Volume 40 October 1999

Total Page:16

File Type:pdf, Size:1020Kb

Volume 40 October 1999 VOLUME 40 OCTOBER 1999 CALIFORNIA COOPERATIVE OCEANIC FISHERIES INVESTIGATIONS VOLUME 40 January 1 to December 31, 1998 Cooperating Agencies: CALIFORNIA DEPARTMENT OF FISH AND GAME UNlVERSllY OF CALIFORNIA, SCRIPPS INSTITUTION OF OCEANOGRAPHY NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, NATIONAL MARINE FISHERIES SERVICE CAlCOFl COORDINATOR George Hemingway EDITOR Julie Olfe This report is not copyrighted, except where otherwise indicated, and may be reproduced in other publications provided credit is given to the California Cooperative Oceanic Fisheries Investigations and to the author(s). Inquiries concerning this report should be addressed to CalCOFl Coordinator, Univer- sity of California, San Diego, Marine life Research Group, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093-0227. EDITORIAL BOARD Doyle Hanan Michael Mullin Michael Tillman PublishedOctober 1999, La Jolla, California lSSN 0575-33 17 CalCOFl Rep., Vol. 40, 1999 CONTENTS I. Reports, Review, and Publications Report of the CalCOFI Committee ................................................... 5 Review of Some California Fisheries for 1998: Pacific Sardine, Pacific Mackerel, Pacific Herring, Market Squid, Sea Urchin, Groundfishes, Swordfish, Sharks, Nearshore Finfishes, Abalone, Dungeness Crab, Prawn, Ocean Salmon, White Seabass, and Recreational ..................... 9 Index to “Review of Some California Fisheries,” 1977-1998 ................................. 25 Brown Shrimp Fishery in the Gulf of California. Enrique Morales-Bojdrquez andjuana Ldpez-Martinez .....28 The State of the California Current in 1998-1999: Transition to Cool-Water Conditions. Thomas L. Hayward, Tim R. Baurngavtnev, David M. Checkley, Reginald0 Durazo, Gilbert0 Gaxiola-Castro, K. David Hyrenbach, Arnold W Mantyla, Michael M. Mullin, Tom Murphree, Franklin B. Schwing, Paul E. Smith, and Mia]. Tegner .......................... 29 Publications .................................................................... 63 11. Symposium of the CalCOFI Conference, 1998 A CONTINUING DIALOG ON NO-TAKE RESERVES FOR RESOURCE MANAGEMENT ..... 65 Analyzing California’s Marine Managed Areas: Existing Classifications and Options for the Future. Brian E. Baird, Melissa A. Miller-Henson, and Brice X. Sernrnens ............................. 67 Marine Protected Areas as a Precautionary Approach to Management. Mark H. Carr and Peter TRaimondi ............................................................. 71 Marine Reserves for Fisheries Management: Why Not. Richard Parrish .......................... 77 Marine Reserves and Management of the Northern California Red Sea Urchin Fishery. Louis W Botsford, Lance E. Morgan, Dale R. Lockwood, andjames E. Wilen ..................... 87 Spatial and Temporal Genetic Patchiness in Marine Populations and Their Implications for Fisheries Management. RalphJ Larson and Richard M.julian ............................... 94 Human Visitation and the Frequency and Potential Effects of Collecting on Rocky Intertidal Populations in Southern California Marine Reserves. Steven N.Murray, Eri Gibson Denis, janine S. Kido, andjayson R. Smith ................................... 100 Economic and Management Implications of No-Take Reserves: An Application to Sebastes Rockfish in California. Cynthia j. Thornson .......................................... 107 Social Considerations for Marine Resource Management: Evidence from Big Creek Ecological Reserve. Caroline Pomeroy .............................................. 118 111. Scientific Contributions Fine-Scale Distributions of Planktonic Fish Eggs in the Vicinities of Big Sycamore Canyon and Vandenberg Ecological Reserves, and Anacapa and San Miguel Islands, California. William Watson, Richard L. Charter, H. Geoffvey Mosev, Russell D. Ettev, David A. Ambrose, Sharon R. Charter, Larry L. Robertson, Elaine M. Sandknop, Eric A. Lynn, andjason Stannard ......... 128 Key Species in the Pelagic Copepod Community Structure on the West Coast of Baja California, Mexico. Sergio Hernhndez- Eujillo ................................................. 154 Variation in Fat Content of Northern Anchovy (Engraulis mordax) in Relation to the Baja California Environment. Walterio Garcia-Franco, Ricardo Vidal-Talamantes, Aljiedo Cota- Villavicencio,josi Ramon-Corrales, and Irene Prieto-Montalvo ....................... 165 Bioeconomics of the Pacific Sardine (Sardinops sagax) Fishery in the Gulf of California, Mexico. Antonio de Anda-MontaZez andjnan C. Seijo ......................................... 170 Length-Based Growth Estimates for Pacific Sardine (Sardinops sagax) in the Gulf of California, Mexico. Antonio de Anda-MontaZez, Francisco Arreguin-Sanchez, and Susana Martinez-Aguilar ........ 179 Variability of Sardine Catch as Related to Enrichment, Concentration, and Retention Processes in the Central Gulf of California. Salvador E. Lluch-Cota, Daniel B. Lluch-Cota, Daniel Lluch-Belda, Manuel 0. Nevdrez-Martinez, Alejandro Paris-Sierra, and Sergio Hernhndez- Vdzquez ............... 184 Age and Growth of Market Squid (Loligo opalescens) off California during 1998.john Butlev, Daniel Fullev, and Marci Yarernko .................................................. 191 Market Squid (Loligo opalescens) in the Diet of California Sea Lions (Zalopkus calqornianus) in Southern California (1981-1995). Mark S. Lowry andJames V Carretta ....................... 196 Instructions to Authors .............................................................. 208 CalCOFI Basic Station Plan ................................................. inside back cover Indexed in Current Contents. Abstracted in Aquatic Sciences and Fisheries Abstracts and Oceanic Abstracts. COMMlllEE REPORT CalCOFl Rep., Vol. 40, 1999 Part I REPORTS, REVIEW, AND PUBLICATIONS REPORT OF THE CALCOFI COMMlllEE This year marks the fiftieth anniversary of the be- data. Work performed by our Mexican colleagues, partly ginning of the seagoing operations and time series of a consequence of mentoring and collaboration by sampling in the California Current that have become CalCOFI investigators over several decades, has begun the hallmark of CalCOFI’s research. In its five decades to help us understand how the Gulf of California stocks of collaborative work, CalCOFI has fielded over 300 of Pacific sardine contribute to the Pacific coast popu- coastal survey cruises, published over 6,000 documents lation (cf. de Anda-Montafiez and Seijo, Lluch-Cota et and scholarly papers, spawned several new fields of re- al., and de Anda-Montaiiez et al., this volume). search, and established benchmarks against which large- The Pacific sardine resource off California has now scale change may be evaluated. Methods of fishery and surpassed one million tons and is considered fully re- environmental research developed by CalCOFI scien- covered for the first time since the mid-1940s. At an tists are used as standards worldwide. The marriage of interagency Pacific sardine workshop held in 1983, it federal, state, and university scientists in such a long- was agreed that the sardine population would be con- term endeavor is particularly successful for economically sidered fully recovered when it reached a million tons, marshalling public resources. when it occupied its historic range (Mexico to Canada), This interagency approach to ocean measurement paid and when all historic age classes were represented in the off in the ability to investigate the recent El Niiio event. population. All of these criteria have now been met, rep- El Niiio of 1998 (because it had been predicted) and the resenting a real success story for Pacific sardines and fish- northward expansion of the growing population of ery managers. The most recent stock assessment, California sardme stimulated increased temporal and spa- conducted jointly by the California Department of Fish tial coverage of the California Current by CalCOFI and Game (CDFG) and the National Marine Fisheries cruises. In addition to the usual quarterly survey cruises Service (NMFS), estimated 1.07 million metric tons in in 1998, 48 extra ship days for 8 extra cruises were pro- the area off California’s coast (Ensenada, Mexico, to San vided by UC ship funds; extra salaries for data collec- Francisco) and up to 1.6 million metric tons coastwide tion and processing, and funds for supplies were made (Ensenada to British Columbia). Since the onset of the possible by a grant from the NOM Office of Global recovery, the sardine population is estimated to have Change. The data collected by the CalCOFI interagency increased by 20% to 30% per year in the presence of a consortium are summarized in Hayward et al. (this vol- steady fishery. Egg and larval data collected by the ume). Preliminary reports on the changes associated with CalCOFI program have been a crucial tool in measur- the 1998 El Niiio will be presented at the symposium ing the sardine’s recovery. of the 1999 CalCOFI Conference. The market squid (Loligo opulescens) has been the basis In 1999, CalCOFI returned to the less intense, quar- of an important fishery in California since the 1850s. In terly sampling that has been its standard since 1985. How- the last decade, increases in catch and price have com- ever, studies of sardme spawning as far north as Monterey bined to make market squid the most valuable fishery in Bay have continued, with near-surface sampling of fish the state. The squid fishery is the largest unregulated eggs and environmental properties. This sampling has open access fishery on the West Coast. At the CalCOFI
Recommended publications
  • DYNAMIC HABITAT USE of ALBACORE and THEIR PRIMARY PREY SPECIES in the CALIFORNIA CURRENT SYSTEM Calcofi Rep., Vol
    MUHLING ET AL.: DYNAMIC HABITAT USE OF ALBACORE AND THEIR PRIMARY PREY SPECIES IN THE CALIFORNIA CURRENT SYSTEM CalCOFI Rep., Vol. 60, 2019 DYNAMIC HABITAT USE OF ALBACORE AND THEIR PRIMARY PREY SPECIES IN THE CALIFORNIA CURRENT SYSTEM BARBARA MUHLING, STEPHANIE BRODIE, MICHAEL JACOX OWYN SNODGRASS, DESIREE TOMMASI NOAA Earth System Research Laboratory University of California, Santa Cruz Boulder, CO Institute for Marine Science Santa Cruz, CA CHRISTOPHER A. EDWARDS ph: (858) 546-7197 Ocean Sciences Department [email protected] University of California, Santa Cruz, CA BARBARA MUHLING, OWYN SNODGRASS, YI XU HEIDI DEWAR, DESIREE TOMMASI, JOHN CHILDERS Department of Fisheries and Oceans NOAA Southwest Fisheries Science Center Delta, British Columbia, Canada San Diego, CA STEPHANIE SNYDER STEPHANIE BRODIE, MICHAEL JACOX Thomas More University, NOAA Southwest Fisheries Science Center Crestview Hills, KY Monterey, CA ABSTRACT peiods, krill, and some cephalopods (Smith et al. 2011). Juvenile north Pacific albacore Thunnus( alalunga) for- Many of these forage species are fished commercially, age in the California Current System (CCS), supporting but also support higher-order predators further up the fisheries between Baja California and British Columbia. food chain, such as other exploited species (e.g., tunas, Within the CCS, their distribution, abundance, and for- billfish) and protected resources (e.g., marine mammals aging behaviors are strongly variable interannually. Here, and seabirds) (Pikitch et al. 2004; Link and Browman we use catch logbook data and trawl survey records to 2014). Effectively managing marine ecosystems to pre- investigate how juvenile albacore in the CCS use their serve these trophic linkages, and improve robustness of oceanographic environment, and how their distributions management strategies to environmental variability, thus overlap with the habitats of four key forage species.
    [Show full text]
  • California Sea Lion Interaction and Depredation Rates with the Commercial Passenger Fishing Vessel Fleet Near San Diego
    HANAN ET AL.: SEA LIONS AND COMMERCIAL PASSENGER FISHING VESSELS CalCOFl Rep., Vol. 30,1989 CALIFORNIA SEA LION INTERACTION AND DEPREDATION RATES WITH THE COMMERCIAL PASSENGER FISHING VESSEL FLEET NEAR SAN DIEGO DOYLE A. HANAN, LISA M. JONES ROBERT B. READ California Department of Fish and Game California Department of Fish and Game c/o Southwest Fisheries Center 1350 Front Street, Room 2006 P.O. Box 271 San Diego, California 92101 La Jolla, California 92038 ABSTRACT anchovies, Engraulis movdax, which are thrown California sea lions depredate sport fish caught from the fishing boat to lure surface and mid-depth by anglers aboard commercial passenger fishing fish within casting range. Although depredation be- vessels. During a statewide survey in 1978, San havior has not been observed along the California Diego County was identified as the area with the coast among other marine mammals, it has become highest rates of interaction and depredation by sea a serious problem with sea lions, and is less serious lions. Subsequently, the California Department of with harbor seals. The behavior is generally not Fish and Game began monitoring the rates and con- appreciated by the boat operators or the anglers, ducting research on reducing them. The sea lion even though some crew and anglers encourage it by interaction and depredation rates for San Diego hand-feeding the sea lions. County declined from 1984 to 1988. During depredation, sea lions usually surface some distance from the boat, dive to swim under RESUMEN the boat, take a fish, and then reappear a safe dis- Los leones marinos en California depredan peces tance away to eat the fish, tear it apart, or just throw colectados por pescadores a bordo de embarca- it around on the surface of the water.
    [Show full text]
  • Frontmatter Final.Qxd
    5-14 Committee Rept final:5-9 Committee Rept 11/8/08 6:11 PM Page 5 COMMITTEE REPORT CalCOFI Rep., Vol. 49, 2008 Part I REPORTS, REVIEW, AND PUBLICATIONS REPORT OF THE CALCOFI COMMITTEE NOAA HIGHLIGHTS The David Starr Jordan will conduct operations in the Southern California Bight in San Diego and stations CalCOFI Cruises from Point Conception north to San Francisco, Cali- The CalCOFI program completed its fifty-eighth year fornia. The Miller Freeman will synoptically conduct sim - with four successful quarterly cruises. All four cruises ilar operations over the northern section of the CCE, were manned by personnel from both the NOAA in Port Townsend, Washington, and south to San Fran- Fisheries Southwest Fisheries Science Center (SWFSC) cisco. An additional California Current Ecosystem sur - and Scripps Institution of Oceanography (SIO). The fall vey will be conducted in July 2008. 2007 cruise was conducted on the SIO RV New Horizon and covered the southern lines of the CalCOFI pattern. CalCOFI Ichthyoplankton Update The winter and spring 2007 cruises were conducted on The SWFSC Ichthyoplankton Ecology group made the NOAA RV David Starr Jordan . The Jordan covered progress on a multi-year project to update larval fish lines 93 to line 60 just north of San Francisco. The sum - identifications to current standards from 1951 to the pre - mer 2007 cruise was on the SIO RV New Horizon , and sent, which will ultimately provide taxonomic consis - covered the standard CalCOFI pattern. tency throughout the CalCOFI ichthyoplankton time Standard CalCOFI protocols were followed during series. The group updated samples collected during the the four quarterly cruises.
    [Show full text]
  • Final Project Instructions
    Final Project Instructions Date Submitted: November 16, 2012 Platform: NOAA Ship Bell M. Shimada Project Number: SH-13-01 (OMAO), 1301SH (SWFSC) Project Title: CalCOFI Survey, Fisheries Resources Division. Project Dates: January 4, 2013 to February 7, 2013 Prepared by: ________________________ Dated: _November 16,_2012_ David Griffith Chief Scientist SWFSC Approved by: ________________________ Dated: __________________ Russ Vetter , Ph.D. Fisheries Resources Director SWFSC Approved by: ________________________ Dated: __________________ Francisco E. Werner, Ph.D. Science and Research Director SWFSC Approved by: ________________________ Dated: ________________ Captain Wade J. Blake, NOAA Commanding Officer Marine Operations Center - Pacific 1 I. Overview A. Brief Summary and Project Period Survey the distributions and abundances of pelagic fish stocks, their prey, and their biotic and abiotic environments in the area of the California Current between San Francisco, California and San Diego, California during the period of January 9 to February 2, 2013. B. Service Level Agreements Of the 33 DAS scheduled for this project, 0 DAS are funded by the program and 33 DAS are funded by OMAO. This project is estimated to exhibit a medium Operational Tempo. C. Operating Area 2 D. Summary of Objectives Survey the distributions and abundances of pelagic fish stocks, their prey, and their biotic and abiotic environments in the area of the California Current between San Francisco, California and San Diego, California. The following are specific objectives for the Winter CalCOFI. I.D.1. Continuously sample pelagic fish eggs using the Continuous Underway Fish Egg Sampler (CUFES). The data will be used to estimate the distributions and abundances of spawning hake, anchovy, mackerel, and early spawning Pacific sardine.
    [Show full text]
  • Views Concerning Use of the Living Resources of the California Current
    Calif. JIw. Res. Comna., CalCOFI Rept., 13 : 91-94, 1969 VIEWS CONCERNING USE OF THE LIVING RESOURCES OF THE CALIFORNIA CURRENT GERALD V. HOWARD, Regional Director Pacific Southwest Region Bureau of Commercial Fisheries Terminal Island, California I have been asked to express the views of the Bu- ‘wetfish ’ ’ fisheries which harvest mackerels, anchovies reau of Commercial Fisheries concerning the legal, and bonito ; and the “ bottomfish ” fisheries which har- economic, sociological and technological problems im- rest, though not exclusiuely, species taken by trawl- peding the best use of the living resources of the ing. California Current and how they can be resolved. Californians generally do not think of the tropical The impediments are generally rather well knowii. It tunas as a resource of the California Current, prob- is their resolution which presents the challenge. ably because they occur in its southern extension off A rnajor objective of the programs of the Bureau Baja California and rarely in commercial quantities of Commercial Fisheries is to seek the resolution of off southern California. I have included them not only problems which handicap the economic well-being of because they support California’s most important the domestic fishing industry and hinder the best use fishery, but because the long-range tuna fleet’s experi- of the fishery resources. Success of Bureau research ence in overcoming economic difficulties has been more and service programs, however, depends on close col- successful than that of other elements of the Cali- laboration and cooperation with other parties, espe- fornia fishing fleet. I especially wish to mention cially State agencics.
    [Show full text]
  • A Historical Review of Fisheries Statistics and Environmental and Societal Influences Off the Palos Verdes Peninsula, California
    STULL ET AL. : PALOS VERDES SPORT AND COMMERCIAL FISHERY CalCOFI Rep., Vol. XXVIII, 1987 A HISTORICAL REVIEW OF FISHERIES STATISTICS AND ENVIRONMENTAL AND SOCIETAL INFLUENCES OFF THE PALOS VERDES PENINSULA, CALIFORNIA JANET K. STULL, KELLY A. DRYDEN PAUL A. GREGORY Los Angeles County Sanitation Districts California Department of Fish and Game P.O. Box 4998 245 West Broadway Whittier. California 90607 Long Beach, California 90802 ABSTRACT peracion ambiental significativa y puede estar aso- A synopsis of partyboat and commercial fish and ciado con una reducci6n en la contaminacion del invertebrate catches is presented for the Palos medio ambiente marino costero. Verdes region. Fifty years (1936-85) of partyboat catch, in numbers of fish and angler effort, and 15 INTRODUCTION years (1969-83) of commercial landings, in Our goals were to summarize long-term fish and pounds, are reviewed. Several hypotheses are invertebrate catch statistics gathered by the Cali- proposed to explain fluctuations in partyboat fornia Department of Fish and Game (CDFG) for (commercial passenger fishing vessel) and com- the Palos Verdes Peninsula, to infer relative fish mercial fishery catches. Where possible, compari- abundance and human consumption rates, and, sons are drawn to relate catch information to envi- where possible, to better understand influences ronmental and societal influences. This report from natural and human environmental perturba- documents trends in historical resource use and tions. We examined total catches and common and fish consumption patterns, and is useful for re- economically important species, in addition to spe- gional fisheries management. The status of several cies with reported elevated body burdens of con- species has improved since the early to mid-1970s.
    [Show full text]
  • Physical Forcing on Fish Abundance in the Southern California Current System
    Received: 19 May 2016 | Accepted: 8 December 2017 DOI: 10.1111/fog.12267 ORIGINAL ARTICLE Physical forcing on fish abundance in the southern California Current System Lia Siegelman-Charbit1 | J. Anthony Koslow2 | Michael G. Jacox3,4 | Elliott L. Hazen3 | Steven J. Bograd3 | Eric F. Miller5 1Universite Pierre et Marie Curie, Paris, France Abstract 2Scripps Institution of Oceanography, The California Current System (CCS) is an eastern boundary current system with University of California, San Diego, La Jolla, strong biological productivity largely due to seasonal wind-driven upwelling and CA, USA 3National Oceanic and Atmospheric transport of the California Current (CC). Two independent, yet complementary time Administration, Monterey, CA, USA series, CalCOFI ichthyoplankton surveys and sampling of southern California power 4 Institute of Marine Sciences, University of plant cooling-water intakes, have indicated that an assemblage of predominantly California, Santa Cruz, CA, USA 5MBC applied Environmental Sciences, cool-water affinity fishes spanning nearshore to oceanic environments in the south- Costa Mesa, CA, USA ern CCS has declined dramatically from the 1970s to the 2000s. We examined Correspondence potential oceanographic drivers behind this decline both within and north of the L. Siegelman-Charbit CalCOFI survey area in order to capture upstream processes as well. Empirical Email: [email protected] orthogonal function (EOF) analyses using output from a data-assimilative regional ocean model revealed significant relationships
    [Show full text]
  • Artificial Reefs: Nothing More Than Benthic Fish Aggregators Jeffrey J
    POLOVINA: ARTIFICIAL REEFS: BENTHIC FISH AGGREGATORS ColCOFl Rep., Vol. 30,1989 ARTIFICIAL REEFS: NOTHING MORE THAN BENTHIC FISH AGGREGATORS JEFFREY J. POLOVINA Southwest Fisheries Center Honolulu Laboratory National Marine Fisheries Service, NOAA 2570 Dole Street Honolulu, Hawaii 96822-2396 ABSTRACT lieve the real benefit of the reefs is that they aggre- The potential for artificial reefs to substantially gate wide-ranging fishes close to shore so they can increase standing stock of marine resources is con- be harvested by fishermen with small vessels and sidered. Three sources - the Japanese artificial reef thus keep the fleet of small vessels economically program; relationships between fishery production viable. and the area of natural habitat for several fisheries; Outside of Japan, artificial reefs have not been and population dynamics - offer evidence that ar- deployed on a large enough scale to evaluate their tificial reefs do not substantially increase the stand- effectiveness in increasing standing stocks. How- ing stock of marine resources. ever, examining the relationship between habitat and fishery production can provide estimates of the RESUMEN level of fishery yield per area of habitat that might be expected from appropriately designed and sited Se considera el potencial de 10s arrecifes artifi- artificial reefs. One example is penaeid shrimp: ciales para aumentar sustancialmente el stoc4 dis- worldwide fishery yields range from 8 to 200 kg/ ponible de 10s recursos marinos. Tres fuentes de hectare of intertidal nursery habitat (Turner 1977). evidencia: el programa de arrecifes artificiales ja- pods, la relaci6n entre producci6n y Area del hAbi- In the case of artificial reefs, yields are measured in production per unit of reef volume.
    [Show full text]
  • End-To-End Modeling of Sardine and Anchovy in the California Current System Calcofi Rep., Vol
    ROSE ET AL.: END-TO-END MODELING OF SARDINE AND ANCHOVY IN THE CALIFORNIA CURRENT SYSTEM CalCOFI Rep., Vol. 56, 2015 END-TO-END MODELING OF SARDINE AND ANCHOVY IN THE CALIFORNIA CURRENT SYSTEM KENNETH A. ROSE, SEAN CREEKMORE MIGUEL BERNAL DavE CHECKLEY Department of Oceanography General Fisheries Commission Scripps Institution of Oceanography and Coastal Sciences for the Mediterranean (GFCM) University of California, San Diego Louisiana State University FAO of the United Nations 9500 Gilman Drive Baton Rouge, LA 70803 Fisheries and Aquaculture Department La Jolla, CA 92093 ph: (225) 578-6346 Palazzo Blumenstihl [email protected] fax: (225) 578-6513 Via Vittoria Colonna 1 - 00193, Rome, Italy [email protected] [email protected] TONY KOSLOW [email protected] Scripps Institution of Oceanography, CalCOFI ALAN HAYNIE, 9500 Gilman Drive, Department 0218 JEROME FIECHTER BERNARD A. MEGREY (deceased) La Jolla, CA 92093 Institute of Marine Sciences Alaska Fisheries Science Center-NOAA [email protected] University of California, Santa Cruz 7600 Sand Point Way NE Santa Cruz, CA 95064 Seattle, WA 98115 SAM MCCLATCHIE, [email protected] [email protected] FRANCISCO WERNER Southwest Fisheries Science Center-NOAA ENRIQUE N. CURCHITSER SHIN-ICHI ITO 8604 La Jolla Shores Drive Department of Environmental Sciences Atmosphere and Ocean Research Institute La Jolla, CA 92037-1508 and Institute of Marine and Coastal Sciences University of Tokyo [email protected] Rutgers University Kashiwa-city, Chiba 277-8564, Japan [email protected] 14 College Farm Road [email protected] New Brunswick, NJ 08901 ALEC MacCALL [email protected] SalvadOR LLUCH-COTA Southwest Fisheries Science Center-NOAA CIBNOR 110 Shaffer Road KATE HEDSTROM Mar Bermejo #195 Santa Cruz, CA 95060 Institute of Marine Science Col.
    [Show full text]
  • DISTRIBUTION of LARVAL SQUID, Lollgo OPALESCENS, in VARIOUS NEARSHORE LOCATIONS
    RECKSIEK AND KASHIWADA: DISTRIBUTION OF NEARSHORE LOLIGO OPALESCENS CalCOFI Rep., Vol. XX, 1979 DISTRIBUTION OF LARVAL SQUID, LOLlGO OPALESCENS, IN VARIOUS NEARSHORE LOCATIONS CONRAD W. RECKSIEK AND JERRY KASHIWADA Moss Landing Marine Laboratories P.O. BOX 223. Moss Landing, CA 95039 ABSTRACT estimated using an inclinometer and metered block. Three distinct sampling efforts employing different Mesh size decreased from about 6 mm at the mouth to a plankton-collecting gears aimed at collecting California cod-end liner of 1 mm. This gear was fished from Moss market squid, Loligo opalescens, in nearshore waters Landing Marine Laboratories research vessels Artemia from San Diego to Monterey Bay are described. Larval and Oconostota. Loligo opalescens occurrence in the hauls was low and Nearshore oblique tows in the upper 100 m were taken patchy, corroborating the experience of past workers. from San Diego to Morro Bay (Figure 1) in an attempt to Over the Monterey Jpawning grounds, the use of a spec- define geographical concentrations of larvae. These tows ially designed bottom-fishing plankton net was fouid to were made with a continuously open net similar in design be more generally effective than the other gears. to that used in Monterey Bay but with slightly larger mesh. In the case of operation in shallow water, the max- INTRODUCTION imum safe operation depth was shifted upward. In gen- The early life history of Loligo opalescens is unclear. eral, the net was allowed no lower than about 25 m from Fields (1965) suggests that the newly hatched larvae the bottom. Mesh sizes decreased from 9 mm to a cod- may be carried long distances by coastal currents.
    [Show full text]
  • Scientific Research and the Twentieth-Century Fishing Industry
    McEVOY: SCIENTIFIC RESEARCH AND THE 20TH-CENTURY FISHING INDUSTRY CalCOFI Rep., Vol. XXIII, 1982 SCIENTIFIC RESEARCH AND THE TWENTIETH-CENTURY FISHING INDUSTRY ARTHUR F. McEVOY’ The 1981-82 California Sea Grant College Program Among natural scientists, Ciriacy-Wantrup set a directory includes two projects devoted to the history similar example in a 1952 text on resource conser- of public policymaking for the fisheries.’ This indi- vation, defining conservation as a dynamic process cates, I think, a new and salutary trend in the study influenced by social, economic, and political institu- and management of natural resources in the public tions as much as by the character of the resources domain. Long isolated in their various specializations, themselve~.~More recently, Richard A. Walker ad- scientists and scholars interested in natural resources monished us not to forget that we do not address re- have, since the 1960s, begun to look across discipli- source policy questions innocent of history, politics, nary boundaries for new perspectives on problems that or of “commitments to pre-existing threads of ideol- draw their common concern. They have also begun to ogy passed down from those who have grappled with examine their own role in the making of policy- similar problems before. ”6 Walker trenchantly ob- analyzing the ways in which scientists and other served that effective resource management requires scholars, successfully or not, have tried at various the understanding and manipulation of the human stages in our history to contribute their expertise to processes that lead people to use nature in particular developing government policy for resource use.
    [Show full text]
  • Calcofi Data Management, White Paper. Karen I
    UC San Diego Scripps Institution of Oceanography Technical Report Title CalCOFI Data Management, White Paper Permalink https://escholarship.org/uc/item/9gr058dq Authors Stocks, Karen I Baker, Karen S Publication Date 2005-09-01 eScholarship.org Powered by the California Digital Library University of California CalCOFI Data Management White Paper Karen I. Stocks1 and Karen S. Baker2 1San Diego Supercomputer Center, UCSD 2 Scripps Institution of Oceanography, UCSD Scripps Institution of Oceanography Technical Report September 2005 Table of Contents Purpose 1 Acknowledgements 1 1. Introduction 3 2. Current Management of CalCOFI Data 6 2.1 Hydrographic "bottle" dataset 6 2.2 Ichthyoplankton 8 2.3 Zooplankton 9 3. Evaluation of CalCOFI Data Management, Recommendations, and Recent Activities 10 3.1 Database software and organization 10 3.2 Backup and Archive 10 3.3 Metadata and Data Documentation 10 3.4 Data acquisition and processing 13 4. Developing an Integrated Access System 15 4.1 Organizational Considerations 15 Coordination of Development and Collaborative Design 16 Community Communication 16 4.2 Technical Considerations 18 Common Database Elements for Integration 18 Integrated Ocean Observing System (IOOS) Compatibility 19 Centralized Versus Distributed Systems 20 Data Contribution, Use, and Acknowledgement Policies 20 Standards 21 Assessing Available Tools 21 Hardware and Software 23 4.3 A Prototype Online Access System 24 5. Expanding Beyond Focus Data 25 5.1 Data Types 25 Discrete Data Acquired on CalCOFI Cruises on CalCOFI Stations 25 Continuous Data Acquired on CalCOFI Cruises on CalCOFI Stations 26 Continuous Data Acquired on CalCOFI Cruises between CalCOFI Stations 26 Raster/Grid Data in the CalCOFI Region 27 5.2 Data Inventory 28 6.
    [Show full text]