Eriss Research Summary 2004–2005

Total Page:16

File Type:pdf, Size:1020Kb

Eriss Research Summary 2004–2005 supervising scientist report 189 eriss research summary 2004–2005 KG Evans, J Rovis-Hermann, A Webb & DR Jones (editors) It is SSD policy for reports in the SSR series to be reviewed as part of the publications process. This SSR is a summary of the 2004–05 research program of the Environmental Research Institute of the Supervising Scientist and has been reviewed internally by senior staff and the editors of the volume. Kenneth G Evans – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia. Jacqui Rovis-Hermann – Office of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia. (Current address: Department of Employment & Workplace Relations, 11th Floor, QV1 Building, 250 St George's Terrace, Perth WA 6000, Australia) Ann L Webb – Office of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia. David R Jones – Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia. This report should be cited as follows: Evans KG, Rovis-Hermann J, Webb A & Jones DR (eds) 2006. eriss research summary 2004–2005. Supervising Scientist Report 189, Supervising Scientist, Darwin NT. The Supervising Scientist is part of the Australian Government Department of the Environment and Heritage. © Commonwealth of Australia 2006 Supervising Scientist Department of the Environment and Heritage GPO Box 461, Darwin NT 0801 Australia ISSN 1325-1554 ISBN 0 642 24397 2 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Supervising Scientist. Requests and inquiries concerning reproduction and rights should be addressed to Publications Inquiries, Supervising Scientist, GPO Box 461, Darwin NT 0801. e-mail: [email protected] Internet: www.deh.gov.au/ssd (www.deh.gov.au/ssd/publications) The views and opinions expressed in this report do not necessarily reflect those of the Commonwealth of Australia. While reasonable efforts have been made to ensure that the contents of this report are factually correct, some essential data rely on the references cited and the Supervising Scientist and the Commonwealth of Australia do not accept responsibility for the accuracy, currency or completeness of the contents of this report, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the report. Readers should exercise their own skill and judgment with respect to their use of the material contained in this report. Printed and bound in Darwin by uniprint NT Contents Preface ix PART 1: RANGER – CURRENT OPERATIONS 1 Development of a contaminant pathways conceptual model for Ranger mine 5 R van Dam & P Bayliss Preliminary assessment of bioaccumulation and trophic transfer of key metals from Ranger mine 9 R van Dam, C Sauerland, K Turner, C Humphrey, B Ryan & A Bollhöfer Influence of calcium on the ecotoxicity of magnesium: Implications for water quality trigger values 15 R van Dam, A Hogan, C McCullough, C Humphrey, S Nou & M Douglas Chronic toxicity of uranium to the tropical duckweed, Lemna aequinoctialis 20 R van Dam, S Nou & A Hogan Development of a reference toxicity testing program for Chlorella sp. and Hydra viridissima 24 A Hogan, R van Dam & S Nou Revision of the ecotoxicology laboratory manual 27 A Hogan Atmospheric radiological monitoring in the vicinity of Ranger and Jabiluka 28 A Bollhöfer, D Elphick & SA Atkins Monitoring of radionuclides in groundwater at Ranger 31 B Ryan Radon concentrations in air in the Alligator Rivers Region 32 A Bollhöfer & P Martin Introduction to SSD’s stream monitoring program for Ranger, 2004–05 35 C Humphrey iii Chemical and physical monitoring of surface waters in Magela and Gulungul Creeks 36 M Iles Creekside monitoring in Magela Creek 40 C Humphrey, D Buckle & R Luxon Monitoring using macroinvertebrate community structure 43 C Humphrey, J Hanley, C Camilleri & A Cameron Monitoring using fish community structure 46 R Pidgeon & C Humphrey Fish communities in channel billabongs 48 C Humphrey, D Buckle & R Pidgeon Fish communities in shallow lowland billabongs 54 R Pidgeon, R Luxon & D Buckle Publication of protocols for SSD’s stream monitoring program in Magela Creek and Quality Control and Quality Assurance of SSD’s stream monitoring program 58 C Humphrey Review of the bioaccumulation monitoring program 60 C Sauerland, B Ryan, C Humphrey & D Jones Surface water radiological monitoring in the vicinity of Ranger and Jabiluka 63 C Sauerland, P Medley & J Sellwood Surface water transport of uranium in the Gulungul catchment 67 C Sauerland, K Mellor, D Parry & A Bollhöfer PART 2: RANGER – REHABILITATION 71 Reliability assessment of Siberia model outputs 75 KG Evans & GR Willgoose iv Assessing the geomorphic stability of the currently proposed final landform at the Ranger mine using landform evolution modelling 77 JBC Lowry & KG Evans Radio- and lead isotopes in sediments of the Alligator Rivers Region 80 A Bollhöfer & A Frostick Radon exhalation at and around Ranger uranium mine 83 C Lawrence, R Akber, P Martin & A Bollhöfer Development of predictive habitat suitability models of vegetation communities associated with the rehabilitated Ranger final landform 86 C Humphrey, I Hollingsworth & G Fox Key aspects of native flora seed biology that support Ranger mine rehabilitation goals 99 P Bayliss & S Bellairs Key aspects of native flora seed biology that support Ranger mine rehabilitation goals. Part 1: Seed biology of selected Australian native grass species 100 K Sangster & S Bellairs Key aspects of native flora seed biology that support Ranger mine rehabilitation goals. Part 2: Progress on Kakadu Native Plant Supplies Project 103 M Gardener, P Christophersen & S McGregor Bioaccumulation in traditional Aboriginal bushfoods 106 B Ryan, A Bollhöfer & P Martin Assess Quickbird data for weed mapping and monitoring at Ranger 110 K Pfitzner Quantify stream sediment transport characteristics for Gulungul Creek to assess the impact of mine site erosion and rehabilitation performance of Ranger mine 112 DR Moliere, MJ Saynor & KG Evans v Feasibility study of implementation of sediment monitoring system in Corridor and Magela creeks upstream and downstream of Ranger mine 116 DR Moliere & MJ Saynor PART 3: JABILUKA 117 Monitoring during the care and maintenance phase at Jabiluka 120 M Iles Monitoring suspended sediment at Jabiluka 1998–2003: establishing baseline 123 KG Evans, DR Moliere, MJ Saynor, WD Erskine & MG Bellio Monitoring suspended sediment at Jabiluka: 2003–2005 127 DR Moliere, MJ Saynor & KG Evans Baseline stream channel stability characteristics in the Ngarradj catchment 130 MJ Saynor, WD Erskine, DR Moliere & KG Evans Gully initiation near the Jabiluka project area 134 MJ Saynor, WD Erskine, KG Evans & I Eliot Scour and fill in the Ngarradj catchment between 1998 and 2003 139 MJ Saynor, WD Erskine & KG Evans Cross-sectional changes in the Ngarradj catchment between 1998 and 2003 143 MJ Saynor, WD Erskine & KG Evans PART 4: NABARLEK 147 Vegetation monitoring techniques at Nabarlek mine site using remote sensing and ground-based studies 150 K Pfitzner Assess a variety of spatial, spectral and temporal scaled remotely sensed data for rehabilitation assessment 153 K Pfitzner vi Sediment and radionuclide fluxes from the former Nabarlek mine 157 GR Hancock, MK Grabham, P Martin, KG Evans & A Bollhöfer Assessing the geomorphic stability of the rehabilitated Nabarlek mine using landform evolution modelling 160 JBC Lowry, DR Moliere, GS Boggs & KG Evans Radiological impact assessment of the rehabilitated Nabarlek site 163 A Bollhöfer, B Ryan, P Martin & K Pfitzner PART 5: GENERAL ALLIGATOR RIVERS REGION 167 Mangrove response to environmental change, especially climate change 170 K Pfitzner Ecological risk assessment of Magela floodplain to differentiate mining and non-mining impacts 172 P Bayliss, R van Dam, J Boyden & D Walden Significant habitats and species in the Alligator Rivers Region 186 C Humphrey Radiological case study: South Alligator River 188 B Ryan, P Martin, A Bollhöfer & K Pfitzner RESEARCH CONSULTANCIES 191 Australia’s tropical rivers – an integrated data assessment and analysis 192 R van Dam A preliminary ecological risk assessment of the impact of Ginger ants (Solenopsis geminata) on colonies of seabirds at Ashmore Reef 193 P Bayliss Climate change vulnerability of wetlands 194 I Eliot, MJ Saynor, K Pfitzner & M Eliot vii Appendix 1 SSD publications for 2004–05 195 Appendix 2 ARRTC Key Knowledge Needs 2004–2005 203 viii Preface The Environmental Research Institute of the Supervising Scientist (eriss) is part of the Supervising Scientist Division of the Commonwealth Department of Environment and Heritage. Its primary role is to undertake monitoring of and research into the impact of uranium mining activities in the Alligators Rivers region to protect human and ecosystem health, and to provide advice to the Supervising Scientsist. eriss also conducts research on tropical river systems and the ecology and conservation of tropical wetlands with a focus on the sustainable use of water resources. This report contains summaries of research projects undertaken by eriss over the 2004–05 financial year. For additional information, readers are referred to the annual publications list (Appendix 1) which details all of the material published, and conference and workshop papers presented by eriss staff in 2004–05. The balance and strategic prioritisation of work within the uranium component of eriss’s project portfolio is defined by Key Knowledge Needs (KKNs) developed by consultation between the Alligator Rivers Region Technical Committee (ARRTC), the Supervising Scientist, Energy Resources of Australia and other stakeholders. Six thematic areas (based primarily on geographic provenance) have been identified as being the primary KKN’s topic areas to ensure the current and future protection of the environment of the Alligator Rivers Region (Appendix 2). The content of the research program developed for each of these areas is assessed and reviewed annually by ARRTC in consultation with stakeholder groups.
Recommended publications
  • Pseudoraphis Spinescens)
    Project Brief Optimal habitat conditions for Moira Grass (Pseudoraphis spinescens) 12 April 2019 1. Introduction The Goulburn Broken Catchment Management Authority (GB CMA) is seeking to appoint a suitably qualified and experienced consultant to prepare a report that describes optimal conditions for the establishment, proliferation and maintenance of Moira Grass (Pseudoraphis spinescens) across open wetland plains in the Barmah-Millewa Forest. The report should be based on the consultant’s own understanding of the ecology of the species and its habitat in the southern Murray Darling Basin, a review of relevant literature, and discussions with experienced floodplain managers, ecologists, and others as identified by the consultant. 2. Study Area The Barmah Ramsar Site is part of the larger Barmah-Millewa Forest Icon Site under The Living Murray initiative; the total site being one of Australia’s most significant river restoration programs. The Icon Site covers some 66,000 ha, with the Barmah Ramsar site covering approximately 28,500 ha on the Victorian side of the Murray River. The Barmah-Millewa Forest Icon Site supports the largest river red gum forest in Australia and forms the largest and most intact freshwater floodplain system along the Murray River. The Barmah-Millewa Forest provides habitat for numerous plant and animal species and supports colonies of breeding waterbirds during appropriate seasonal conditions. The forest also has profound significance for the traditional land owners, the Yorta Yorta people. 3. Background Once noted for its extensive Moira Grass dominated floodplain wetlands, which form a critical function in the forest and are an essential part of the ecological character of the site, a legacy of cattle and horse grazing, combined with adverse impacts due to river regulation, has seen the extent of Moira Grass plains in Barmah decline by over 95%, from an estimated 4000 ha in 1930 to less than 200 ha currently (2019).
    [Show full text]
  • Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E
    Circular 54 Freshwater Ornamental Fish Commonly Cultured in Florida 1 Jeffrey E. Hill and Roy P.E. Yanong2 Introduction Unlike many traditional agriculture industries in Florida which may raise one or only a few different species, tropical Freshwater tropical ornamental fish culture is the largest fish farmers collectively culture hundreds of different component of aquaculture in the State of Florida and ac- species and varieties of fishes from numerous families and counts for approximately 95% of all ornamentals produced several geographic regions. There is much variation within in the US. There are about 200 Florida producers who and among fish groups with regard to acceptable water collectively raise over 800 varieties of freshwater fishes. In quality parameters, feeding and nutrition, and mode of 2003 alone, farm-gate value of Florida-raised tropical fish reproduction. Some farms specialize in one or a few fish was about US$47.2 million. Given the additional economic groups, while other farms produce a wide spectrum of effects of tropical fish trade such as support industries, aquatic livestock. wholesalers, retail pet stores, and aquarium product manufacturing, the importance to Florida is tremendous. Fish can be grouped in a number of different ways. One major division in the industry which has practical signifi- Florida’s tropical ornamental aquaculture industry is cance is that between egg-laying species and live-bearing concentrated in Hillsborough, Polk, and Miami-Dade species. The culture practices for each division are different, counties with additional farms throughout the southern requiring specialized knowledge and equipment to succeed. half of the state. Historic factors, warm climate, the proxim- ity to airports and other infrastructural considerations This publication briefly reviews the more common groups (ready access to aquaculture equipment, supplies, feed, etc.) of freshwater tropical ornamental fishes cultured in Florida are the major reasons for this distribution.
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Conservation of Grassland Plant Genetic Resources Through People Participation
    University of Kentucky UKnowledge International Grassland Congress Proceedings XXIII International Grassland Congress Conservation of Grassland Plant Genetic Resources through People Participation D. R. Malaviya Indian Grassland and Fodder Research Institute, India Ajoy K. Roy Indian Grassland and Fodder Research Institute, India P. Kaushal Indian Grassland and Fodder Research Institute, India Follow this and additional works at: https://uknowledge.uky.edu/igc Part of the Plant Sciences Commons, and the Soil Science Commons This document is available at https://uknowledge.uky.edu/igc/23/keynote/35 The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015. Proceedings Editors: M. M. Roy, D. R. Malaviya, V. K. Yadav, Tejveer Singh, R. P. Sah, D. Vijay, and A. Radhakrishna Published by Range Management Society of India This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Conservation of grassland plant genetic resources through people participation D. R. Malaviya, A. K. Roy and P. Kaushal ABSTRACT Agrobiodiversity provides the foundation of all food and feed production. Hence, need of the time is to collect, evaluate and utilize the biodiversity globally available. Indian sub-continent is one of the world’s mega centers of crop origins. India possesses 166 species of agri-horticultural crops and 324 species of wild relatives.
    [Show full text]
  • TOP PADDOCK Newsletter 32 December 2003
    TOP PADDOCK Newsletter 32 December 2003 Editor: Karen Richardson Department of Business Industry & Resource Development GPO Box 3000, Darwin NT 0801 Phone (08) 8999 2133 ISSN: 1320-727X Harvesting Floodplain Grass Seed with the airboat was terminated early because the water was too low and the depth variable, which Introduction made controlling the speed of the airboat difficult. There has been considerable interest in the Added to this was the danger of having to jump out of potential use of native floodplain grasses for the airboat into crocodile infested water to push the revegetation following control of Mimosa pigra. airboat through shallow areas and potential injuries For this to be practical, a ready supply of seed is from hitting submerged objects, including tree trunks. required, and methods needed to be developed for the harvest, cleaning, testing and storage seed The low pure seed yields obtained (Table1) show of the main floodplain grasses. wild harvesting of these species is not an economical proposition. A National Heritage Trust (NHT) Bushcare funded co-operative project between Agriculture, Weeds Table 1: Pure Seed yields from floodplain grasses Branch and Greening Australia staff was with a brush harvester. conducted during 2002 and 2003 to investigate commercial harvesting of floodplain grass seed. Grass Harvester Pure Seed Mode Yield (g/hour) Method: Hymenachne Tractor 1.3 A brush harvester was constructed to fit onto the Weeds Branch airboat to harvest seed of Hymenachne Airboat 0.8 Hymenachne acutigluma, Leersia hexandra and Pseudoraphis spinescens in standing water. Pseudoraphis Tractor 3.6 These grasses produce their seed mostly during the wet season when the stands are generally The Hymenachne seed yield from the airboat harvest accessible only by boat or airboat.
    [Show full text]
  • Vegetation and Soil Assessment of Selected Waterholes of the Diamantina and Warburton Rivers, South Australia, 2014-2016
    Vegetation and Soil Assessment of Selected Waterholes of the Diamantina and Warburton Rivers, South Australia, 2014-2016 J.S. Gillen June 2017 Report to the South Australian Arid Lands Natural Resources Management Board Fenner School of Environment & Society, Australian National University, Canberra Disclaimer The South Australian Arid Lands Natural Resources Management Board, and its employees do not warrant or make any representation regarding the use, or results of use of the information contained herein as to its correctness, accuracy, reliability, currency or otherwise. The South Australian Arid Lands Natural Resources Management Board and its employees expressly disclaim all liability or responsibility to any person using the information or advice. © South Australian Arid Lands Natural Resources Management Board 2017 This report may be cited as: Gillen, J.S. Vegetation and soil assessment of selected waterholes of the Diamantina and Warburton Rivers, South Australia, 2014-16. Report by Australian National University to the South Australian Arid Lands Natural Resources Management Board, Pt Augusta. Cover images: Warburton River April 2015; Cowarie Crossing Warburton River May 2016 Copies of the report can be obtained from: Natural Resources Centre, Port Augusta T: +61 (8) 8648 5300 E: [email protected] Vegetation and Soil Assessment 2 Contents 1 Study Aims and Funding Context 6 2 Study Region Characteristics 7 2.1 Location 7 2.2 Climate 7 3 The Diamantina: dryland river in an arid environment 10 3.1 Methodology 11 3.2 Stages 12
    [Show full text]
  • Variation in Species Assemblages Due to Micro-Topography and Flow
    Sarkar et al. Ecological Processes (2019) 8:49 https://doi.org/10.1186/s13717-019-0201-9 RESEARCH Open Access Variation in species assemblages due to micro-topography and flow regime govern vegetation carbon stock in seasonal floodplain wetlands Priyanka Sarkar1, Tapati Das1* and Dibyendu Adhikari2 Abstract Hypothesis: Variation in species assemblages due to micro-topographic features and flow regime determine vegetation carbon stock in floodplain wetlands. Material and method: We tested this hypothesis in Chatla—a tropical floodplain wetland located in northeast India. Five sampling stations characterized by contrasting micro-topographic and flow parameters were selected in the wetland for study. Species composition, assemblage pattern, and vegetation carbon stock were studied in these stations during three flood phases, i.e., early, middle, and late flood phases following standard methods. Univariate and multivariate statistics were used to determine the relationship between the selected environmental parameters, plant species assemblages, and vegetation carbon stock of the wetland. Results: Thirty-one species of herbs and five species of shrubs were recorded from the five stations in Chatla floodplain wetland. Flow regime characterized by water flow velocity and discharge showed substantial variations across the stations. These parameters in turn are related to variations in the micro-topographic characteristics namely depth, width, and cross-sectional area of the stations. Plant species composition and abundance differed significantly with respect to micro-topography and flow regime as revealed by the cluster diagram. The canonical correspondence analysis revealed strong association of plant species assemblages with the micro-topography and flow regime within the wetland. Multiple regression analysis revealed a significant positive relationship of the vegetation carbon stock with the water discharge.
    [Show full text]
  • Arbuscular Mycorrhizal Fungi and Dark Septate Fungi in Plants Associated with Aquatic Environments Doi: 10.1590/0102-33062016Abb0296
    Arbuscular mycorrhizal fungi and dark septate fungi in plants associated with aquatic environments doi: 10.1590/0102-33062016abb0296 Table S1. Presence of arbuscular mycorrhizal fungi (AMF) and/or dark septate fungi (DSF) in non-flowering plants and angiosperms, according to data from 62 papers. A: arbuscule; V: vesicle; H: intraradical hyphae; % COL: percentage of colonization. MYCORRHIZAL SPECIES AMF STRUCTURES % AMF COL AMF REFERENCES DSF DSF REFERENCES LYCOPODIOPHYTA1 Isoetales Isoetaceae Isoetes coromandelina L. A, V, H 43 38; 39 Isoetes echinospora Durieu A, V, H 1.9-14.5 50 + 50 Isoetes kirkii A. Braun not informed not informed 13 Isoetes lacustris L.* A, V, H 25-50 50; 61 + 50 Lycopodiales Lycopodiaceae Lycopodiella inundata (L.) Holub A, V 0-18 22 + 22 MONILOPHYTA2 Equisetales Equisetaceae Equisetum arvense L. A, V 2-28 15; 19; 52; 60 + 60 Osmundales Osmundaceae Osmunda cinnamomea L. A, V 10 14 Salviniales Marsileaceae Marsilea quadrifolia L.* V, H not informed 19;38 Salviniaceae Azolla pinnata R. Br.* not informed not informed 19 Salvinia cucullata Roxb* not informed 21 4; 19 Salvinia natans Pursh V, H not informed 38 Polipodiales Dryopteridaceae Polystichum lepidocaulon (Hook.) J. Sm. A, V not informed 30 Davalliaceae Davallia mariesii T. Moore ex Baker A not informed 30 Onocleaceae Matteuccia struthiopteris (L.) Tod. A not informed 30 Onoclea sensibilis L. A, V 10-70 14; 60 + 60 Pteridaceae Acrostichum aureum L. A, V, H 27-69 42; 55 Adiantum pedatum L. A not informed 30 Aleuritopteris argentea (S. G. Gmel) Fée A, V not informed 30 Pteris cretica L. A not informed 30 Pteris multifida Poir.
    [Show full text]
  • Thesis Submitted in Fulfilment of the Requirements for the Degree of Masters of Science by Research
    Factors influencing hybridisation and introduction success of the critically endangered Running River rainbowfish, Melanotaenia sp. Karl Moy B. Zool. (Hons) Institute for Applied Ecology University of Canberra A thesis submitted in fulfilment of the requirements for the degree of Masters of Science by Research 7th of August 2019 i Abstract Given that conservation introductions are essentially biological invasions, researching the main factors which influence them will provide insight for both conservation and management. The factors affecting invasion success in small-bodied Australian freshwater fishes are largely unstudied. From a conservation-oriented perspective this is worrying as small-bodied freshwater species are more likely to become threatened than large-bodied species. It is equally concerning from an invasive species management perspective as many species have the potential to negatively impact native species and ecosystems. This thesis consists of two data chapters preceded by a general introduction and followed by a synthesis. The first data chapter examines potential pre and post zygotic barriers to hybridisation between the Running River rainbowfish (RRR) and eastern rainbowfish (Melanotaenia splendida). Eastern rainbowfish is a widespread native fish of northern Australia with an alien population in Running River (a tributary of the Burdekin River, Queensland). Hybridisation between RRR and eastern rainbowfish has been detected and in the absence of barriers to further hybridisation and introgression will likely lead to the loss of pure RRR from the wild. Dichotomous mate choice experiments and egg survival experiments were used to determine the presences of pre and post-zygotic barriers to hybridisation between RRR and eastern rainbowfish. The findings of this study do not support the presence of barriers to hybridisation between the two species.
    [Show full text]
  • Mapping Pseudoraphis Spinescens Using Remotely Sensed Imagery
    Mapping Pseudoraphis spinescens using remotely sensed imagery A. Kitchingman July 2017 Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning Unpublished Client Report for the Goulburn Broken CMA Mapping Pseudoraphis spinescens using remotely sensed imagery Adrian Kitchingman Arthur Rylah Institute for Environmental Research Department of Environment, Land, Water and Planning 123 Brown Street, Heidelberg, Victoria 3084 July 2017 Arthur Rylah Institute for Environmental Research Department of Environment, Land, Water and Planning Heidelberg, Victoria © Goulburn Broken Catchment Management Authority With the exception of the Commonwealth Coat of Arms, the Murray-Darling Basin Authority logo, photographs and, all material presented in this document is provided under a Creative Commons Attribution 4.0 International licence https://creativecommons.org/licenses/by/4.0/ . For the avoidance of any doubt, this licence only applies to the material set out in this document. The details of the licence are available on the Creative Commons website (accessible using the links provided) as is the full legal code for the CC BY 4.0 licence https://creativecommons.org/licenses/by/4.0/legalcode. MDBA’s preference is that this publication be attributed (and any material sourced from it) using the following: Publication title: Mapping Pseudoraphis spinescens using remotely sensed imagery Source: Licensed from the Goulburn Broken Catchment Management Authority under a Creative Commons Attribution 4.0 Licence The contents of this publication do not purport to represent the position of the Commonwealth of Australia or the MDBA in any way and are presented for the purpose of informing and stimulating discussion for improved management of Basin's natural resources.
    [Show full text]
  • Biodiversity Assessment in Some Selected Hill Forests of South Orissa
    BIODIVERSITY ASSESSMENT IN SOME SELECTED HILL FORESTS OF SOUTH ORISSA BIODIVERSITY ASSESSMENT IN SOME SELECTED HILL FORESTS OF SOUTH ORISSA, INDIA FIELD SURVEY AND DOCUMENTATION TEAM PRATYUSH MOHAPATRA, PRASAD KUMAR DASH, SATYANARAYAN MIASHRA AND DEEPAK KUMAR SAHOO & BIODIVERSITY CONSERVATION TEAM SWETA MISHRA, BISWARUP SAHU, SUJATA DAS, TUSHAR DASH, RANJITA PATTNAIK AND Y.GIRI, RAO REPORT PREPARED BY VASUNDHARA A/70, SAHID NAGER BHUBANESWAR ORISSA ACKNOWLEDGMENT The authors are grateful to Concern Worldwide for providing financial support to carry out the study. The authors are also thankful to Dr. Dr. R.C .Mishra, Scientist, RPRC, Bhubaneswar, Dr. S.K Dutta, Head, Dept. of Zoology, North Orissa University and Dr. Manoj Nayar, Dr. N.K.Dhal and Mr. N.C.Rout, Scientist, Institute of Minerals and Materials Technology, Bhubaneswar, Dr. Virendra Nath, Scientist, National Botanical Research Institute, Lacknow, Dr. Dinesh Kumar Saxena, Professor, Barely collage, U.P for their technical input during the study design, identification of species and sincere guidance in preparing the report. Mr. Himanshu Sekhar Palei and Mr. Anup Kumar Pradhan, students, Msc. Wildlife, Baripada, Orissa are duly acknowledged for their information on Otters and Giant squirrels of south Orissa Dr. Bijaya Mishra, Mr. Biswjyoti Sahoo and Mr. Himanshu Patra are thanked for their support and cooperation during field visits to different hills. The help and co-operation rendered by the local informants of different ethnic groups in providing first hand information is highly appreciated and acknowledged. Last but not the least, the help and support provided by the Director Vasundhara is highly acknowledged. PREFACE Biodiversity is declining seriously on a global scale, underscoring the importance of conservation planning.
    [Show full text]
  • Download Download
    PLANT SCIENCE TODAY, 2020 Vol 7(3): 319–332 HORIZON https://doi.org/10.14719/pst.2020.7.3.763 e-Publishing Group ISSN 2348-1900 (online) RESEARCH ARTICLE New generic records of grasses from Tripura, India Sampa Ghosh & Debjyoti Bhattacharyya* Plant Taxonomy and Biosystematics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788 011, India *Email: [email protected] ARTICLE HISTORY Received: 03 March 2020 ABSTRACT Accepted: 05 May 2020 Five species of grasses (Gramineae, nom. alt. Poaceae) namely Eriochloa procera (Retz.) C. E. Hubb., Published: 01 July 2020 Heteropogon contortus (L.) P. Beauv. ex Roem. & Schult., Perotis indica (L.) Kuntze, Phalaris minor Retz. and Pseudoraphis brunoniana (Griff.) Pilg. are reported here for the first time from Tripura, India. KEYWORDS Literature review revealed that all are the first representative species under respective genus from the Eriochloa; Gramineae; Heteropogon; state which eventually proclaim five new generic records of grasses from the state of Tripura. Brief monocotyledons; northeastern description with illustration, habitat, phenology of all the species are presented. Field photographs are India; Perotis; Phalaris; Poaceae; also given for facilitating easy identification. Pseudoraphis Introduction review of pertinent literature (3, 6, 7, 10, 11, 13) revealed that all these five species have not been Poaceae (nom. alt. Gramineae) are the fifth largest hitherto reported from the state of Tripura, hence, this family among the angiosperms in the world (1) and communication reports the occurrence of these five are represented by more than 10000 species under 715 species of grasses as new records from the state for genera (2). In India, the family is the largest with the first time.
    [Show full text]