Calcofi Data Management, White Paper. Karen I

Total Page:16

File Type:pdf, Size:1020Kb

Calcofi Data Management, White Paper. Karen I UC San Diego Scripps Institution of Oceanography Technical Report Title CalCOFI Data Management, White Paper Permalink https://escholarship.org/uc/item/9gr058dq Authors Stocks, Karen I Baker, Karen S Publication Date 2005-09-01 eScholarship.org Powered by the California Digital Library University of California CalCOFI Data Management White Paper Karen I. Stocks1 and Karen S. Baker2 1San Diego Supercomputer Center, UCSD 2 Scripps Institution of Oceanography, UCSD Scripps Institution of Oceanography Technical Report September 2005 Table of Contents Purpose 1 Acknowledgements 1 1. Introduction 3 2. Current Management of CalCOFI Data 6 2.1 Hydrographic "bottle" dataset 6 2.2 Ichthyoplankton 8 2.3 Zooplankton 9 3. Evaluation of CalCOFI Data Management, Recommendations, and Recent Activities 10 3.1 Database software and organization 10 3.2 Backup and Archive 10 3.3 Metadata and Data Documentation 10 3.4 Data acquisition and processing 13 4. Developing an Integrated Access System 15 4.1 Organizational Considerations 15 Coordination of Development and Collaborative Design 16 Community Communication 16 4.2 Technical Considerations 18 Common Database Elements for Integration 18 Integrated Ocean Observing System (IOOS) Compatibility 19 Centralized Versus Distributed Systems 20 Data Contribution, Use, and Acknowledgement Policies 20 Standards 21 Assessing Available Tools 21 Hardware and Software 23 4.3 A Prototype Online Access System 24 5. Expanding Beyond Focus Data 25 5.1 Data Types 25 Discrete Data Acquired on CalCOFI Cruises on CalCOFI Stations 25 Continuous Data Acquired on CalCOFI Cruises on CalCOFI Stations 26 Continuous Data Acquired on CalCOFI Cruises between CalCOFI Stations 26 Raster/Grid Data in the CalCOFI Region 27 5.2 Data Inventory 28 6. Summary of Recent Activities 29 7. Scaling up: Considerations for PaCOOS 31 8. Conclusions 32 Acknowledgements 32 ii Table of Contents, continued Tables, Figures and Appendices Table 1: Summary of Recommendations 2 Figure 1: CalCOFI Partnerships 4 Figure 2: CalCOFI Data Diagram 7 Appendix 1: Personnel list 33 Appendix 2: Meeting Summaries 35 Appendix 3: Data Inventory 38 Appendix 4: Data Inventory Template 44 Appendix 5: 2005/2006 Proposal 45 Appendix 6: Glossary of Acronyms 47 iii Purpose The California Cooperative Ocean Fisheries Investigations (CalCOFI) program is one of the longest-running, multidisciplinary ocean monitoring and observing programs in existence. For many years, the emphasis of data management within CalCOFI was to quality control and curate the individual datasets collected on CalCOFI cruises, and make them available to researchers and fisheries managers through printed reports and requests for data to the data curators. Today, a new goal is emerging of having CalCOFI datasets available online and, eventually, interoperable with other CalCOFI-related datasets and the larger, developing federation of the Ocean Observing System data. In this document we review the current state of data management within three of the primary CalCOFI datasets (hydrographic, ichthyoplankton, and zooplankton) and then make recommendations for moving towards the integrated online system that is envisioned, including expanding to other data types. Concrete recommendations for moving forward are summarized in Table 1 and explained in more detail throughout the text. Acknowledgements We give thanks to Rich Charter, Ralf Goericke, John Hunter, Mati Kahru, Mark Ohman, Jesse Powell, Elizabeth Venrick, Jerry Wanetick, and Jim Wilkinson for their contributions and to the CalCOFI community for supporting this work. Scripps Institution of Oceanography CalCOFI provided the support for this planning document. 1 Table 1: Summary of Recommendations – detail provided throughout the text Organization Cross Community Coordination Establish decision-making structures, committee Participate in IOOS data management working members, and responsibilities. In particular, we groups to expand IOOS technologies, such as recommend that the CalCOFI Committee create OPeNDAP, to better handle CalCOFI data an Information Management subcommittee types. composed of the data managers of each main Archive data with the National Ocean Data CalCOFI dataset to minimize divergent Center until IOOS archive centers develop. development. The decision-making structure should then develop: Review existing external tools, standards, protocols that can be useful for CalCOFI, • short-term development priorities (i.e. including transport specifications (OPeNDAP, central vs. distributed system, key DiGIR, OGC), metadata standards (FGDC, functionality, data priorities, who will host the EML, GM3/GETADE), species observation online access system, etc.), standards (OBIS, BioCASE), taxonomy • long-term strategies (open source vs. standards (NCBI), data formats (NetCDF, HDF, proprietary software, processes for XML, RDB, ascii), controlled vocabularies expansion, personnel training needs, etc.). (MRIB, MMI), catalogues (Metacat, Mcat, Thredds), analysis/visualization tools (LAS, Develop community communication mechanisms ACON, ODV, IDV), and the International Council through meetings, prototype assessments, etc. for the Exploration of the Sea (ICES) within the informatics community and between Oceanographic standards and Data informatics and oceanographic researchers. Management Software. User outreach mechanisms will be particularly important. Launch local design teams on OPeNDAP, metadata standards, and other interoperability Continue designing and maintaining the strategies such as dictionaries, thesauri, and personnel directory, and make the appropriate ontologies. Select pilot and prototype activities content available online. strategically. Formalize a data submission policy for main CalCOFI data types, a data use policy, and a data acknowledgement statement. Data System Design and Development Continue the ongoing task of the data inventory. Devote resources to redesigning the SIO collections zooplankton database, ideally before new survey lines begin operation. Local Elements and Work Flow Create FGDC metadata for the primary CalCOFI Continue developing the integrated online datasets, as is required for all federally funded access system being created by the SWFSC. data, and make this available in conjunction with all data being served online. • Conduct an evaluation, including user input, of the online access prototype as early in Expand metadata to hold information on development as possible. methods of collection, taxonomic resolution, precision information, and quality control Review and update the data input and procedures. processing procedures. Register standard metadata with the Global Devote modest additional funds for systems Change Master Directory and/or the NOAA administration at SIO. Coastal Data Development Center. Document data system components and data Focus in the short term on readying datasets management best practices. locally for flexible integration and data delivery in a variety of formats. 2 1. Introduction The purpose of this document is to overview the current state of data management within the California Cooperative Ocean Fisheries Investigations (CalCOFI) program and outline steps and recommendations for building towards an integrated, online information system for CalCOFI. It will also include consideration of how this effort could be scaled up to contribute to the emerging Pacific Coast Ocean Observing System (PaCOOS). CalCOFI is a long-term sampling program aimed at understanding the marine environment off southern California and improving living resource management in the region. It represents a consortium of the NOAA/NMFS Fisheries Resource Division of the Southwest Fisheries Science Center (SWFSC), the California Department of Fish and Game, and the Integrative Oceanographic Division (IOD) of Scripps Institution of Oceanography (SIO). A number of journal articles provide an introduction to the CalCOFI program (e.g. Ohman and Venrick, 2003; Bograd et al, 2003; Hewitt, 1988; CalCOFI, 1989, 1999) and demonstrate integrative uses of the data to address particular scientific questions (e.g. Deep Sea Research, 2003; McGowan et al, 1998; Roemmich and McGowan, 1995). The core of CalCOFI is the regular sampling: 4 times per year research vessels visit a standardized grid of 66 stations to measure physical, chemical, biological, and meteorological properties of the California Current ecosystem including censuses of organisms from phytoplankton to birds. Though the spatial and temporal scope has varied through time, this program has persisted since its inception in 1949. A program of this scope creates an enormous volume of heterogeneous data that can be valuable to a wide variety of oceanographic research and resource management applications. A recent interest in making the full range of data readily available online has led to an effort to understand holistically the current state of data management of CalCOFI data and lay a path towards building an integrated online access system. A second driver for recent CalCOFI data management interest comes from the emerging array of efforts with which to partner. Figure 1 shows some of the developing local, national, and international ocean data projects relevant to CalCOFI. In the United States, one of the larger efforts, the Integrated Ocean Observing System (IOOS),1 is in the early stages of development. The goal of IOOS is to create a unified and cost-effective approach for providing data needed to meet the suite of ocean-related challenges
Recommended publications
  • DYNAMIC HABITAT USE of ALBACORE and THEIR PRIMARY PREY SPECIES in the CALIFORNIA CURRENT SYSTEM Calcofi Rep., Vol
    MUHLING ET AL.: DYNAMIC HABITAT USE OF ALBACORE AND THEIR PRIMARY PREY SPECIES IN THE CALIFORNIA CURRENT SYSTEM CalCOFI Rep., Vol. 60, 2019 DYNAMIC HABITAT USE OF ALBACORE AND THEIR PRIMARY PREY SPECIES IN THE CALIFORNIA CURRENT SYSTEM BARBARA MUHLING, STEPHANIE BRODIE, MICHAEL JACOX OWYN SNODGRASS, DESIREE TOMMASI NOAA Earth System Research Laboratory University of California, Santa Cruz Boulder, CO Institute for Marine Science Santa Cruz, CA CHRISTOPHER A. EDWARDS ph: (858) 546-7197 Ocean Sciences Department [email protected] University of California, Santa Cruz, CA BARBARA MUHLING, OWYN SNODGRASS, YI XU HEIDI DEWAR, DESIREE TOMMASI, JOHN CHILDERS Department of Fisheries and Oceans NOAA Southwest Fisheries Science Center Delta, British Columbia, Canada San Diego, CA STEPHANIE SNYDER STEPHANIE BRODIE, MICHAEL JACOX Thomas More University, NOAA Southwest Fisheries Science Center Crestview Hills, KY Monterey, CA ABSTRACT peiods, krill, and some cephalopods (Smith et al. 2011). Juvenile north Pacific albacore Thunnus( alalunga) for- Many of these forage species are fished commercially, age in the California Current System (CCS), supporting but also support higher-order predators further up the fisheries between Baja California and British Columbia. food chain, such as other exploited species (e.g., tunas, Within the CCS, their distribution, abundance, and for- billfish) and protected resources (e.g., marine mammals aging behaviors are strongly variable interannually. Here, and seabirds) (Pikitch et al. 2004; Link and Browman we use catch logbook data and trawl survey records to 2014). Effectively managing marine ecosystems to pre- investigate how juvenile albacore in the CCS use their serve these trophic linkages, and improve robustness of oceanographic environment, and how their distributions management strategies to environmental variability, thus overlap with the habitats of four key forage species.
    [Show full text]
  • California Sea Lion Interaction and Depredation Rates with the Commercial Passenger Fishing Vessel Fleet Near San Diego
    HANAN ET AL.: SEA LIONS AND COMMERCIAL PASSENGER FISHING VESSELS CalCOFl Rep., Vol. 30,1989 CALIFORNIA SEA LION INTERACTION AND DEPREDATION RATES WITH THE COMMERCIAL PASSENGER FISHING VESSEL FLEET NEAR SAN DIEGO DOYLE A. HANAN, LISA M. JONES ROBERT B. READ California Department of Fish and Game California Department of Fish and Game c/o Southwest Fisheries Center 1350 Front Street, Room 2006 P.O. Box 271 San Diego, California 92101 La Jolla, California 92038 ABSTRACT anchovies, Engraulis movdax, which are thrown California sea lions depredate sport fish caught from the fishing boat to lure surface and mid-depth by anglers aboard commercial passenger fishing fish within casting range. Although depredation be- vessels. During a statewide survey in 1978, San havior has not been observed along the California Diego County was identified as the area with the coast among other marine mammals, it has become highest rates of interaction and depredation by sea a serious problem with sea lions, and is less serious lions. Subsequently, the California Department of with harbor seals. The behavior is generally not Fish and Game began monitoring the rates and con- appreciated by the boat operators or the anglers, ducting research on reducing them. The sea lion even though some crew and anglers encourage it by interaction and depredation rates for San Diego hand-feeding the sea lions. County declined from 1984 to 1988. During depredation, sea lions usually surface some distance from the boat, dive to swim under RESUMEN the boat, take a fish, and then reappear a safe dis- Los leones marinos en California depredan peces tance away to eat the fish, tear it apart, or just throw colectados por pescadores a bordo de embarca- it around on the surface of the water.
    [Show full text]
  • Frontmatter Final.Qxd
    5-14 Committee Rept final:5-9 Committee Rept 11/8/08 6:11 PM Page 5 COMMITTEE REPORT CalCOFI Rep., Vol. 49, 2008 Part I REPORTS, REVIEW, AND PUBLICATIONS REPORT OF THE CALCOFI COMMITTEE NOAA HIGHLIGHTS The David Starr Jordan will conduct operations in the Southern California Bight in San Diego and stations CalCOFI Cruises from Point Conception north to San Francisco, Cali- The CalCOFI program completed its fifty-eighth year fornia. The Miller Freeman will synoptically conduct sim - with four successful quarterly cruises. All four cruises ilar operations over the northern section of the CCE, were manned by personnel from both the NOAA in Port Townsend, Washington, and south to San Fran- Fisheries Southwest Fisheries Science Center (SWFSC) cisco. An additional California Current Ecosystem sur - and Scripps Institution of Oceanography (SIO). The fall vey will be conducted in July 2008. 2007 cruise was conducted on the SIO RV New Horizon and covered the southern lines of the CalCOFI pattern. CalCOFI Ichthyoplankton Update The winter and spring 2007 cruises were conducted on The SWFSC Ichthyoplankton Ecology group made the NOAA RV David Starr Jordan . The Jordan covered progress on a multi-year project to update larval fish lines 93 to line 60 just north of San Francisco. The sum - identifications to current standards from 1951 to the pre - mer 2007 cruise was on the SIO RV New Horizon , and sent, which will ultimately provide taxonomic consis - covered the standard CalCOFI pattern. tency throughout the CalCOFI ichthyoplankton time Standard CalCOFI protocols were followed during series. The group updated samples collected during the the four quarterly cruises.
    [Show full text]
  • Final Project Instructions
    Final Project Instructions Date Submitted: November 16, 2012 Platform: NOAA Ship Bell M. Shimada Project Number: SH-13-01 (OMAO), 1301SH (SWFSC) Project Title: CalCOFI Survey, Fisheries Resources Division. Project Dates: January 4, 2013 to February 7, 2013 Prepared by: ________________________ Dated: _November 16,_2012_ David Griffith Chief Scientist SWFSC Approved by: ________________________ Dated: __________________ Russ Vetter , Ph.D. Fisheries Resources Director SWFSC Approved by: ________________________ Dated: __________________ Francisco E. Werner, Ph.D. Science and Research Director SWFSC Approved by: ________________________ Dated: ________________ Captain Wade J. Blake, NOAA Commanding Officer Marine Operations Center - Pacific 1 I. Overview A. Brief Summary and Project Period Survey the distributions and abundances of pelagic fish stocks, their prey, and their biotic and abiotic environments in the area of the California Current between San Francisco, California and San Diego, California during the period of January 9 to February 2, 2013. B. Service Level Agreements Of the 33 DAS scheduled for this project, 0 DAS are funded by the program and 33 DAS are funded by OMAO. This project is estimated to exhibit a medium Operational Tempo. C. Operating Area 2 D. Summary of Objectives Survey the distributions and abundances of pelagic fish stocks, their prey, and their biotic and abiotic environments in the area of the California Current between San Francisco, California and San Diego, California. The following are specific objectives for the Winter CalCOFI. I.D.1. Continuously sample pelagic fish eggs using the Continuous Underway Fish Egg Sampler (CUFES). The data will be used to estimate the distributions and abundances of spawning hake, anchovy, mackerel, and early spawning Pacific sardine.
    [Show full text]
  • Views Concerning Use of the Living Resources of the California Current
    Calif. JIw. Res. Comna., CalCOFI Rept., 13 : 91-94, 1969 VIEWS CONCERNING USE OF THE LIVING RESOURCES OF THE CALIFORNIA CURRENT GERALD V. HOWARD, Regional Director Pacific Southwest Region Bureau of Commercial Fisheries Terminal Island, California I have been asked to express the views of the Bu- ‘wetfish ’ ’ fisheries which harvest mackerels, anchovies reau of Commercial Fisheries concerning the legal, and bonito ; and the “ bottomfish ” fisheries which har- economic, sociological and technological problems im- rest, though not exclusiuely, species taken by trawl- peding the best use of the living resources of the ing. California Current and how they can be resolved. Californians generally do not think of the tropical The impediments are generally rather well knowii. It tunas as a resource of the California Current, prob- is their resolution which presents the challenge. ably because they occur in its southern extension off A rnajor objective of the programs of the Bureau Baja California and rarely in commercial quantities of Commercial Fisheries is to seek the resolution of off southern California. I have included them not only problems which handicap the economic well-being of because they support California’s most important the domestic fishing industry and hinder the best use fishery, but because the long-range tuna fleet’s experi- of the fishery resources. Success of Bureau research ence in overcoming economic difficulties has been more and service programs, however, depends on close col- successful than that of other elements of the Cali- laboration and cooperation with other parties, espe- fornia fishing fleet. I especially wish to mention cially State agencics.
    [Show full text]
  • A Historical Review of Fisheries Statistics and Environmental and Societal Influences Off the Palos Verdes Peninsula, California
    STULL ET AL. : PALOS VERDES SPORT AND COMMERCIAL FISHERY CalCOFI Rep., Vol. XXVIII, 1987 A HISTORICAL REVIEW OF FISHERIES STATISTICS AND ENVIRONMENTAL AND SOCIETAL INFLUENCES OFF THE PALOS VERDES PENINSULA, CALIFORNIA JANET K. STULL, KELLY A. DRYDEN PAUL A. GREGORY Los Angeles County Sanitation Districts California Department of Fish and Game P.O. Box 4998 245 West Broadway Whittier. California 90607 Long Beach, California 90802 ABSTRACT peracion ambiental significativa y puede estar aso- A synopsis of partyboat and commercial fish and ciado con una reducci6n en la contaminacion del invertebrate catches is presented for the Palos medio ambiente marino costero. Verdes region. Fifty years (1936-85) of partyboat catch, in numbers of fish and angler effort, and 15 INTRODUCTION years (1969-83) of commercial landings, in Our goals were to summarize long-term fish and pounds, are reviewed. Several hypotheses are invertebrate catch statistics gathered by the Cali- proposed to explain fluctuations in partyboat fornia Department of Fish and Game (CDFG) for (commercial passenger fishing vessel) and com- the Palos Verdes Peninsula, to infer relative fish mercial fishery catches. Where possible, compari- abundance and human consumption rates, and, sons are drawn to relate catch information to envi- where possible, to better understand influences ronmental and societal influences. This report from natural and human environmental perturba- documents trends in historical resource use and tions. We examined total catches and common and fish consumption patterns, and is useful for re- economically important species, in addition to spe- gional fisheries management. The status of several cies with reported elevated body burdens of con- species has improved since the early to mid-1970s.
    [Show full text]
  • Physical Forcing on Fish Abundance in the Southern California Current System
    Received: 19 May 2016 | Accepted: 8 December 2017 DOI: 10.1111/fog.12267 ORIGINAL ARTICLE Physical forcing on fish abundance in the southern California Current System Lia Siegelman-Charbit1 | J. Anthony Koslow2 | Michael G. Jacox3,4 | Elliott L. Hazen3 | Steven J. Bograd3 | Eric F. Miller5 1Universite Pierre et Marie Curie, Paris, France Abstract 2Scripps Institution of Oceanography, The California Current System (CCS) is an eastern boundary current system with University of California, San Diego, La Jolla, strong biological productivity largely due to seasonal wind-driven upwelling and CA, USA 3National Oceanic and Atmospheric transport of the California Current (CC). Two independent, yet complementary time Administration, Monterey, CA, USA series, CalCOFI ichthyoplankton surveys and sampling of southern California power 4 Institute of Marine Sciences, University of plant cooling-water intakes, have indicated that an assemblage of predominantly California, Santa Cruz, CA, USA 5MBC applied Environmental Sciences, cool-water affinity fishes spanning nearshore to oceanic environments in the south- Costa Mesa, CA, USA ern CCS has declined dramatically from the 1970s to the 2000s. We examined Correspondence potential oceanographic drivers behind this decline both within and north of the L. Siegelman-Charbit CalCOFI survey area in order to capture upstream processes as well. Empirical Email: [email protected] orthogonal function (EOF) analyses using output from a data-assimilative regional ocean model revealed significant relationships
    [Show full text]
  • Artificial Reefs: Nothing More Than Benthic Fish Aggregators Jeffrey J
    POLOVINA: ARTIFICIAL REEFS: BENTHIC FISH AGGREGATORS ColCOFl Rep., Vol. 30,1989 ARTIFICIAL REEFS: NOTHING MORE THAN BENTHIC FISH AGGREGATORS JEFFREY J. POLOVINA Southwest Fisheries Center Honolulu Laboratory National Marine Fisheries Service, NOAA 2570 Dole Street Honolulu, Hawaii 96822-2396 ABSTRACT lieve the real benefit of the reefs is that they aggre- The potential for artificial reefs to substantially gate wide-ranging fishes close to shore so they can increase standing stock of marine resources is con- be harvested by fishermen with small vessels and sidered. Three sources - the Japanese artificial reef thus keep the fleet of small vessels economically program; relationships between fishery production viable. and the area of natural habitat for several fisheries; Outside of Japan, artificial reefs have not been and population dynamics - offer evidence that ar- deployed on a large enough scale to evaluate their tificial reefs do not substantially increase the stand- effectiveness in increasing standing stocks. How- ing stock of marine resources. ever, examining the relationship between habitat and fishery production can provide estimates of the RESUMEN level of fishery yield per area of habitat that might be expected from appropriately designed and sited Se considera el potencial de 10s arrecifes artifi- artificial reefs. One example is penaeid shrimp: ciales para aumentar sustancialmente el stoc4 dis- worldwide fishery yields range from 8 to 200 kg/ ponible de 10s recursos marinos. Tres fuentes de hectare of intertidal nursery habitat (Turner 1977). evidencia: el programa de arrecifes artificiales ja- pods, la relaci6n entre producci6n y Area del hAbi- In the case of artificial reefs, yields are measured in production per unit of reef volume.
    [Show full text]
  • End-To-End Modeling of Sardine and Anchovy in the California Current System Calcofi Rep., Vol
    ROSE ET AL.: END-TO-END MODELING OF SARDINE AND ANCHOVY IN THE CALIFORNIA CURRENT SYSTEM CalCOFI Rep., Vol. 56, 2015 END-TO-END MODELING OF SARDINE AND ANCHOVY IN THE CALIFORNIA CURRENT SYSTEM KENNETH A. ROSE, SEAN CREEKMORE MIGUEL BERNAL DavE CHECKLEY Department of Oceanography General Fisheries Commission Scripps Institution of Oceanography and Coastal Sciences for the Mediterranean (GFCM) University of California, San Diego Louisiana State University FAO of the United Nations 9500 Gilman Drive Baton Rouge, LA 70803 Fisheries and Aquaculture Department La Jolla, CA 92093 ph: (225) 578-6346 Palazzo Blumenstihl [email protected] fax: (225) 578-6513 Via Vittoria Colonna 1 - 00193, Rome, Italy [email protected] [email protected] TONY KOSLOW [email protected] Scripps Institution of Oceanography, CalCOFI ALAN HAYNIE, 9500 Gilman Drive, Department 0218 JEROME FIECHTER BERNARD A. MEGREY (deceased) La Jolla, CA 92093 Institute of Marine Sciences Alaska Fisheries Science Center-NOAA [email protected] University of California, Santa Cruz 7600 Sand Point Way NE Santa Cruz, CA 95064 Seattle, WA 98115 SAM MCCLATCHIE, [email protected] [email protected] FRANCISCO WERNER Southwest Fisheries Science Center-NOAA ENRIQUE N. CURCHITSER SHIN-ICHI ITO 8604 La Jolla Shores Drive Department of Environmental Sciences Atmosphere and Ocean Research Institute La Jolla, CA 92037-1508 and Institute of Marine and Coastal Sciences University of Tokyo [email protected] Rutgers University Kashiwa-city, Chiba 277-8564, Japan [email protected] 14 College Farm Road [email protected] New Brunswick, NJ 08901 ALEC MacCALL [email protected] SalvadOR LLUCH-COTA Southwest Fisheries Science Center-NOAA CIBNOR 110 Shaffer Road KATE HEDSTROM Mar Bermejo #195 Santa Cruz, CA 95060 Institute of Marine Science Col.
    [Show full text]
  • DISTRIBUTION of LARVAL SQUID, Lollgo OPALESCENS, in VARIOUS NEARSHORE LOCATIONS
    RECKSIEK AND KASHIWADA: DISTRIBUTION OF NEARSHORE LOLIGO OPALESCENS CalCOFI Rep., Vol. XX, 1979 DISTRIBUTION OF LARVAL SQUID, LOLlGO OPALESCENS, IN VARIOUS NEARSHORE LOCATIONS CONRAD W. RECKSIEK AND JERRY KASHIWADA Moss Landing Marine Laboratories P.O. BOX 223. Moss Landing, CA 95039 ABSTRACT estimated using an inclinometer and metered block. Three distinct sampling efforts employing different Mesh size decreased from about 6 mm at the mouth to a plankton-collecting gears aimed at collecting California cod-end liner of 1 mm. This gear was fished from Moss market squid, Loligo opalescens, in nearshore waters Landing Marine Laboratories research vessels Artemia from San Diego to Monterey Bay are described. Larval and Oconostota. Loligo opalescens occurrence in the hauls was low and Nearshore oblique tows in the upper 100 m were taken patchy, corroborating the experience of past workers. from San Diego to Morro Bay (Figure 1) in an attempt to Over the Monterey Jpawning grounds, the use of a spec- define geographical concentrations of larvae. These tows ially designed bottom-fishing plankton net was fouid to were made with a continuously open net similar in design be more generally effective than the other gears. to that used in Monterey Bay but with slightly larger mesh. In the case of operation in shallow water, the max- INTRODUCTION imum safe operation depth was shifted upward. In gen- The early life history of Loligo opalescens is unclear. eral, the net was allowed no lower than about 25 m from Fields (1965) suggests that the newly hatched larvae the bottom. Mesh sizes decreased from 9 mm to a cod- may be carried long distances by coastal currents.
    [Show full text]
  • Scientific Research and the Twentieth-Century Fishing Industry
    McEVOY: SCIENTIFIC RESEARCH AND THE 20TH-CENTURY FISHING INDUSTRY CalCOFI Rep., Vol. XXIII, 1982 SCIENTIFIC RESEARCH AND THE TWENTIETH-CENTURY FISHING INDUSTRY ARTHUR F. McEVOY’ The 1981-82 California Sea Grant College Program Among natural scientists, Ciriacy-Wantrup set a directory includes two projects devoted to the history similar example in a 1952 text on resource conser- of public policymaking for the fisheries.’ This indi- vation, defining conservation as a dynamic process cates, I think, a new and salutary trend in the study influenced by social, economic, and political institu- and management of natural resources in the public tions as much as by the character of the resources domain. Long isolated in their various specializations, themselve~.~More recently, Richard A. Walker ad- scientists and scholars interested in natural resources monished us not to forget that we do not address re- have, since the 1960s, begun to look across discipli- source policy questions innocent of history, politics, nary boundaries for new perspectives on problems that or of “commitments to pre-existing threads of ideol- draw their common concern. They have also begun to ogy passed down from those who have grappled with examine their own role in the making of policy- similar problems before. ”6 Walker trenchantly ob- analyzing the ways in which scientists and other served that effective resource management requires scholars, successfully or not, have tried at various the understanding and manipulation of the human stages in our history to contribute their expertise to processes that lead people to use nature in particular developing government policy for resource use.
    [Show full text]
  • TRENDS in the SOUTHERN CALIFORNIA SPORT FISHERY Calcofi Rep., Vol
    DOTSON AND CHARTER: TRENDS IN THE SOUTHERN CALIFORNIA SPORT FISHERY CalCOFI Rep., Vol. 44, 2003 TRENDS IN THE SOUTHERN CALIFORNIA SPORT FISHERY RONALD C. DOTSON RICHARD L. CHARTER Southwest Fisheries Science Center Southwest Fisheries Science Center National Marine Fisheries Service, NOAA National Marine Fisheries Service, NOAA 8604 La Jolla Shores Drive 8604 La Jolla Shores Drive La Jolla, California 92037 La Jolla, California 92037 [email protected] ABSTRACT and the stocks on which it depends. The Los Angeles We constructed a database for the Southern California Times usually reports each day’s landings for most fish- commercial passenger fishing vessel (CPFV) fleet for the ing ports, the number of CPFVs reporting landings on years 1959–1998 using the daily fish reports from the that day, the total catch numbers by species or species Los Angeles Times. This database includes information group, and the total number of fishing passengers. In on number of fish caught by species, landing port, land- 1997 Charles Mitchell (of MBC Applied Environmental ing date, and number of anglers. Comparison of this Sciences) was awarded a Saltonstall-Kennedy Grant database to the logbook database maintained by the (NA76FD0050) to enter 40 years of the Los Angeles California Department of Fish and Game shows high Times’ marine fish reports into a database to make this correlation. information available for fishery researchers in Cali- Angler effort has been consistent throughout the fornia. The Southwest Fisheries Science Center, National time series at about 620,000 passengers per year. The Marine Fisheries Service, assumed responsibility for up- annual fish catch averaged 4.25 million fish from 1963 dating and maintaining the database after Mitchell com- to 1991 but has declined since 1992 to 2.5 million fish pleted his grant project.
    [Show full text]