ZSL London Zoo - Stocklist January 2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BMB-WRC Animal Inventory
Department of Environment and Natural Resources BIODIVERSITY MANAGEMENT BUREAU Quezon Avenue, Diliman, Quezon City INVENTORY OF LIVE ANIMALS AT THE BMB-WILDLIFE RESCUE CENTER AS OF JULY 31, 2020 SPECIES STOCK ON HAND (AS OF COMMON NAME SCIENTIFIC NAME JULY 31, 2020) MAMMALS ENDEMIC / INDIGENOUS 1. Northern luzon cloud Ploeomys pallidus 1 rat 2. Palawan bearcat Arctictis binturong 2 3. Philippine deer Rusa marianna 2 4. Philippine monkey or Macaca fascicularis 92 Long-tailed macaque 5. Philippine palm civet Paradoxurus hermaphroditus 6 EXOTIC 6. Hedgehog Atelerix frontalis 1 7. Serval cat Leptailurus serval 2 8. Sugar glider Petaurus breviceps 58 9. Tiger Panthera tigris 2 10. Vervet monkey Chlorocebus pygerythrus 1 11. White handed gibbon Hylobates lar 1 Sub-total A 168 (Mammals) AVIANS ENDEMIC / INDIGENOUS 12. Black kite Milvus migrans 1 13. Black-crowned night Nycticorax nycticorax 1 heron 14. Blue-naped parrot Tanygnathus lucionensis 4 15. Brahminy kite Haliastur indus 41 16. Changeable hawk Spizaetus cirrhatus 6 eagle 17. Crested goshawk Accipiter trivirgatus 1 18. Crested serpent eagle Spilornis cheela 24 19. Green imperial pigeon Ducula aenea 2 20. Grey-headed fish eagle Haliaeetus ichthyaetus 1 21. Nicobar pigeon Caloenas nicobarica 1 22. Palawan hornbill Anthracoceros marchei 2 23. Palawan talking myna Gracula religiosa 3 24. Philippine eagle Pithecophaga jefferyi 1 25. Philippine hanging Loriculus philippensis 11 parrot 26. Philippine hawk eagle Spizaetus philippensis 12 27. Philippine horned Bubo philippensis 9 (eagle) owl 28. Philippine Scops owl Otus megalotis 5 29. Pink-necked pigeon Treron vernans 1 30. Pinsker's hawk eagle Spizaetus pinskerii 1 31. Red turtle dove Streptopelia tranquebarica 1 32. -
Spiders & Scorpion Livestock
Spiders & Scorpion Livestock Updated: 22.09.2017 Please Note: Livestock lists are correct at time of publishing and availability is subject to change Common Name Latin Name Age/Size Price Stock Status Spiders Brazilian Red And White Knee Female £49.95 Available Tarantula Adult Brazilian White Knee Tarantula £34.95 Available Chaco Golden Knee Tarantula Grammostola Pulchripes £29.95 Available Cobalt Blue Tarantula Haplopelma Lividum Sub Adult £49.95 Available Costa Rican Zebra Female £49.95 Available Curly Hair Tarantula Female £29.95 Available Field Wolf Spider Hogna Miami £19.95 Available Fringed Ornamental p. ornata spiderling £24.95 Available 1 / 4 Common Name Latin Name Age/Size Price Stock Status Spiders Golden Baboon Tarantula Augacephalus ezendami £39.95 Available Gooty Ornamental p. metallica spiderling £49.95 Available Green Bottle Blue Tarantula Female £49.95 Available Green Femur Birdeater Phormictopus"Green Femur" £39.95 Available Indian Ornamental Tarantula Poecilotheria regalis 2cm £24.95 Available King Baboon Tarantula Pelinobius Muticus £24.95 Available Martinique Pink Toe Tarantula 2cm £16.95 Available Mexican Fire Leg Tarantula Brachypelma Bohemi £39.95 Available Mexican Red Knee Tarantula Brachypelma Smithi £34.95 Available 2 / 4 Common Name Latin Name Age/Size Price Stock Status Spiders Mexican Red Leg Tarantula Brachypelma Emilia £39.95 Available £24.95 Available Mexican Red Rump Brachypelma Vagans Female Sub Adult Available £49.95 spiderling £19.95 Available OBT Tarantula Female Sub Adult Available £39.95 Purple Earth -
Spatially Distinct and Regionally Endemic Symbiodinium Assemblages in the Threatened Caribbean Reef-Building Coral Orbicella Faveolata
Coral Reefs (2015) 34:535–547 DOI 10.1007/s00338-015-1277-z REPORT Spatially distinct and regionally endemic Symbiodinium assemblages in the threatened Caribbean reef-building coral Orbicella faveolata Dustin W. Kemp • Daniel J. Thornhill • Randi D. Rotjan • Roberto Iglesias-Prieto • William K. Fitt • Gregory W. Schmidt Received: 28 October 2014 / Accepted: 19 February 2015 / Published online: 27 February 2015 Ó Springer-Verlag Berlin Heidelberg 2015 Abstract Recently, the Caribbean reef-building coral Or- with species of Symbiodinium in clades A (type A3), B (B1 bicella faveolata was listed as ‘‘threatened’’ under the U.S. and B17), C (C3, C7, and C7a), and D (D1a/Symbiodinium Endangered Species Act. Despite attention to this species’ trenchii). Within-colony distributions of Symbiodinium conservation, the extent of geographic variation within O. species correlated with light availability, cardinal direction, faveolata warrants further investigation. O. faveolata is and depth, resulting in distinct zonation patterns of en- unusual in that it can simultaneously harbor multiple ge- dosymbionts within a host. Symbiodinium species from netically distinct and co-dominant species of endosymbiotic clades A and B occurred predominantly in the light-exposed dinoflagellates in the genus Symbiodinium. Here, we inves- tops, while species of clade C generally occurred in the tigate the geographic and within-colony complexity of shaded sides of colonies or in deeper-water habitats. Fur- Symbiodinium-O. faveolata associations from Florida Keys, thermore, geographic comparisons of host–symbiont asso- USA; Exuma Cays, Bahamas; Puerto Morelos, Mexico; and ciations revealed regional differences in Symbiodinium Carrie Bow Cay, Belize. We collected coral samples along associations. -
Genetic Analysis of Tarantulas in the Genus Brachypelma Using Inter Simple Sequence Repeats (ISSR)
Eastern Michigan University DigitalCommons@EMU Senior Honors Theses & Projects Honors College 2020 Genetic analysis of tarantulas in the genus Brachypelma using Inter Simple Sequence Repeats (ISSR) Sarah Holtzen Follow this and additional works at: https://commons.emich.edu/honors Part of the Biology Commons Recommended Citation Holtzen, Sarah, "Genetic analysis of tarantulas in the genus Brachypelma using Inter Simple Sequence Repeats (ISSR)" (2020). Senior Honors Theses & Projects. 688. https://commons.emich.edu/honors/688 This Open Access Senior Honors Thesis is brought to you for free and open access by the Honors College at DigitalCommons@EMU. It has been accepted for inclusion in Senior Honors Theses & Projects by an authorized administrator of DigitalCommons@EMU. For more information, please contact [email protected]. Genetic analysis of tarantulas in the genus Brachypelma using Inter Simple Sequence Repeats (ISSR) Abstract There is a great deal of morphological and genetic species diversity on Earth that requires careful conservation. One such genetically diverse genus of tarantulas is that of Brachypelma. In this study, we employ a newer DNA fingerprinting technique known as Inter Simple Sequence Repeat (ISSR), ot study the genetic variation among Brachypelma species and to determine if the invasive Brachypelma tarantula found in Florida B. vagans. Although B. vagans is a species protected under CITES Appendix II, this species has a wide distribution in Mexico and traits allowing for invasion to new habitats. It was hypothesized that the invasive tarantula in Florida is that of B. vagans and that it would be more closely related to samples from the Mexican populations as opposed to samples from the United States pet trade. -
FAMILY Plesiopidae Günther, 1861 - Roundheads, Longfins
FAMILY Plesiopidae Günther, 1861 - roundheads, longfins SUBFAMILY Acanthoclininae Günther, 1861 - spiny basslets GENUS Acanthoclinus Jenyns, 1841 - spiny basslets [=Acanthoclinus Jenyns [L.], 1841:91, Taumakoides (subgenus of Acanthoclinus) Whitley [G. P.], 1955:111] Notes: [The zoology of the voyage of H. M. S. Beagle; ref. 2344] Masc. Acanthoclinus fuscus Jenyns, 1842. Type by original designation. Mooi 1993 [ref. 21801] places the Acanthoclinidae as a subfamily of the Plesiopidae. Type by original designation (also monotypic, second species questionably included). •Valid as Acanthoclinus Jenyns, 1841 -- (Hardy 1985:360 [ref. 5184], Smith-Vaniz & Johnson 1990:223 [ref. 16561], Mooi 1993:322 [ref. 21801], Yerman & Leis 2011:79 [ref. 31400], Stewart 2015:1208 [ref. 34196]). Current status: Valid as Acanthoclinus Jenyns, 1841. Plesiopidae: Acanthoclininae. (Taumakoides) [Australian Zoologist v. 12 (pt 2); ref. 4722] Masc. Acanthoclinus trilineatus Griffin, 1933. Type by original designation (also monotypic). •Valid as Taumakoides Whitley, 1955 -- (Hardy 1985:364 [ref. 5184]). •Synonym of Acanthoclinus Jenyns, 1841 -- (Smith-Vaniz & Johnson 1990:223 [ref. 16561]). Current status: Synonym of Acanthoclinus Jenyns, 1841. Plesiopidae: Acanthoclininae. Species Acanthoclinus fuscus Jenyns, 1841 - olive rockfish [=Acanthoclinus fuscus Jenyns [L.], 1841:92, Pl. 18 (fig. 2), Acanthoclinus taumaka Clarke [F. E.], 1879:293, Pl. 15 (upper right)] Notes: [The zoology of the voyage of H. M. S. Beagle; ref. 2344] Bay of Islands, New Zealand. Current status: Valid as Acanthoclinus fuscus Jenyns, 1841. Plesiopidae: Acanthoclininae. Distribution: New Zealand. Habitat: marine. (taumaka) [Transactions and Proceedings of the New Zealand Institute v. 11 (art. 25) (for 1878); ref. 18006] Jackson's Bay, New Zealand. Current status: Synonym of Acanthoclinus fuscus Jenyns, 1841. -
Corals Sustain Growth but Not Skeletal Density Across the Florida Keys Reef Tract Despite Ongoing Warming
bioRxiv preprint doi: https://doi.org/10.1101/310037; this version posted April 28, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: Corals sustain growth but not skeletal density across the Florida Keys Reef Tract despite 2 ongoing warming 3 Running head: Coral growth on the Florida Keys Reef Tract 4 5 John P. Rippe1*, Justin H. Baumann1, Daphne N. De Leener1, Hannah E. Aichelman1,y, Eric B. 6 Friedlander2, Sarah W. Davies1,g and Karl D. Castillo1,3 7 8 1Department of Marine Sciences, University of North Carolina at Chapel Hill, 3202 Murray Hall, 9 Chapel Hill, NC, USA. 10 2Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, 11 318 Hanes Hall, Chapel Hill, NC, USA. 12 3Curriculum for Environment and Ecology, University of North Carolina at Chapel Hill, 3202 13 Murray Hall, Chapel Hill, NC, USA. 14 yCurrent address: Department of Biological Sciences, Old Dominion University, 110 Mills 15 Godwin Life Sciences Building, Norfolk, VA, USA. 16 gCurrent address: Department of Biology, Boston University, 5 Cummington Mall, Boston, MA, 17 USA. 18 *Corresponding author (Email: [email protected]) 19 20 Keywords: Coral reef, calcification, Caribbean, Florida Keys, sclerochronology, climate change, 21 global warming, ocean acidification 22 Paper type: Primary research article 1 bioRxiv preprint doi: https://doi.org/10.1101/310037; this version posted April 28, 2018. -
Training Manual Series No.15/2018
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”. -
Microsatellite Development, Population Structure And
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations and Theses in Biological Sciences Biological Sciences, School of 12-2010 MICROSATELLITE DEVELOPMENT, POPULATION STRUCTURE AND DEMOGRAPHIC HISTORIES FOR TWO SPECIES OF AMAZONIAN PEACOCK BASS CICHLA TEMENSIS AND CICHLA MONOCULUS (PERCIFORMES: CICHLIDAE). Jason C. Macrander University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscidiss Part of the Biology Commons Macrander, Jason C., "MICROSATELLITE DEVELOPMENT, POPULATION STRUCTURE AND DEMOGRAPHIC HISTORIES FOR TWO SPECIES OF AMAZONIAN PEACOCK BASS CICHLA TEMENSIS AND CICHLA MONOCULUS (PERCIFORMES: CICHLIDAE)." (2010). Dissertations and Theses in Biological Sciences. 20. https://digitalcommons.unl.edu/bioscidiss/20 This Article is brought to you for free and open access by the Biological Sciences, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations and Theses in Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MICROSATELLITE DEVELOPMENT, POPULATION STRUCTURE AND DEMOGRAPHIC HISTORIES FOR TWO SPECIES OF AMAZONIAN PEACOCK BASS CICHLA TEMENSIS AND CICHLA MONOCULUS (PERCIFORMES: CICHLIDAE). By Jason C. Macrander A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Biological Sciences Under the Supervision of Professor Etsuko Moriyama Lincoln, Nebraska December, 2010 MICROSATELLITE DEVELOPMENT, POPULATION STRUCTURE AND DEMOGRAPHIC HISTORIES FOR TWO SPECIES OF AMAZONIAN PEACOCK BASS CICHLA TEMENSIS AND CICHLA MONOCULUS (PERCIFORMES: CICHLIDAE). Jason Macrander, M.S. University of Nebraska, 2010 Adviser: Etsuko Moriyama The Neotropics of South America represent one of the most diverse assemblages of freshwater organisms in the world. -
Keys Traveler Magazine, Diving Edition
Keys TravelerDIVE EDITION Dive Volunteerism Reef Etiquette Wrecks and Reefs fla-keys.com Learn to Dive A diver explores the egardless of experience, divers Spiegel Grove off Key Largo. in the Florida Keys exercise caution and awareness of Pam Murph Stephen Frink R Be an Ocean Advocate their surroundings – reef etiquette extends to snorkelers and even participants in SNUBA, a cross Florida Keys Reef between snorkeling and scuba. Every day Keys dive operators help enforce – through continued Etiquette for Divers education and shared information – guidelines from boat etiquette to the “no touch” rules that are strictly enforced for all divers and snorkelers visiting the coral reefs within the Florida Keys National Marine Sanctuary. Many dive shops have a low divers- to-guide ratio when they are in the water with their divers, ensuring they employ proper reef etiquette – a procedure that is especially important among beginner divers such as open-water students or newly certified divers just learning to control their buoyancy underwater. Late spring and summer are among the best times to explore the Keys Programs Spotlight Wrecks and Reefs undersea world of the Florida Keys, but it’s crucial to practice important or thousands of scuba diving the Spiegel Grove and Gen. Hoyt S. reef etiquette: and snorkeling enthusiasts who Vandenberg. Before hitting the water, apply visit the Florida Keys annually, Advanced, wreck-certified divers Keys Traveler environmentally safe sunscreens F DIVE EDITION two unique programs spotlight the who complete at least one wreck both for skin protection and to Editor: Andy Newman Managing eliminate harmful chemicals such as Keys’ shipwrecks and coral reefs dive with a participating dive op Editor: Julie Botteri Copy Editor: between Key Largo and Key West. -
Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E. -
Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics
International Journal of Molecular Sciences Article Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics Marcelo de Bello Cioffi 1, Petr Ráb 2, Tariq Ezaz 3 , Luiz Antonio Carlos Bertollo 1, Sebastien Lavoué 4, Ezequiel Aguiar de Oliveira 1,5 , Alexandr Sember 2, Wagner Franco Molina 6, Fernando Henrique Santos de Souza 1 , Zuzana Majtánová 2 , Thomas Liehr 7,*, Ahmed Basheer Hamid Al-Rikabi 7, Cassia Fernanda Yano 1, Patrik Viana 8 , Eliana Feldberg 8, Peter Unmack 3 , Terumi Hatanaka 1, Alongklod Tanomtong 9 and Manolo Fernandez Perez 1 1 Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), São Carlos, SP 13565-090, Brazil 2 Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 27721 Libˇechov, Czech Republic 3 Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia 4 School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia 5 Secretaria de Estado de Educação de Mato Grosso – SEDUC-MT, Cuiabá, MT 78049-909, Brazil 6 Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN 59078-970, Brazil 7 Institute of Human Genetics, University Hospital Jena, 07747 Jena, Germany 8 Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade, Laboratório de Genética Animal, Petrópolis, Manaus, AM 69077-000, Brazil 9 Toxic Substances in Livestock and Aquatic Animals Research Group, KhonKaen University, Muang, KhonKaen 40002, Thailand * Correspondence: [email protected] Received: 13 August 2019; Accepted: 30 August 2019; Published: 2 September 2019 Abstract: Arowanas (Osteoglossinae) are charismatic freshwater fishes with six species and two genera (Osteoglossum and Scleropages) distributed in South America, Asia, and Australia. -
Download Report
THE ROLE OF FRANCE IN WILDLIFE TRADE AN ANALYSIS OF CITES TRADE AND SEIZURE DATA Joint report with About WWF WWF is one of the world’s largest and most experienced independent conservation organizations, with over 5 million supporters and a global network active in more than 100 countries. WWF’s mission is to stop the degradation of the planet’s natural environment and to build a future in which humans live in harmony with nature, by conserving the world’s biological diversity, ensuring that the use of renewable natural resources is sustainable, and promoting the reduction of pollution and wasteful consumption. Since 1973, WWF France has worked on a constant stream of projects to provide future generations with a living planet. With the support of its volunteers and 220,000 donators, WWF France leads concrete actions to safeguard natural environments and their species, ensure promotion of sustainable ways of life, train decision-makers, engage with businesses to reduce their ecological footprint and educate young people. The only way to implement true change is to respect everyone in the process. That is why dialogue and action are keystones for the WWF philosophy. The navigator Isabelle Autissier has been President of WWF France since December 2009, and Véronique Andrieux was named Chief Executive Officer in 2019. To learn more about our projects and actions, go to: http://projets.wwf.fr Together possible About TRAFFIC TRAFFIC is a leading non-governmental organisation working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development. www.traffic.org Contact TRAFFIC Europe: [email protected] Publication date 2021 Suggested citation Shiraishi H., Escot L., Kecse-Nagy K.