Effect of High Salinity on Atriplex Portulacoides: Growth, Leaf Water Relations and Solute Accumulation in Relation with Osmotic Adjustment

Total Page:16

File Type:pdf, Size:1020Kb

Effect of High Salinity on Atriplex Portulacoides: Growth, Leaf Water Relations and Solute Accumulation in Relation with Osmotic Adjustment South African Journal of Botany 95 (2014) 70–77 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Effect of high salinity on Atriplex portulacoides: Growth, leaf water relations and solute accumulation in relation with osmotic adjustment Maali Benzarti a,1, Kilani Ben Rejeb a,b,1, Dorsaf Messedi a, Amira Ben Mna c, Kamel Hessini a, Mustapha Ksontini c, Chedly Abdelly a, Ahmed Debez a,⁎ a Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj-Cedria (CBBC), BP 901, Hammam-Lif 2050, Tunisia b Adaptation des plantes aux contraintes environnementales, UR5, Université Pierre et Marie Curie (UPMC), Case 156, 4 Place Jussieu, 75252 Paris cedex 05, France c Unité d'agrosylvopastoralisme, Institut National de Recherches en génie Rural, Eau et Forêts (INRGREF), Ariana 2080, Tunisia article info abstract Article history: Atriplex (Halimione) portulacoides is a halophyte with potential interest for saline soil reclamation and Received 10 December 2013 phytoremediation. Here, we assess the impact of salinity reaching up to two-fold seawater concentration Received in revised form 20 August 2014 (0–1000 mM NaCl) on the plant growth, leaf water status and ion uptake and we evaluate the contribution Accepted 24 August 2014 of inorganic and organic solutes to the osmotic adjustment process. A. portulacoides growth was optimal at Available online xxxx 200 mM NaCl but higher salinities (especially 800 and 1000 mM NaCl) significantly reduced plant growth. + − Edited by JM Farrant Na and Cl contents increased upon salt exposure especially in the leaves compared to the roots. Interestingly, no salt-induced toxicity symptoms were observed and leaf water content was maintained even at the highest sa- fi Keywords: linity level. Furthermore, leaf succulence and high instantaneous water use ef ciency (WUEi) under high salinity Halophyte significantly contributed to maintain leaf water status of this species. Leaf pressure–volume curves showed that 100 Salinity salt-challenged plants adjusted osmotically by lowering osmotic potential at full turgor (Ψπ )alongwithade- Pressure–volume curves crease in leaf cell elasticity (values of volumetric modulus elasticity (ε) increased). As a whole, our findings indi- Water relations cate that A. portulacoides is characterized by a high plasticity in terms of salt-response. Preserving leaf hydration Osmotic adjustment and efficiently using Na+ for the osmotic adjustment especially at high salinities (800–1000 mM NaCl), likely through its compartmentalization in leaf vacuoles, are key determinants of such a performance. The selective ab- sorption of K+ over Na+ in concomitance with an increase in the K+ use efficiency also accounted for the overall plant salt tolerance. © 2014 SAAB. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). 1. Introduction terrastat). In general salinity can reduce plant growth or damage the plant through: (i) osmotic effect (caused by low water potential + − Salinity is among the most adverse environmental issues for agricul- (Ψw)), (ii) toxic effect (mainly due to Na and Cl ) and (iii) alteration ture, since it affects about 5% of the cultivated areas throughout the of the nutritional balance. To survive with the detrimental effects of salt world. The United Nations Food and Agriculture Organization estimates stress, plants have evolved various combating mechanisms. Among that there are currently 4 million km2 of salinized land and a similar these, ion exclusion, along with other strategies such as adjustment of + area that is affected by sodicity, a condition in which Na ions represent the cell osmotic potential (Ψπ) is of special importance (Türkan and more than 15% of the exchangeable cations (www.fao.org/agl/agl1/ Demiral, 2009). The latter response termed as osmotic adjustment (OA) involves transport, active accumulation, and compartmentaliza- Abbreviations: A, net CO2 assimilation rate; AWC, apoplastic water content; DW, dry tion of inorganic ions and organic compounds (Flowers and Colmer, weight; FAA, free amino acids; FW, fresh weight; GB, glycine betaine; KAE, potassium ab- 2008). During osmotic adjustment cells tend to compartmentalize fi fi – sorption ef ciency; KUE, potassium use ef ciency; OA, osmotic adjustment; P V curves, most of the absorbed ions in vacuoles at the same time as they synthe- pressure–volume curves; RWC, relative water content; RWC0, relative water content at + + size and accumulate compatible organic solutes in the cytoplasm, in theturgor loss point; SK/Na, selectivity of K over Na ;T,transpirationrate;TSS,totalsoluble sugar;WC,watercontent; WUEi, instantaneouswater use efficiency; ε, volumetric modulus order to maintain the osmotic equilibrium between these two compart- Ψ Ψ Ψ elasticity; s, osmotic potential of each measured solute; w, water potential; π,osmotic ments (Parida and Das, 2005). Clearly, tolerance in the form of OA plays Ψ0 Ψ100 potential; π, osmotic potential at the turgor loss point; π , osmotic potential at full an important role in salt-tolerant plants thriving in saline environments turgor. (Flowers and Colmer, 2008). ⁎ Corresponding author. Tel.: +216 79 325 848; fax: +216 79 325 638. fi E-mail address: [email protected] (A. Debez). Halophytes are de ned as plants that live in naturally saline habitats 1 Both authors contributed equally. or that complete their life cycle at a salt concentration of at least http://dx.doi.org/10.1016/j.sajb.2014.08.009 0254-6299/© 2014 SAAB. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). M. Benzarti et al. / South African Journal of Botany 95 (2014) 70–77 71 200 mM NaCl (Flowers et al., 2010). Facing the increasing salinization with 0.5% (w/v) toluidine blue, were examined using a Zeiss light mi- throughout the world, domestication of these plants as cash crop spe- croscope. Axio software was used to measured leaf cross-section cies, better known as biosaline agriculture, is a currently emerging ap- thickness. proach (Debez et al., 2011). Better understanding of the physiological and molecular mechanisms enabling halophytes to survive and main- 2.3. Water content, succulence and instantaneous water use efficiency tain productivity in saline environments is also a critical issue for re- (WUEi) searchers. A large group of species of Atriplex genus belonging to halophytes having ecological and agronomic importance are frequent Leaf water content was calculated as the difference between fresh in many arid and semi-arid regions of the world, particularly in habitats weight (FW) and dry weight (DW) and is expressed on a dry mass that combine relatively high soil salinity with aridity (Benzarti et al., basis WC = (FW − DW) / DW. Leaf succulence was estimated by divid- 2013) and therefore constitute a useful material for the identification ing leaf water content by leaf surface area (Debez et al., 2004). WUEi of physiological mechanisms involved in salt stress resistance. Atriplex was calculated as the ratio: net CO2 assimilation rate (A) / transpiration (Halimione) portulacoides (Sea purslane) is a widespread C3-type peren- rate (T). Total leaf surface area was measured by a leaf area meter (por- nial halophyte common on salt marshes of Europe, North Africa and table area meter LI/3000A, LI-COR). The gas exchange measurements South-West Asia. Its crunchy and salt tasting leaves are edible as a nat- were made with a portable photosynthesis system (LCA4). ural condiment (Wright, 2009). Interestingly, recent data indicate that this plant could be valorized as a source of valuable phytochemicals, in- 2.4. Inorganic cation contents cluding phenolic compounds (Rodrigues et al., 2014; Vilela et al., 2014). High productivity and capacity to grow in heavy metal contaminated Dried samples of roots, stems and leaves were finely ground. Ion ex- + + soils (Sousa et al., 2008) also make this species potentially useful for sa- traction was achieved in 0.5% HNO3.Na and K were assayed by flame line soil reclamation and phytoremediation purposes and even as fod- emission photometry (Corning, UK) and Cl− by coulometry (Büchler der plants. Recently, we reported that A. portulacoides displayed an chloridometer), while Ca2+ was determined using atomic absorption effective antioxidant defense protecting the photosynthetic machinery spectrometry (VARIAN, Spectra AA 220 FS). + + from salt-induced photodamage under extreme (up to 1000 mM The selectivity of K over Na (SK/Na) was estimated from ion con- NaCl) salinity (Benzarti et al., 2012). Yet, the involvement of the osmotic tents as (Debez et al., 2004): adjustment in the salt stress tolerance of this species especially when hihi ¼ þ= þ þ þ = þ= þ þ þ : challenged with extreme salinity is still unknown. It has to be pointed SK=Na K K Na K K Na leaves medium out that in soils in Mediterranean areas like Tunisia, salinity level may dramatically rise during the long summer season as a result of both The potassium absorption efficiency (KAE) and potassium use effi- high evaporation rate and reduced water availability, resulting in salin- ciency (KUE) were calculated as: ity levels that my exceed seawater salinity. Therefore, we evaluated here the responses of Tunisian population of A. portulacoides when ex- þ KAE μmol K =mg DW posed up to twofold seawater NaCl salinity (1000 mM) in terms of roots ¼ þ = growth, water relations and organic and inorganic solute accumulation Total plant K amount average root DW in relation to osmotic adjustment. where the average root DW is the logarithmic average of the root dry 2. Material and methods weight, =μ þ ¼ = þ : 2.1. Plant material and culture conditions KUE mg DW mol K Whole plant DW total K amount Young plants of A. portulacoides were obtained using cuttings col- lected from mother plants. Uniformly rooted plantlets were trans- 2.5. Organic solute content ferred to pots containing inert sand.
Recommended publications
  • Plant Guide for Fourwing Saltbush (Atriplex Canescens)
    Plant Guide saline-sodic soils (Ogle and St. John, 2008). It has FOURWING SALTBUSH excellent drought tolerance and has been planted in highway medians and on road shoulders, slopes, and other Atriplex canescens (Pursh) Nutt. disturbed areas near roadways. Because it is a good Plant Symbol = ATCA2 wildlife browse species, caution is recommended in using fourwing saltbush in plantings along roadways. Its Contributed by: USDA NRCS Idaho Plant Materials extensive root system provides excellent erosion control. Program Reclamation: fourwing saltbush is used extensively for reclamation of disturbed sites (mine lands, drill pads, exploration holes, etc,). It provides excellent species diversity for mine land reclamation projects. Status Please consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g., threatened or endangered species, state noxious status, and wetland indicator values). Description Fourwing saltbush is a polymorphic species varying from deciduous to evergreen, depending on climate. Its much- branched stems are stout with whitish bark. Mature plants range from 0.3 to 2.4 m (1 to 8 ft) in height, depending on ecotype and the soil and climate. Its leaves are simple, alternate, entire, linear-spatulate to narrowly oblong, Fourwing saltbush. Photo by Steven Perkins @ USDA-NRCS canescent (covered with fine whitish hairs) and ½ to 2 PLANTS Database inches long. Its root system is branched and commonly very deep reaching depths of up to 6 m (20 ft) when soil Alternate Names depth allows (Kearney et al., 1960). Common Alternate Names: Fourwing saltbush is mostly dioecious, with male and Chamise, chamize, chamiso, white greasewood, saltsage, female flowers on separate plants (Welsh et al., 2003); fourwing shadscale, bushy atriplex however, some monoecious plants may be found within a population.
    [Show full text]
  • Chisel-Toothed Kangaroo Rat (Dipodomys Microps Alfredi)
    Version 2020-04-20 [A race of the] Chisel-toothed Kangaroo Rat (Dipodomys microps alfredi) Species Status Statement. Distribution This subspecies is endemic to Utah and occurs only on Gunnison Island in the Great Salt Lake. Durrant (1952, p. 274) considered this kangaroo rat to be the most distinctive of the mammal subspecies that are endemic to islands in the Great Salt Lake—so distinctive that he even considered the possibility that it may deserve full species status. Table 1. Utah counties currently occupied by this species. [a Race of the] Chisel-toothed Kangaroo Rat - alfredi BOX ELDER Abundance and Trends Oliver (field notes, 15 July 2014 and 22 October 2014) captured numerous individuals on the north and south sides of Gunnison Island. However, its population trends are unknown. Statement of Habitat Needs and Threats to the Species. Habitat Needs The chisel-toothed kangaroo rat (Dipodomys microps, full species) is a dietary and a habitat specialist, and typically lives in association with either saltbush (Atriplex sp.) or blackbrush (Coleogyne sp.). However in some places it is found in association with greasewood (Sarcobatus sp.), sagebrush (Artemisia sp.), and a few other desert shrubs. Native perennial grasses are thought to be well-tolerated by the species, but introduced annual grasses are considered to impact it negatively (see review of ecology in Hayssen 1991). Threats to the Species The State of Utah owns Gunnison Island, and the Utah Division of Wildlife Resources administers it as a bird nesting colony. Therefore many potential anthropogenic threats are already prevented. The principal threat to the existence of Dipodomys microps alfredi is the dewatering of the Great Salt Lake.
    [Show full text]
  • (Amaranthaceae) in Italy. V. Atriplex Tornabenei
    Phytotaxa 145 (1): 54–60 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2013 Magnolia Press ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.145.1.6 Studies on the genus Atriplex (Amaranthaceae) in Italy. V. Atriplex tornabenei DUILIO IAMONICO1 1 Laboratory of Phytogeography and Applied Geobotany, Department PDTA, Section Environment and Landscape, University of Rome Sapienza, 00196 Roma, Italy. Email: [email protected] Abstract The typification of the name Atriplex tornabenei (a nomen novum pro A. arenaria) is discussed. An illustration by Cupani is designated as the lectotype, while a specimen from FI is designated as the epitype. Chorological and morphological notes in comparison with the related species A. rosea and A. tatarica are also provided. A nomenclatural change (Atriplex tornabenei subsp. pedunculata stat. nov.) is proposed. Key words: Atriplex tornabenei var. pedunculata, epitype, infraspecific variability, lectotype, Mediterranean, nomenclatural change, nomen novum Introduction Atriplex Linnaeus (1753: 1054) is a genus of about 260 species distributed in arid and semiarid regions of Eurasia, America and Australia (Sukhorukov & Danin 2009). Several names (at species, subspecies, variety and form ranks) were described related to the high phenotipic variability of this critical genus (Al-Turki et al. 2000). As conseguence, misapplication of names and nomenclatural disorders exist and need clarification. In this paper, the identity of the A. tornabenei Tineo ex Gussone (1843: 589) is discussed as part of the treatment of the genus Atriplex for the new edition of the Italian Flora (editor, Prof. S. Pignatti) and within the initiative “Italian Loci Classici Census” (Domina et al.
    [Show full text]
  • Origin and Age of Australian Chenopodiaceae
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times.
    [Show full text]
  • Species Assessment for White-Tailed Prairie Dog (Cynomys Leucurus)
    SPECIES ASSESSMENT FOR WHITE -TAILED PRAIRIE DOG (CYNOMYS LEUCURUS ) IN WYOMING prepared by DOUGLAS A. KEINATH Zoology Program Manager, Wyoming Natural Diversity Database, University of Wyoming, 1000 E. University Ave, Dept. 3381, Laramie, Wyoming 82071; 307-766-3013; [email protected] prepared for United States Department of the Interior Bureau of Land Management Wyoming State Office Cheyenne, Wyoming December 2004 Keinath - Cynomys leucurus December 2004 Table of Contents INTRODUCTION ................................................................................................................................. 3 NATURAL HISTORY ........................................................................................................................... 4 Morphology............................................................................................................................. 4 Taxonomy and Distribution ..................................................................................................... 4 Taxonomy .......................................................................................................................................4 Range and Distribution....................................................................................................................5 Habitat Requirements............................................................................................................. 5 General ............................................................................................................................................5
    [Show full text]
  • Rodriguez-Sanchez QSR 2008.Pdf
    Quaternary Science Reviews 27 (2008) 2100–2117 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev The Strait of Gibraltar as a melting pot for plant biodiversity Francisco Rodrı´guez-Sa´nchez a, Rocı´oPe´rez-Barrales a,1, Fernando Ojeda b, Pablo Vargas c, Juan Arroyo a,* a Departamento de Biologı´a Vegetal y Ecologı´a, Universidad de Sevilla, Apartado 1095, E-41080-Sevilla, Spain b Departamento de Biologı´a, Universidad de Ca´diz, Campus Rı´o San Pedro, 11510-Puerto Real, Spain c Real Jardı´n Bota´nico de Madrid, CSIC, 28014-Madrid, Spain article info abstract Article history: The S Iberian Peninsula and NW Africa constitute one of the main hotspots for plant biodiversity within Received 19 September 2006 the Mediterranean Basin. At the core of this hotspot, across the Strait of Gibraltar, lies a smaller region Received in revised form 26 February 2008 whose singular Cenozoic history and ecological features have created a distinct, nested sub-hotspot. In Accepted 1 August 2008 particular, an important relict flora, a high endemism, and the dominance of vegetation types other than the paradigmatic Mediterranean-type sclerophyllous forests and shrublands, are biogeographical features of paramount relevance. These singular environments may have provided suitable mesic habitats for stable human populations in this region throughout the Quaternary. Here we explore the possible causes of the unique biodiversity of this region. First, we show that endemism is associated with poor soils and mild Mediterranean climate, whereas relictness is primarily associated with riparian and humid habitats which might have remained relatively stable since the Late Tertiary.
    [Show full text]
  • Second Contribution to the Vascular Flora of the Sevastopol Area
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Wulfenia Jahr/Year: 2015 Band/Volume: 22 Autor(en)/Author(s): Seregin Alexey P., Yevseyenkow Pavel E., Svirin Sergey A., Fateryga Alexander Artikel/Article: Second contribution to the vascular flora of the Sevastopol area (the Crimea) 33-82 © Landesmuseum für Kärnten; download www.landesmuseum.ktn.gv.at/wulfenia; www.zobodat.at Wulfenia 22 (2015): 33 – 82 Mitteilungen des Kärntner Botanikzentrums Klagenfurt Second contribution to the vascular flora of the Sevastopol area (the Crimea) Alexey P. Seregin, Pavel E. Yevseyenkov, Sergey A. Svirin & Alexander V. Fateryga Summary: We report 323 new vascular plant species for the Sevastopol area, an administrative unit in the south-western Crimea. Records of 204 species are confirmed by herbarium specimens, 60 species have been reported recently in literature and 59 species have been either photographed or recorded in field in 2008 –2014. Seventeen species and nothospecies are new records for the Crimea: Bupleurum veronense, Lemna turionifera, Typha austro-orientalis, Tyrimnus leucographus, × Agrotrigia hajastanica, Arctium × ambiguum, A. × mixtum, Potamogeton × angustifolius, P. × salicifolius (natives and archaeophytes); Bupleurum baldense, Campsis radicans, Clematis orientalis, Corispermum hyssopifolium, Halimodendron halodendron, Sagina apetala, Solidago gigantea, Ulmus pumila (aliens). Recently discovered Calystegia soldanella which was considered to be extinct in the Crimea is the most important confirmation of historical records. The Sevastopol area is one of the most floristically diverse areas of Eastern Europe with 1859 currently known species. Keywords: Crimea, checklist, local flora, taxonomy, new records A checklist of vascular plants recorded in the Sevastopol area was published seven years ago (Seregin 2008).
    [Show full text]
  • Common Nettle (Urtica Dioica L.) As an Active Filler of Natural Rubber Biocomposites
    materials Article Common Nettle (Urtica dioica L.) as an Active Filler of Natural Rubber Biocomposites Marcin Masłowski * , Andrii Aleksieiev, Justyna Miedzianowska and Krzysztof Strzelec Institute of Polymer & Dye Technology, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland; [email protected] (A.A.); [email protected] (J.M.); [email protected] (K.S.) * Correspondence: [email protected] Abstract: Common nettle (Urtíca Dióica L.), as a natural fibrous filler, may be part of the global trend of producing biocomposites with the addition of substances of plant origin. The aim of the work was to investigate and explain the effectiveness of common nettle as a source of active functional compounds for the modification of elastomer composites based on natural rubber. The conducted studies constitute a scientific novelty in the field of polymer technology, as there is no research on the physico-chemical characteristics of nettle bio-components and vulcanizates filled with them. Separation and mechanical modification of seeds, leaves, branches and roots of dried nettle were carried out. Characterization of the ground plant particles was performed using goniometric measurements (contact angle), Fourier transmission infrared spectroscopy (FTIR), themogravimetric analysis (TGA) and scanning electron microscopy (SEM). The obtained natural rubber composites with different bio-filler content were also tested in terms of rheological, static and dynamic mechanical properties, cross-linking density, color change and resistance to simulated aging Citation: Masłowski, M.; Aleksieiev, processes. Composites with the addition of a filler obtained from nettle roots and stems showed the A.; Miedzianowska, J.; Strzelec, K.
    [Show full text]
  • Atriplex Gardneri Gardner's Saltbush
    Atriplex gardneri Gardner’s Saltbush by Kathy Lloyd Montana Native Plant Society Photo: Wayne Phillips Atriplex gardneri (Gardner’s Saltbush) ardner’s saltbush also goes by the com- (Atriplex gardneri). According to the label Freder- mon name of moundscale or Nuttall’s ick Pursh applied to the sheet, the plants on this saltbush. Plant taxonomists used to clas- specimen sheet were collected at the “Big Bend of sify this plant as Atriplex nuttallii, hence the Missouri Septbr 21, 1804,” placing the point of Gthe common name Nuttall’s saltbush, but the name collection in South Dakota. This sheet also contains was changed to Atriplex gardneri when some rear- a portion of an original label by Meriwether Lewis ranging of the genus brought an earlier scientific that says, “Sept. 21st.” The second specimen sheet name into the group. Unfortunately, scientific contains two mounted specimens of Gardner’s salt- names for plants do change from time to time, and it bush with a Pursh label reading, “A half Shrub from can be quite a chore to keep up with them. Lewis the high plains of Missouri Jul. 20th 1806,” placing and Clark probably didn’t spend too much time wor- this collection squarely in present-day Montana. rying about what to name the various plant species Lewis’s journal for July 20th describes the habitat they collected. They had their hands full with more that is characteristically associated with Gardner’s immediate concerns. saltbush, and with greasewood (Sarcobatus vermicu- Specimens of Gardner’s saltbush were collected latus), which was collected on the same day: “the more than once during the long cross-country trek, plains are more broken than they were yesterday and and several collections of the plant still exist today have become more inferior in point of soil; a great as part of the Lewis & Clark Herbarium at the Acad- quanty of small gravel is every where distributed emy of Natural Sciences in Philadelphia.
    [Show full text]
  • Chenopodioideae, Chenopodiaceae/ Amaranthaceae): Implications for Evolution and Taxonomy
    Fruit and Seed Anatomy of Chenopodium and Related Genera (Chenopodioideae, Chenopodiaceae/ Amaranthaceae): Implications for Evolution and Taxonomy Alexander P. Sukhorukov1,2*, Mingli Zhang1,3 1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China, 2 Department of Higher Plants, Biological Faculty, Moscow Lomonosov State University, Moscow, Russia, 3 Institute of Botany, Chinese Academy of Sciences, Beijing, China Abstract A comparative carpological study of 96 species of all clades formerly considered as the tribe Chenopodieae has been conducted for the first time. The results show important differences in the anatomical structure of the pericarp and seed coat between representatives of terminal clades including Chenopodium s.str.+Chenopodiastrum and the recently recognized genera Blitum, Oxybasis and Dysphania. Within Chenopodium the most significant changes in fruit and seed structure are found in members of C. sect. Skottsbergia. The genera Rhagodia and Einadia differ insignificantly from Chenopodium. The evolution of heterospermy in Chenopodium is discussed. Almost all representatives of the tribe Dysphanieae are clearly separated from other Chenopodioideae on the basis of a diverse set of characteristics, including the small dimensions of the fruits (especially in Australian taxa), their subglobose shape (excl. Teloxys and Suckleya), and peculiarities of the pericarp indumentum. The set of fruit and seed characters evolved within the subfamily Chenopodioideae is described. A recent phylogenetic hypothesis is employed to examine the evolution of three (out of a total of 21) characters, namely seed color, testa-cell protoplast characteristics and embryo orientation. Citation: Sukhorukov AP, Zhang M (2013) Fruit and Seed Anatomy of Chenopodium and Related Genera (Chenopodioideae, Chenopodiaceae/Amaranthaceae): Implications for Evolution and Taxonomy.
    [Show full text]
  • WOOD ANATOMY of CHENOPODIACEAE (AMARANTHACEAE S
    IAWA Journal, Vol. 33 (2), 2012: 205–232 WOOD ANATOMY OF CHENOPODIACEAE (AMARANTHACEAE s. l.) Heike Heklau1, Peter Gasson2, Fritz Schweingruber3 and Pieter Baas4 SUMMARY The wood anatomy of the Chenopodiaceae is distinctive and fairly uni- form. The secondary xylem is characterised by relatively narrow vessels (<100 µm) with mostly minute pits (<4 µm), and extremely narrow ves- sels (<10 µm intergrading with vascular tracheids in addition to “normal” vessels), short vessel elements (<270 µm), successive cambia, included phloem, thick-walled or very thick-walled fibres, which are short (<470 µm), and abundant calcium oxalate crystals. Rays are mainly observed in the tribes Atripliceae, Beteae, Camphorosmeae, Chenopodieae, Hab- litzieae and Salsoleae, while many Chenopodiaceae are rayless. The Chenopodiaceae differ from the more tropical and subtropical Amaran- thaceae s.str. especially in their shorter libriform fibres and narrower vessels. Contrary to the accepted view that the subfamily Polycnemoideae lacks anomalous thickening, we found irregular successive cambia and included phloem. They are limited to long-lived roots and stem borne roots of perennials (Nitrophila mohavensis) and to a hemicryptophyte (Polycnemum fontanesii). The Chenopodiaceae often grow in extreme habitats, and this is reflected by their wood anatomy. Among the annual species, halophytes have narrower vessels than xeric species of steppes and prairies, and than species of nitrophile ruderal sites. Key words: Chenopodiaceae, Amaranthaceae s.l., included phloem, suc- cessive cambia, anomalous secondary thickening, vessel diameter, vessel element length, ecological adaptations, xerophytes, halophytes. INTRODUCTION The Chenopodiaceae in the order Caryophyllales include annual or perennial herbs, sub- shrubs, shrubs, small trees (Haloxylon ammodendron, Suaeda monoica) and climbers (Hablitzia, Holmbergia).
    [Show full text]
  • An Illustrated Key to the Amaranthaceae of Alberta
    AN ILLUSTRATED KEY TO THE AMARANTHACEAE OF ALBERTA Compiled and writen by Lorna Allen & Linda Kershaw April 2019 © Linda J. Kershaw & Lorna Allen This key was compiled using informaton primarily from Moss (1983), Douglas et. al. (1998a [Amaranthaceae], 1998b [Chenopodiaceae]) and the Flora North America Associaton (2008). Taxonomy follows VASCAN (Brouillet, 2015). Please let us know if there are ways in which the key can be improved. The 2015 S-ranks of rare species (S1; S1S2; S2; S2S3; SU, according to ACIMS, 2015) are noted in superscript (S1;S2;SU) afer the species names. For more details go to the ACIMS web site. Similarly, exotc species are followed by a superscript X, XX if noxious and XXX if prohibited noxious (X; XX; XXX) according to the Alberta Weed Control Act (2016). AMARANTHACEAE Amaranth Family [includes Chenopodiaceae] Key to Genera 01a Flowers with spiny, dry, thin and translucent 1a (not green) bracts at the base; tepals dry, thin and translucent; separate ♂ and ♀ fowers on same the plant; annual herbs; fruits thin-walled (utricles), splitting open around the middle 2a (circumscissile) .............Amaranthus 01b Flowers without spiny, dry, thin, translucent bracts; tepals herbaceous or feshy, greenish; fowers various; annual or perennial, herbs or shrubs; fruits various, not splitting open around the middle ..........................02 02a Leaves scale-like, paired (opposite); stems feshy/succulent, with fowers sunk into stem; plants of saline habitats ... Salicornia rubra 3a ................. [Salicornia europaea] 02b Leaves well developed, not scale-like; stems not feshy; plants of various habitats. .03 03a Flower bracts tipped with spine or spine-like bristle; leaves spine-tipped, linear to awl- 5a shaped, usually not feshy; tepals winged from the lower surface ..............
    [Show full text]