Tanais Dulongii (Audouin, 1826)

Total Page:16

File Type:pdf, Size:1020Kb

Tanais Dulongii (Audouin, 1826) Tanais dulongii (Audouin, 1826) AphiaID: 136546 . Animalia (Reino) >Arthropoda (Filo) >Crustacea (Subfilo) >Multicrustacea (Superclasse) >Malacostraca (Classe) >Eumalacostraca (Subclasse) > Peracarida (Superordem) > Tanaidacea (Ordem) > Tanaidomorpha (Subordem) > Tanaidoidea (Superfamilia) > Tanaididae (Familia) Estatuto de Conservação Sinónimos Crossurus vittatus Rathke, 1843 Gammarus dulongii Audouin, 1826 Tanais cavolinii Milne Edwards, 1840 Tanais Gallardoi Giambiagi, 1922 Tanais tomentosus Krøyer, 1842 Tanais vittatus (Rathke, 1843) Referências basis of record Bird, G.J. (2001). Tanaidacea. In: Costello, M.J., C.S. Emblow, & R. White (eds.), European Register of Marine Species. A Check-List of the Marine Species in Europe and a Bibliography of Guides to Their Identification. Patrimoines Naturels. 50: 310-315. [details] original description Audouin V. (1826). Explication sommaire des planches de crustaces de l’Egypte et de la Syrie, publiées par Jules-Cesar Savigny, membre de l’Inst.; offrant un exposé des caractères naturels des genres avec la disctinction des espèces. Description de l’Egypte;. Histoire naturelle, 1, 4, 77-98. [details] additional source Anderson, G. (2016). Tanaidacea– Thirty Years of Scholarship. (Vers. 2.0, Dec., 1 2016)., available online at http://aquila.usm.edu/tanaids30/3 [details] additional source Bamber, R.N. (2011). The marine fauna and flora of the Isles of Scilly. Tanaidacea (Crustacea: Peracarida). Journal of Natural History. 45 (29–30): 1801–1815. [details] new combination reference Milne Edwards, H. (1838). Classe huitième/ Les Crustaces. Pages 154-498, In: Lamarck, J.B.P.A. de, G.P. Deshayes, & H. Milne-Edwards, Histoire Naturelle des Animaux sans Vertèbres, Vol. 5, Arachnides, Crustacés, Annelides, Cirrhipèdes (2nd Edition). Baillière, Paris. [details] ecology source Rumbold, C. E.; Obenat, S. M.; Spivak, E. D. (2015). Comparison of life history traits of Tanais dulongii (Tanaidacea: Tanaididae) in natural and artificial marine environments of the south- western Atlantic. Helgoland Marine Research. 69(2): 231-242., available online at https://doi.org/10.1007/s10152-015-0432-9 [details] ecology source Esquete, P.; Ramos, E.; Riera, R. (2016). New data on the Tanaidacea (Crustacea: Peracarida) from the Canary Islands, with a description of a new species of Apseudopsis. Zootaxa. 4093(2): 248., available online at https://doi.org/10.11646/zootaxa.4093.2.6 [details] basis of record Bird, G.J. (2001). Tanaidacea. In: Costello, M.J., C.S. Emblow, & R. White (eds.), European Register of Marine Species. A Check-List of the Marine Species in Europe and a Bibliography of Guides to Their Identification. Patrimoines Naturels. 50: 310-315. [details] original description Audouin V. (1826). Explication sommaire des planches de crustaces de l’Egypte et de la Syrie, publiées par Jules-Cesar Savigny, membre de l’Inst.; offrant un exposé des caractères naturels des genres avec la disctinction des espèces. Description de l’Egypte;. Histoire naturelle, 1, 4, 77-98. [details] new combination reference Milne Edwards, H. (1838). Classe huitième/ Les Crustaces. Pages 154-498, In: Lamarck, J.B.P.A. de, G.P. Deshayes, & H. Milne-Edwards, Histoire Naturelle des Animaux sans Vertèbres, Vol. 5, Arachnides, Crustacés, Annelides, Cirrhipèdes (2nd Edition). Baillière, Paris. [details] context source (BeRMS 2020) Bio-environmental research group; Institute of Agricultural and Fisheries research (ILVO), Belgium; (2015): Zooplankton monitoring in the Belgian Part of the North Sea between 2009 and 2010. [details] context source (Bermuda) Sterrer, W. (1986). Marine fauna and flora of Bermuda: a systematic guide to the identification of marine organisms. Wiley-Interscience Publication. Wiley, 742 pp [details] Última atualização: 16 Jul. 2018 2.
Recommended publications
  • SNH Commissioned Report 765: Seagrass (Zostera) Beds in Orkney
    Scottish Natural Heritage Commissioned Report No. 765 Seagrass (Zostera) beds in Orkney COMMISSIONED REPORT Commissioned Report No. 765 Seagrass (Zostera) beds in Orkney For further information on this report please contact: Kate Thompson Scottish Natural Heritage 54-56 Junction Road KIRKWALL Orkney KW15 1AW Telephone: 01856 875302 E-mail: [email protected] This report should be quoted as: Thomson, M. and Jackson, E, with Kakkonen, J. 2014. Seagrass (Zostera) beds in Orkney. Scottish Natural Heritage Commissioned Report No. 765. This report, or any part of it, should not be reproduced without the permission of Scottish Natural Heritage. This permission will not be withheld unreasonably. The views expressed by the author(s) of this report should not be taken as the views and policies of Scottish Natural Heritage. © Scottish Natural Heritage 2014. COMMISSIONED REPORT Summary Seagrass (Zostera) beds in Orkney Commissioned Report No. 765 Project No: 848 Contractors: Emma Jackson (The Marine Biological Association of the United Kingdom) and Malcolm Thomson (Sula Diving) Year of publication: 2014 Keywords Seagrass; Zostera marina; Orkney; predictive model; survey. Background Seagrasses (Zostera spp) are marine flowering plants that develop on sands and muds in sheltered intertidal and shallow subtidal areas. Seagrass beds are important marine habitats but are vulnerable to a range of human induced pressures. Their vulnerability and importance to habitat creation and ecological functioning is recognised in their inclusion on the recommended Priority Marine Features list for Scotland’s seas. Prior to this study, there were few confirmed records of Zostera in Orkney waters. This study combined a predictive modelling approach with boat-based surveys to enhance under- standing of seagrass distribution in Orkney and inform conservation management.
    [Show full text]
  • From the Southeast Australian Coast, with Comments on the Distribution and Habitat Preferences of Chondropodinae
    Muvi schmallenbergi gen. nov., sp. nov. (Crustacea, Tanaidacea) from the southeast Australian coast, with comments on the distribution and habitat preferences of Chondropodinae Piotr Jóźwiak and Magdalena Błażewicz Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland ABSTRACT Based on material collected from the shelf off southeast Australia (offshore of Portland), a new genus and new species, Muvi schmallenbergi gen. nov., sp. nov., of the tanaidacean family Metapseudidae, is described. Muvi is distinguishable from other genera within the subfamily Chondropodinae by having equally long antennular flagella. It also differs from other Chondropodinae by a combination of characters such as eyelobes with a group of visual elements, rostrum with smooth lateral edges, pereonites with lateral processes and pleotelson lacking lateral process, antennule article-1 with a single apophysis, maxillule inner lobe well-developed, labial palp bearing three distal setae, cheliped exopod well-developed and setose, pereopod-1 coxa with distinct apophysis, pleopods in five pairs, and uropod basis without apophysis. The genus Deidamiapseudes Sganga & Roccatagliata, 2016 is moved from Chondropodinae (Metapseudidae) to Apseudoidea incertae sedis. An identification key for the genera within Chondropodinae is given, and their distribution is discussed. Submitted 19 February 2020 Subjects Biodiversity, Ecology, Taxonomy, Zoology Accepted 23 May 2021 Published 11 August 2021 Keywords Tanaidacea, Distribution, Shelf, South Australia, Metapseudidae Corresponding author INTRODUCTION Piotr Jóźwiak, [email protected] Tanaidacea, small benthic peracarid crustaceans, represent a poorly recognized Academic editor component of marine ecosystems. Until the end of millennium, the Australian Tanaidacea James Reimer were known only from few taxonomic publications (Haswell, 1882a, 1882b; Haswell, 1885; Additional Information and Whitelegge, 1901; Boesch, 1973; Băcescu, 1981; Sieg, 1993; Edgar, 1997).
    [Show full text]
  • Marsupial Brood Care in Cretaceous Tanaidaceans Alba Sánchez-García 1, Xavier Delclòs 1, Michael S
    www.nature.com/scientificreports OPEN Marsupial brood care in Cretaceous tanaidaceans Alba Sánchez-García 1, Xavier Delclòs 1, Michael S. Engel 2,3, Graham J. Bird4, Vincent Perrichot 5 & Enrique Peñalver 6 Received: 2 December 2016 Parental care in animal evolution has long fascinated biologists, but tracing this complex of behavioural Accepted: 9 May 2017 repertoires is challenging, as these transitory states often leave no corporeal traces as fossils. Among Published: xx xx xxxx modern invertebrates, the tanaidaceans (Malacostraca: Peracarida), a lineage of marsupial crustaceans, show an interesting variety of brooding strategies. Here we report on fossil tanaidaceans from the Cretaceous of Spain and France that provide conclusive evidence for marsupial care of brood-offspring. Two exceptionally preserved female specimens of Alavatanais carabe and A. margulisae from Late Albian Peñacerrada I amber (Spain) possess four pairs of rudimentary oostegites, indicating formation of a marsupium. From Recent data, given the taxonomic distribution of a marsupium of four pairs of oostegites, we hypothesize that this may be plesiomorphic for the Tanaidomorpha. We also report on a peculiar tanaidacean specimen referable to the fossil family Alavatanaidae, Daenerytanais maieuticus gen. et sp. nov., from Early Cenomanian La Buzinie amber (France), preserved with its marsupial pouch and content. Our discoveries provide early evidence of the peracarid reproductive strategy, as seen in modern Tanaidacea, and argue that this form of parental care may have played a role in the diversification of the lineage during this period. The fossil record provides a rich and valuable repository of behavioural and evolutionary developments despite the influence of biases in preservation or density of taxonomic representation.
    [Show full text]
  • Two New Nonindigenous Isopods in the Southwestern Atlantic
    Journal of Sea Research 138 (2018) 1–7 Contents lists available at ScienceDirect Journal of Sea Research journal homepage: www.elsevier.com/locate/seares Two new nonindigenous isopods in the Southwestern Atlantic: Simultaneous T assessment of population status and shipping transport vector ⁎ Carlos Rumbolda,b, , Marco Melonic, Brenda Dotib,d,e, Nancy Correaf, Mariano Albanob,g, Francisco Sylvesterb,h, Sandra Obenata a Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina b Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina c IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina d Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Argentina e Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad de Buenos Aires, Argentina f Servicio de Hidrografía Naval, Ministerio de Defensa de la República Argentina, Argentina g Centro Austral de Investigaciones Científicas (CADIC-CONICET), Ushuaia, Argentina h Instituto para el Estudio de la Biodiversidad de Invertebrados (IEBI), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta, Argentina ARTICLE INFO ABSTRACT Keywords: The Southwestern Atlantic is often perceived as remote region, yet it is not immune to biological invasions. Dynamene edwardsi Patchy information on historical community composition hinders our ability to identify introductions to coastal Paracerceis sculpta ecosystems in this region. Hull fouling is an under-managed shipping vector that likely continues to transport Population biology large numbers of marine species worldwide. The port of Mar del Plata is a comparatively well-studied shipping Hull fouling and commercial hub that may serve as an observatory to monitor new introductions to the Argentine coast.
    [Show full text]
  • Comparison of Life History Traits of Tanais Dulongii (Tanaidacea: Tanaididae) in Natural and Artificial Marine Environments of the South-Western Atlantic
    Helgol Mar Res (2015) 69:231–242 DOI 10.1007/s10152-015-0432-9 ORIGINAL ARTICLE Comparison of life history traits of Tanais dulongii (Tanaidacea: Tanaididae) in natural and artificial marine environments of the south-western Atlantic 1 1 1 Carlos E. Rumbold • Sandra M. Obenat • Eduardo D. Spivak Received: 11 December 2014 / Revised: 29 March 2015 / Accepted: 14 April 2015 / Published online: 28 April 2015 Ó Springer-Verlag Berlin Heidelberg and AWI 2015 Abstract Tanaidaceans are small benthic crustaceans This study suggests that the differences observed between with a strictly benthic life cycle and low dispersion rates, populations of T. dulongii in life history traits are inti- so they are good candidates to evaluate the effects of en- mately related to environmental differences in pH and vironment over life history strategies and reproductive bi- dissolved oxygen between habitats, but should not be dis- ology. In this work, we studied two populations of Tanais carded a synergistic effect of temperature, organic pollu- dulongii (Audouin, 1826) that live in two contrasting tion, food availability and predation pressure. habitats in order to determine whether they differ in life history traits. The animals were obtained by systematic Keywords Impacted environment Á Life history Á sampling in a rocky shore with a lower anthropic impact Population dynamics Á Pristine environment Á Tanais (La Estafeta: LE) and a polluted area (Mar del Plata har- dulongii bour: MdP) from March 2011 to March 2012. Seawater temperature and salinity did not differ between sites, but MdP showed more acid and hypoxic conditions than LE. Introduction Population density was homogeneous and lower in MdP (ca.
    [Show full text]
  • Population Biology and Reproduction of Kalliapseudes Schubartii Mañé-Garzón, 1949 (Peracarida, Tanaidacea) in a Tropical Coastal Lagoon, Itaipu, Southeastern Brazil
    POPULATION BIOLOGY AND REPRODUCTION OF KALLIAPSEUDES SCHUBARTII MAÑÉ-GARZÓN, 1949 (PERACARIDA, TANAIDACEA) IN A TROPICAL COASTAL LAGOON, ITAIPU, SOUTHEASTERN BRAZIL BY SIMONE PENNAFIRME1) and ABILIO SOARES-GOMES2,3) 1) Programa de Pós-Graduação em Biologia Marinha, Universidade Federal Fluminense, P.O. Box 100.644, Niterói, 24001-970 Brazil 2) Department of Marine Biology, Universidade Federal Fluminese, P.O. Box 100.644, Niterói, 24001-970 Brazil ABSTRACT A population of the tanaidacean, Kalliapseudes schubartii Mañé-Garzón, 1949 was sampled monthly in order to study its life cycle in a southeastern Brazilian tropical lagoon. The species’ density changed seasonally, increasing in the beginning of the wet season and presenting peaks following precipitation peaks in other periods. Density changed due to oscillations in numbers of larval stages and juveniles. Females were larger than males, and the size at onset of sexual maturity of females was 5.9 mm. The sex-ratio was female-skewed during all months, in accordance with studies of the same species at other sites along the Brazilian coast and on other species of tanaids. Ovigerous females and other developmental stages were observed in all samples. Peaks in the frequencies of larval stages and juveniles were followed by peaks in ovigerous female frequency. Comparisons of populations of K. schubartii at different sites along the Brazilian coast showed an intraspecific difference in their life cycles according to a latitudinal gradient, with longer reproductive activity occurring in the tropics. RÉSUMÉ [Les études de biologie des populations des espèces-proies fournissent des informations utiles pour la gestion de la ressource et aident à prévoir les changements à venir concernant les espèces exploitées commercialement.] Une population de tanaidacés Kalliapseudes schubartii Mañé-Garzón, 1949 a été échantillonnée mensuellement dans une lagune tropicale du sud-est du Brésil afin d’étudier son cycle de vie.
    [Show full text]
  • Habitat Complexity and Community Composition: Relationships Between Different Ecosystem Engineers and the Associated Macroinvertebrate Assemblages
    Helgol Mar Res (2011) 65:467–477 DOI 10.1007/s10152-010-0236-x ORIGINAL ARTICLE Habitat complexity and community composition: relationships between different ecosystem engineers and the associated macroinvertebrate assemblages Marı´a Cruz Sueiro • Alejandro Bortolus • Evangelina Schwindt Received: 19 April 2010 / Revised: 10 November 2010 / Accepted: 11 November 2010 / Published online: 27 November 2010 Ó Springer-Verlag and AWI 2010 Abstract Several species of ecosystem engineers inhab- Orchestia gammarella was found strictly associated with iting coastal environments have been reported structuring the cordgrass–mussel habitat. Species richness and diver- different kinds of communities. The magnitude of this sity were positively related with habitat complexity while influence often depends on the habitat complexity intro- total density showed the opposite trend. Our study suggests duced by the engineers. It is commonly accepted that an that species vary their relative distribution and abundances increase in habitat complexity will result in an increase in in response to different habitat complexity. Nevertheless, diversity and/or abundance in the associated fauna. The the direction (i.e., neutral, positive or negative) and rocky salt marshes along the coast of Patagonia are dom- intensity of the community’s response seem to depend on inated by cordgrasses, mussels, and barnacles forming a the physiological requirements of the different species and mosaic of engineered habitats with different complexity. their efficiency to readjust their
    [Show full text]
  • This Is a Post-Peer-Review, Pre-Copyedit Version of a Chapter Published in “Species Diversity of Animals in Japan” (Motokawa M, Kajihara H, Editors)
    This is a post-peer-review, pre-copyedit version of a chapter published in “Species Diversity of Animals in Japan” (Motokawa M, Kajihara H, editors). The final authenticated version is available online at: https://doi.org/10.1007/978-4-431-56432-4_23. Chapter 23 Review of the Taxonomy, Diversity, Ecology, and Other Biological Aspects of Order Tanaidacea from Japan and Surrounding Waters Keiichi Kakui Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan e-mail: [email protected] telephone: +81-11-706-2750 Abstract The order Tanaidacea is a group of benthic crustaceans, most of which are small, up to a few millimeters long. Tanaidaceans are distributed worldwide, with more than 1,200 described species. Following the first taxonomic paper on a Japanese tanaidacean in 1936, many researchers have studied their taxonomy, morphology, reproductive biology, or ecology in the waters around Japan. This chapter presents a brief introduction to tanaidaceans and then reviews what is known of their systematics (taxonomy and phylogeny), biology (including feeding habits, phenology, morphology, reproductive modes, parasites, predators), and ecology in Japan. The chapter ends with a summary and prospects for future research. The general conclusion is that tanaidaceans have been under-studied, both globally and within Japan; the 104 nominal species reported from around Japan and the 1,200 species reported globally likely represent a fraction of the actual diversity. The phylogeny of tanaidaceans is largely unresolved at all taxonomic levels. Recent, significant new discoveries dealing with herbivory, selfing, skin-digging activity in holothuroid hosts, possible sound production, and tube building suggest that much remains to be learned about their general biology.
    [Show full text]
  • Habitat of a Tanaidacean Apseudes Nipponicus SHIINO, 1937
    北九州市立自然史・歴史博物館研究報告A類(自然史)投稿要領 Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist., Ser. A, 15: 1–3, March 31, 2017 1. 分野:自然史に関する原著論文,短報等(和文または欧文)でつぎのうち一つ以上にあたるもの. Habitat of a tanaidacean Apseudes nipponicus SHIINO, 1937 aquaria for rearing a colonial ascidian Didemnum vexillum (in deep pit, inhabited gregariously by this animal, is covered with index.html [accessed 6 August 2016] Tasmanicisque. Verhandelingen der Natuurkundige MONSCH, K. A. 2004. Revision of the scombroid fishes from ⑴ 北九州域の自然史に関するもの. 2014) or a gastropod Strombus luhuanus (in 2015) were mud which has the smell of hydrogen sulphide.” Both habitats KAJIHARA, H. & KAKUI, K. 2016. An overview of recent Vereeniging in Nederlandsch Indië, 6: 1–276. the Cenozoic of England. Transactions of the Royal collected by a siphon and then filtered by a hand net, and around SMRC and MMBS, where our specimens were found, marine-biodiversity research in Japan. In MOTOKAWA, M. COLLETTE, B. B. and C. E. NAUEN. 1983. FAO Species Catalo- Society of Edinburgh. Earth Sciences, (3–4): 445–489. ⑵ 当館の収集活動に関するもの(例:新種記載に際して,ホロタイプまたはパラタイプ・トポタイ 95 tanaidaceans were picked up from the residue. Individuals were a less-disturbed, sulfide-containing muddy sand bottom, & KAJIHARA, H. (eds.) Species Diversity of Animals in gue. Vol. 2, Scombrids of the World. An Annotated and MONSCH, K. A. and BANNIKOV, A. F. 2011. New taxonomic プ等の標本が当館に収蔵される場合). Keiichi KAKUI 1※, Atsuko SUZUKI2, Hiroaki NAKANO2 & Hisanori KOHTSUKA3 found in 2014 were released into the sea after taking photos. roughly corresponding to that noted by SHIINO (1937). In add- Japan, pp. 25–45. Springer, Berlin. Illustrated Catalogue of Tunas, Mackerels, Bonitos and synopses and revision of the scombroid fishes (Scombro- Fifty specimens collected in 2015 were fixed by ethanol or ition, our observation of living A.
    [Show full text]
  • Sinelobus Stanfordi (Richardson, 1901): a New Crustacean Invader in Europe
    Aquatic Invasions (2009) Volume 4, Issue 4: 703-711 DOI 10.3391/ai.2009.4.4.20 © 2009 The Author(s) Journal compilation © 2009 REABIC (http://www.reabic.net) This is an Open Access article Short communication Sinelobus stanfordi (Richardson, 1901): A new crustacean invader in Europe Ton van Haaren1* and Jan Soors2 1Grontmij|AquaSense, Sciencepark 116, 1090 HC Amsterdam, The Netherlands 2Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussel, Belgium Email: [email protected], [email protected] *Corresponding author Received 29 May 2009; accepted in revised form 14 September 2009; published online 29 September 2009 Abstract This short note reports on the first European records of Sinelobus stanfordi (Crustacea: Tanaidacea: Tanaidae). The species has been recorded from five different water bodies in the Dutch coastal area and in the docks of the Belgian harbour of Antwerp. S. stanfordi was until now not known to inhabit (North-) European coasts and estuaries. It is thus very likely that its origin is non-indigenous. Key words: Sinelobus stanfordi, The Netherlands, Belgium, estuaries, littoral From the Dutch and Belgian North Sea coast substrate in the Antwerp harbour, situated in the only a few species of Tanaidacea have been mesohaline part of the Schelde-estuary. All of recorded. For Apseudes talpa (Montagu, 1808) these observations were in estuarine conditions (Apseudidae) and both Heterotanais oerstedi with more or less marine influence. (Krøyer, 1842) and Leptochelia dubia (Krøyer, Many factors make it highly likely that this 1842) (Leptocheliidae) there are no known small tanaid is a very recent newcomer in recent records since Holthuis (1956) recorded European waters.
    [Show full text]
  • Crustacea: Peracarida) from Portuguese Submarine Canyons (NE Atlantic, West Iberian Margin)
    European Journal of Taxonomy 740: 55–76 ISSN 2118-9773 https://doi.org/10.5852/ejt.2021.740.1281 www.europeanjournaloftaxonomy.eu 2021 · García-Herrero Á. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:9E9E2D9D-1AD9-43B3-84FD-02C546EDEE6B Two new tanaidaceans (Crustacea: Peracarida) from Portuguese submarine canyons (NE Atlantic, West Iberian Margin) Álvaro GARCÍA-HERRERO 1,*, Patricia ESQUETE 2 & Marina R. CUNHA 3 1,2,3 CESAM (Center of Environmental and Marine Studies), Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal. 1 Independent researcher. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:1A1B932B-C9AD-4650-A502-98982509D122 2 urn:lsid:zoobank.org:author:DD6A9296-5310-4816-A125-9E37691E14AF 3 urn:lsid:zoobank.org:author:553A98B5-0AE0-424F-9ED5-EC50F129519C Abstract. The Tanaidacea are ubiquitous and amongst the most abundant taxa in the deep sea. However, their diversity in submarine canyons remains largely unknown. Here, two new species and a new genus of Paratanaoidea are described. Paranarthrura cousteaui sp. nov. is distinguished by the combination of the following characters: post-cheliped sclerites not fused, presence of one seta in the maxilliped endite, one long midventral seta in cheliped, one penicillate seta in the basis of pereopods 4–6, uropod endopod bi-articulated and uropod exopod shorter than endopod article 1. This species was found at the upper reaches of three Portuguese canyons, Cascais, Setúbal and Nazaré Canyons, and the adjacent open slope, between 897 and 1001 m water depths.
    [Show full text]
  • (Crustacea: Peracarida: Tanaidacea) of Chilean Fjords, with Description of a New Species of Zeuxoides Sieg, 1980
    Zootaxa 3257: 38–55 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) On some shallow-water Tanaidomorpha (Crustacea: Peracarida: Tanaidacea) of Chilean fjords, with description of a new species of Zeuxoides Sieg, 1980 PATRICIA ESQUETE1, ROGER BAMBER2 & CRISTIAN ALDEA3 1Departamento de Ecología y Biología Animal, Facultad de Ciencias del Mar, Universidad de Vigo, E-36310 Vigo, Pontevedra, Spain. [email protected]. Corresponding author. 2ARTOO Marine Biology Consultants, Ocean Quay Marina, Belvidere Road, Southampton SO14 5QY, UK. [email protected] 3Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (Fundación CEQUA); Universidad de Magallanes; Av. Bulnes 01890, Punta Arenas, Chile. [email protected] Abstract Magellanic tanaidacean faunas have been mainly studied in the Magellan Strait and Beagle Channel, the latter restricted to bot- toms deeper than 40m. As a result, the shallow rocky bottoms of the Magellanic fjords remain largely under-studied, and their tanaidacean diversity is poorly known. In this study, tanaidacean species sampled from shallow rocky bottoms of Chilean fjords are investigated, and morphological and taxonomic considerations included. A new species of the Tanaidae, Zeuxoides tronco- soi sp. nov. is described. The genus Leptochelia is recorded for the first time in Chile, and the distribution of Pancoloides lito- ralis is extended northwards. Specimens collected of Pancoloides litoralis and Nototanais dimorphus present morphological differences with previous descriptions, which are at present attributed to intraspecific variation derived from geographical iso- lation among populations, until sufficient material can be examined to determine what constitutes interspecific and intraspecific variation.
    [Show full text]