that our new instrument offers. µStat 4000P can be applied for Voltammetric or Amperometric measurements, including 12 electroanalytical techniques. In addition, µStat 4000P owners can later upgrade their instrument to a µStat 4000P by just purchasing an extension. This self-upgrade does not require any hardware modification, but it is implemented by means of a Galvanostat software update kit. This Multi Potentiostat is Li-ion Battery powered (DC charger adaptor also compatible), and can be easily connected to a PC via USB or through Wireless connection. µStat 4000P is controlled by the powerful software “DropView 8400” which is included and that allows plotting of the measurements and performing the analysis of results. DropView software provides powerful functions such as experimental control, graphs or file handling, among others. Available
    [Show full text]
  • Unit 1 Introduction to Electro- Analytical Methods
    Introduction to UNIT 1 INTRODUCTION TO ELECTRO- Electroanalytical ANALYTICAL METHODS Methods Structure 1.1 Introduction Objectives 1.2 Basic Concepts Electrical Units Basic Laws of Electrochemistry Electrode Potential Liquid-Junction Potentials Electrochemical Cells The Nernst Equation Cell Potential 1.3 Classification and an Overview of Electroanalytical Methods Potentiometry Voltammetry Polarography Amperometry Electrogravimetry and Coulometry Conductometry 1.4 Classification and Relationships of Electroanalytical Methods 1.5 Summary 1.6 Terminal Questions 1.7 Answers 1.1 INTRODUCTION This is the first unit of this course. This unit deals with the fundamentals of electrochemistry that are necessary for understanding the principles of electroanalytical methods discussed in this Unit 2 to 9. In this unit we have also classified of electroanalytical methods and briefly introduced of some important electroanalytical methods. More details of these elecroanalytical methods will be discussed in the consecutive units. Objectives After studying this unit, you will be able to: • name the different units of electrical quantities, • define the two basic laws of electrochemistry, • describe the single electrode potential and the potential of a galvanic cell, • derive the Nernst expression and give its applications, • calculate the electrode potentials and cell potentials using Nernst equation, • describe the basis for classification of the electroanalytical techniques, and • explain the basis principles and describe the essential conditions of the various electroanalytical techniques. 1.2 BASIC CONCEPTS Before going in detail of different electroanalytical techniques, let’s recapitulate some basic concepts which you have studied in your undergraduate classes. 7 Electroanalytical 1.2.1 Electrical Units Methods -I Ampere (A): Ampere is the unit of current.
    [Show full text]
  • Lecture Content
    EMT 518: METHODS IN ENVIROMENTAL ANALYSIS III (2 UNITS) Lecturer: Professor O. Bamgbose SYNOPSIS Electro-analytical method: Potentiometry, Reference electrode – Calomel, Ag/Agcl, indicator electrodes – 1st, 2nd and 3rd order, Metal Electrodes, membrane electrodes – glass electrode, types of liquid junction potential, solid state electrode, potentiometric titration, end point location in potentiometric titration –visual, plot of E/V, plot of derivative curves 1st and 2nd electrogravimetry, fixed potential, constant current, constant cathode potential coulometry: constant current coulometry, coulometric titration. Voltammetry: classical polarography, Description of dropping mercury electrode, condition for polarographic determination, qualitative and quantitative analysis conductance methods: description of limiting ionic conductance, conductance cell, conductomertic titration. Thermal methods: Thermogravimetry, differential thermal analysis (DTA) LECTURE CONTENT POTENTIOMETRY Is a measurement of a given chemical species in an equilibrium system by the use of an electrode, while potentiometric titration is the technique that is used for following the changes in the concentration of chemical species as function of added titrant using an electrode. In both cases a cell is needed and a cell consists of the following: (1) Reference electrode (2) Liquid junction (3) Analyte solution (4) indicator electrode. It is also possible to have a cell without liquid junction. REFERENCE ELECTRODE. In carrying out a potentiometric determination the half cell potential of one electrode must be known which should be constant, reproducible and completely insensitive to the reference electrode and must be fully polarised throughout the duration of the measurement i.e the potential of the reference electrode does not change through the whole measurement. A classical example of reference electrode is the calomel electrode.
    [Show full text]
  • Physical Electrochemical Software Brochure
    Redefining Electrochemical Measurement Physical Electrochemistry Software The Physical Electrochemistry Software is used with a to the limit. You can define the potentials as absolute Gamry Potentiostat to perform in-depth studies of the voltages or by their relationship to the Open-Circuit structure of the electrode interface and the mechanisms Potential. of electrochemical reactions. The software brings Cyclic Voltammetry and other recognized electrochemical The scan rate (mV/s) is determined by the interval between research techniques to the Gamry user. The Physical data points (sample period) and the Step Size (mV): Electrochemistry Software is a useful tool for Step Size() mV fundamental studies, sensor development, small-scale Scan Rate() mV s = energy storage devices, electrophysiology, etc. Sample Period() s The minimum sample period may be as low as 3.3 µs. The This software incorporates the following electrochemical maximum Scan Rate is a function of Step Size. For techniques: example, the maximum Scan Rate with a 2 mV step is 600 V/s. Higher steps provide faster scan rates, but at the ••• Cyclic Voltammetry expense of resolution. Step Sizes greater than 10 mV are ••• Linear Sweep Voltammetry likely to result in unsatisfactory data. ••• Chronoamperometry ••• Repeating Chronoamperometry The Physical Electrochemistry Software can save, and ••• MMuullttiipplleeMultiple-Multiple---StepStep Chronoamperometry display, up to 262,143 data points! The number of CV ••• ChronopotentChronopotentiometryiioommeettrryyiometry cycles that can be displayed is dependent upon the scan ••• Repeating Chronopotentiometry parameters. ••• Chronocoulometry Step Size() mV No. of Cycles =262,143 × ••• Controlled Potential Coulometry Voltage Span of theCV() mV Like most Gamry software, the Physical Electrochemistry Software and a Gamry Potentiostat use the Framework for data acquisition and the Echem Analyst for data analysis.
    [Show full text]
  • Stationary Electrode Voltammetry and Chronoamperometry in an Alkali Metal Carbonate-Borate Melt
    AN ABSTRACT OF THE THESIS OF DARRELL GEORGE PETCOFF for the Doctor of Philosophy (Name of student) (Degree) in Analytical Chemistry presented onC (O,/97 (Major) (Date) Title: STATIONARY ELECTRODE VOLTAMMETRY AND CHRONOAMPEROMETRY IN AN ALKALI METAL CARBONATE - BORATE. MFT T Abstract approved: Redacted for Privacy- Drir. reund The electrochemistry of the lithium-potassium-sodium carbonate-borate melt was explored by voltammetry and chrono- amperometry. In support of this, a controlled-potential polarograph and associated hardware was constructed.Several different types of reference electrodes were tried before choosing a porcelain mem- brane electrode containing a silver wire immersed in a silver sulfate melt.The special porcelain compounded was used also to construct a planar gold disk electrode.The theory of stationary electrode polarography was summarized and denormalized to provide an over- all view. A new approach to the theory of the cyclic background current was also advanced. A computer program was written to facilitate data processing.In addition to providing peak potentials, currents, and n-values, the program also resolves overlapping peaks and furnishes plots of both processed and unprocessed data. Rapid-scan voltammetry was employed to explore the electro- chemical behavior of Zn, Co, Fe, Tl, Sb, As, Ni, Sn, Cd, Te, Bi, Cr, Pb, Cu, and U in the carbonate-borate melt. Most substances gave reasonably well-defined peaks with characteristic peak potentials and n-values.Metal deposition was commonly accompanied by adsorp- tion prepeaks indicative of strong adsorption, and there was also evi- dence of a preceding chemical reaction for several elements, sug- gesting decomplexation before reduction.
    [Show full text]
  • Thesis-1961-B586i.Pdf
    INVESTIGATION OF SOME POSSIBILITIES FOR AMPEROMETRIC TITRATION OF CERTAIN METAL IONS WITH OXINE By Donald George Biechler I I Bachelor of Science University of Wisconsin Madison, Wisconsin 1956 Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1961 INVESTIGATION OF SOME POSSIBILITIES FOR AMPEROMEI'RIC TITRATION OF CERTAIN MEI'AL IONS WITH OXINE Thesis Approved: Thesis Adviser i i OKLAHOMA STATE UNIVERSITY llBRARY JAN 2 1962 PREFACE Oxine (8-hydroxyquinoline) is most generally used in analytical chemistry as a precipitant for metals and is known to form water- insoluble chelates with better than thirty metal ions (3). There exists in solutions of oxine a tautomeric equilibrium of the fol- lowing type: C C C C /~/'\ ,c/""/~ C C f ij 1 I II I C C C C C C ~/"'/C N ~/C "+/N r . _I I 0 H 0--------H Chelation of a metal ion involves replacement of the proton and for- mation of a coordinate bond with the nitrogen to form a stable 5 membered ring compound. Thus nickel, a bivalent cation, would form a compound with the following structure: 4810 90 iii iv The oxinates can be ignited and weighed as such or they may be further ignited to the metal oxides and then weighed. Alternately the oxinates may be dissolved in acid and quantitatively brominated (7)0 Considering the number of metal ions that are precipitated by oxine, it seemed that possibly more use could be made of the reagent in volumetric analysis.
    [Show full text]
  • COULOMETRY for the DETERMINATION of URANIUM and PLUTONIUM: PAST and PRESENT by M.K
    BARC/2012/E/001 BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division 2012 BARC/2012/E/001 GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION BARC/2012/E/001 COULOMETRY FOR THE DETERMINATION OF URANIUM AND PLUTONIUM: PAST AND PRESENT by M.K. Sharma, J.V. Kamat, A.S. Ambolikar, J.S. Pillai and S.K. Aggarwal Fuel Chemistry Division BHABHA ATOMIC RESEARCH CENTRE MUMBAI, INDIA 2012 BARC/2012/E/001 BIBLIOGRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as per IS : 9400 - 1980) 01 Security classification : Unclassified 02 Distribution : External 03 Report status : New 04 Series : BARC External 05 Report type : Technical Report 06 Report No. : BARC/2012/E/001 07 Part No. or Volume No. : 08 Contract No. : 10 Title and subtitle : Coulometry for the determination of uranium and plutonium: past and present 11 Collation : 34 p., 2 figs., 7 tabs. 13 Project No. : 20 Personal author(s) : M.K. Sharma; J.V. Kamat; A.S. Ambolikar; J.S. Pillai; S.K. Aggarwal 21 Affiliation of author(s) : Fuel Chemistry Division, Bhabha Atomic Research Centre, Mumbai 22 Corporate author(s) : Bhabha Atomic Research Centre, Mumbai - 400 085 23 Originating unit : Fuel Chemistry Division, BARC, Mumbai 24 Sponsor(s) Name : Department of Atomic Energy Type : Government Contd... BARC/2012/E/001 30 Date of submission : December 2011 31 Publication/Issue date : January 2012 40 Publisher/Distributor : Head, Scientific Information Resource Division, Bhabha Atomic Research Centre, Mumbai 42 Form of distribution : Hard copy 50 Language of text : English 51 Language of summary : English, Hindi 52 No.
    [Show full text]
  • Basics and Applications of a Quartz Crystal Microbalance Monitoring Surface Interactions Via Small-Scale Mass Changes
    Basics and Applications of a Quartz Crystal Microbalance CORROSION BATTERY TESTING Monitoring Surface Interactions via Small-scale Mass Changes COATINGS PHOTOVOLTAICS gamry.com Contents Basics of QCM ........................................................................................................................3 Calibration of a QCM ................................................................................................... 13 Investigation of a Thin Polymer Film ..........................................................................21 The eQCM 10M System ..................................................................................................... 26 The QCM-I System .............................................................................................................. 27 References .......................................................................................................................29 Additional Resources .................................................................................................... 30 2 gamry.com Basics of a Quartz Crystal Microbalance This section provides an introduction to the quartz crystal microbalance (QCM) which is an instrument that allows a user to monitor small mass changes on an electrode. The reader is directed to the numerous reviews 1 and book chapters1 & 2 for a more in-depth description concerning the theory and application of the QCM. A basic understanding of electrical components and concepts is assumed. The two major points of this section are:
    [Show full text]
  • Plutonium Analysis from Controlled-Potential Coulometry for the Certification of the MP3 Standard Material
    P5_14 Plutonium analysis from controlled-potential coulometry for the certification of the MP3 standard material. A. Ruas, V. Dalier, J. Pivato CEA-Marcoule BP 17171 30207 Bagnols-sur-Cèze Cedex, France [email protected] Abstract – For contributing to the certification of the new metal plutonium reference material (MP3), controlled-potential coulometry (CPC) has many advantages: it is a high accuracy absolute chemical analysis technique. Many studies are now conducted on plutonium solutions, to improve the operating conditions and the current apparatus, for mass determination with a precision of 0.1%. The different experimental preliminary results are discussed and the apparatus described. The coulometry cell assembly comprises a motor connected to a stirrer designed to prevent splashing, an inlet tube for inert gas, three electrodes, and a thermocouple for measuring the temperature. The measuring system includes a potentiostat, a CPU, a calibrated current generator, a temperature indicator and a voltmeter, all maintained at a constant temperature. Current integration is made by electronic components, introduced in the potentiostat and the CPU. + − + INTRODUCTION Pu 4 + e ↔ Pu 3 (1) Experimental electrolysis is performed using a Coulometry is an assay method in which the metal electrode with a large surface area quantity of the element analyzed is determined (working electrode) immersed in the test by measuring a quantity of electricity; under solution. The quantity of electricity used for the certain conditions it is capable of providing a conversion is related to the quantity matter in very accurate determination of the plutonium solution by Faraday’s law of electrolysis: mass concentration. The advantage of this M method is that it is absolute and uses only small m = ⋅Q (2) masses of material.
    [Show full text]