Ev7n1p55.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Ev7n1p55.Pdf HEALTHIMPLICATIONSOFVIRUSESFROM qg SOUTHAMERICANMONKEYS The three papers published below were presented at a Special Symposium on Viruses of South American Monkeys organized by the Pan American Health Organization in cooperation with the New England Regional Primate Research Center of Harvard Medical School. A full selection of papers presented at the meetings is contained in the book International Movement of Animals published by the Pan American Health Organiza- tion. HERPES-LIKE SIMIAN VIRUSES : RETROSPECTIVE AND PROSPECTIVE CONSIDERATIONS’ Thomas H. Weller, M.D.2 The introduction of improved tissue culture polioviruses stimulated the importation of tens techniques for the study of viral pathogensof of thousands of Old World monkeys into the man has resulted in an explosive growth of United States and Europe. Those engagedin virologic knowledge. Progressin the past two vaccine production found that monkeys and decades has been characterized by successive monkey tissues were essentialfor viral propaga- episodesof intense scientific activity and intel- tion and for testing safety. lectual excitement, each stemming from isola- As a consequenceof work based primarily tion of a new agent or from development of on Old World monkeys, a considerablebody of new methodologic approaches. As a conse- knowledge has accumulated regarding simian quence of the cumulative efforts of many viruses. In a recent review, Hull recorded 57 scientists, we now possess effective vaccines for serotypes of simian agents representing seven the control of poliomyelitis, measles,rubella, different virus families (I). During this period and mumps. the occupational hazards of B virus The studies on poliomyelitis, perhapsmore (Herpesvirus simiae) were recognized, and the than generally realized, established a basic disconcerting discovery was made that some pattern for applied virologic researchthat in- lots of polio vaccine contained potentially cluded the preferential use of Old World mon- oncogenicSV40 virus. keys as experimental subjects. Paradoxically, That new problems due to simian viruses the in vitro procedures that initially were might arise at any time was dramatically illus- heralded as emancipating the researcherfrom trated in 1967 by the Marburg incident, in dependence on monkeys for the study of which seven human deaths followed exposure to a previously unrecognized agent infecting a shipment of African green monkeys. Yet, con- IPaper presented at the II International Sympo- sidering that tens of thousands of monkeys sium on Health Aspects of the International Move- ment of Animals (Special Symposium on Viruses of were utilized and that millions of doses of South American Monkeys) held in Mexico City on vaccine derived from monkey cells have been 11-13 August 1971. Previously published in Scientific Publication PAHO 235 (1972), pp. 121-123. distributed, it is amazing that the iatrogenic 2Richard Pearson Strong Professor of Tropical exposure of man to these simian viruses has Public Health and Chairman of the Department, Harvard School of Public Health, Harvard University, been relatively free of unforeseen conse- Boston, Massachusetts. quences. The excellent record for containing 55 56 ENGLISH EDITION-BOLETIN DE LA OSP . Vol. VII, No. 1, 1973 the hazards of indigenous viruses of Old World squirrel monkey has the capacity to induce monkeys reflects vigilance that is now basedon lymphomas in other New World primates. The an extensive body of knowledge accumulated process is remarkably malignant, with owl over two decades. monkeys and marmosets succumbing 13-28 Currently, scientistsinterested in a variety of days after inoculation (5). Further, Herpesvivus infectious agentsare again enjoying the excite- saimiri can induce a lymphomatous responsein ment and acceleratedprogress associated with animals as taxonomically distant as rabbits. The introduction of a new methodologic approach- obvious question is, What would it do in man? in this instance based on the increasing availa- These observationscome at a time when the bility for researchpurposes of severalgenera of herpes-relatedviruses of man are the subjectsof New World monkeys. Brief reference to se- increasing interest in terms of their oncogenic lected studies will document the rapid accept- potential and because of their unique host- ance of this new researchresource by workers parasite relationships. The capacity to establish outside the field of classicalvirology. In 1966, a persistent latent infection, with or without Young et al., employing Aotus, reported the episodesof renewed clinical activity, is a little transmissionof Plasmodium vivax to monkeys, understood characteristic of the herpes group and the following year Geiman and Meagher of viruses. This attribute, per se, is a matter of infected Aotus with Plasmodium falciparum primary concern in the development of attenu- (2). Other New World monkeys have more ated live viral vaccinesagainst membersof the recently been infected with malaria parasitesof herpesgroup. man. Thus, for the first time the pressing For example, although we isolated varicella problem of chloroquine-resistantmalaria can be virus in 1953 (6), chickenpox persistsunaltered studied in a convenient primate model. in our midst. But how, in view of the host In the area of helminthology, Aotus has specificity of varicella virus, would one safely recently been shown to be susceptible to test an attenuated varicella vaccine? Decadesof infection with the three species of human observing the human experimental host would schistosomes(3). be mandatory to assurethat the latent vaccine Experimental trachoma in Old World mon- virus did not subsequentlyresurface in the form keys is a relatively benign process.However, as of a peculiarly virulent attack of herpeszoster. recently reported by Bell and Fraser, inocula- Members of another highly host-specific tion of the eye of the owl monkey induces family- of the herpes group of viruses, the severeclinical and microbiological disease(4). cytomegalovirusesof man, can produce congen- The owl monkey therefore supplants other ital brain damage and a variety of clinical animal models for testing experimental tracho- syndromes ranging from infectious hepatitis to ma vaccines. an infectious mononucleosis-likefebrile illness. These examples not only emphasize the Indeed, the number of infants damagedas a new-found potential of New World monkeys as consequenceof congenital cytomegaloviral in- subjects for researchin nonvirologic areas,but fection probably greatly exceeds the number also indicate the rapidly expanding chancesfor affected by rubella virus (7). As with varicella, human contact with a new and little under- in studying the human cytomegaloviruseswe stood spectrumof simian viruses. lack a susceptible experimental animal. Hope- With this prologue we approach the topic of fully, systematic screening of the New World our symposium, namely, the viruses of South primates will reveal animals that are susceptible American monkeys. This meeting is a conse- to varicella and the human cytomegaloviruses. quence of the unexpected, important, and yet In these introductory remarks I have omit- disturbing discovery by our chairman, Dr. Luis ted reference to Epstein-Barr virus and to the Melendez, and his co-workers that a herpes significant data indicating an etiologic relation virus (Herpesvints saimiri) recovered from the of this agent to infectious mononucleosis, Weller . HERPES-LIKE SIMIAN VIRUSES 57 Burkitt’s tumor, and nasopharyngeal carcino- episodes of intense scientific activity and intel- ma. Nor have I referred to still controversial lectual excitement, resulting from isolation of data bearing on the causalor casualrelationship some new agent or development of new meth- odologic approaches. Scientists interested in a of Herpesvirus hominis Type 2 and human variety of infectious agents are now taking cervical carcinoma, or to the herpesvirus re- advantage of another new approach-use of sponsible for Marek’s disease of chickens, or several genera of New World monkeys that have that associatedwith Lucke tumor of frogs. become available for research. I have instead chosen to emphasizethat we The demonstration that herpesviruses of some of these New World monkeys can induce are entering an exciting new period of virologic rapidly fatal malignant disease in animals is investigation. For two decades, following a adding impetus to work on viruses and cancer, pattern established by research on poliomyeli- and is providing important new approaches to tis, we utilized, of necessity,in vitro techniques chemotherapy and immunologic control of based on the availability of Old World mon- malignant disease. However, until the hazards of the new oncogenic herpesviruses are defined, keys. Currently, with the increasing introduc- distribution of the new agents should be moni- tion of New World primates as researchtools, a tored and limited to investigators competent new spectrum of challenging investigative op- and equipped to deal with dangerous viruses. portunities-and of hazards to human health- is evolving. The demonstration that herpesvi- REFERENCES ruses of New World monkeys will induce rapidly fatal malignant diseasein primates as (0 Hull, R.N.“The Significance of Simian Viruses to well as in unrelated mammalswill add impetus the Monkey Colony and the Laboratory Investi- to work on the viral etiology of cancer in gator.” In Experimental Medicine and Surgery in Primates, ed. by E. 1. Goldsmith and J. general, and will provide important
Recommended publications
  • Development Team
    Paper No. : 14 Human Origin and Evolution Module : 09 Classification and Distribution of Living Primates Development Team Principal Investigator Prof. Anup Kumar Kapoor Department of Anthropology, University of Delhi Dr. Satwanti Kapoor (Retd Professor) Paper Coordinator Department of Anthropology, University of Delhi Mr. Vijit Deepani & Prof. A.K. Kapoor Content Writer Department of Anthropology, University of Delhi Prof. R.K. Pathak Content Reviewer Department of Anthropology, Panjab University, Chandigarh 1 Classification and Distribution of Living Primates Anthropology Description of Module Subject Name Anthropology Paper Name Human Origin and Evolution Module Name/Title Classification and Distribution of Living Primates Module Id 09 Contents: Primates: A brief Outline Classification of Living Primates Distribution of Living Primates Summary Learning Objectives: To understand the classification of living primates. To discern the distribution of living primates. 2 Classification and Distribution of Living Primates Anthropology Primates: A brief Outline Primates reside at the initial stage in the series of evolution of man and therefore constitute the first footstep of man’s origin. Primates are primarily mammals possessing several basic mammalian features such as presence of mammary glands, dense body hair; heterodonty, increased brain size, endothermy, a relatively long gestation period followed by live birth, considerable capacity for learning and behavioural flexibility. St. George J Mivart (1873) defined Primates (as an order)
    [Show full text]
  • Veterinary Opposition to the Keeping of Primates As Pets
    Veterinary Opposition to the Keeping of Primates as Pets Introduction: The Humane Society Veterinary Medical Association opposes the private ownership of dangerous and exotic animals. That includes the keeping of primates as pets, since this practice poses a risk to public safety and public health. It is also harmful to the welfare of the primates in question and weakens conservation efforts undertaken to protect their wild counterparts from extinction. The following document describes the compelling case for phasing out the practice of keeping primates as pets, as the majority of states have already done. Primates pose a risk to public safety. Primates are wild animals who have not been – and should not be – domesticated. Given their profound intelligence and behavioral complexity, they are inherently unpredictable, even to primatologists and other experts. Even the smallest monkey species are incredibly strong and can inflict serious injuries with their teeth or nails, including puncture wounds, severe lacerations, and infections. Attacks by apes are frequently disfiguring and can be fatal. Purchased as cute and manageable infants, primates inevitably become aggressive, destructive, and territorial as they mature, often attacking their owners or other people, escaping cages, and causing damage to household items and property. These dangerous and unwanted behaviors are the natural result of forcing these animals to live in environments that are inappropriate physically, psychologically, or socially. When their living conditions fail to permit acceptable outlets for natural behaviors, the result is horror stories that frequently appear on the evening news. Although it is likely that most incidents go unreported, records show that since 1990, more than 300 people— including 105 children—have been injured by captive primates in the United States.1 Some of these attacks have caused permanent disability and disfigurement.
    [Show full text]
  • An Expanded Search for Simian Foamy Viruses (SFV) in Brazilian New World Primates Identifies Novel SFV Lineages and Host Age‑Related Infections Cláudia P
    Muniz et al. Retrovirology (2015) 12:94 DOI 10.1186/s12977-015-0217-x RESEARCH Open Access An expanded search for simian foamy viruses (SFV) in Brazilian New World primates identifies novel SFV lineages and host age‑related infections Cláudia P. Muniz1,2, Hongwei Jia2, Anupama Shankar2, Lian L. Troncoso1, Anderson M. Augusto3, Elisabete Farias1, Alcides Pissinatti4, Luiz P. Fedullo3, André F. Santos1, Marcelo A. Soares1,5 and William M. Switzer2* Abstract Background: While simian foamy viruses have co-evolved with their primate hosts for millennia, most scientific stud- ies have focused on understanding infection in Old World primates with little knowledge available on the epidemiol- ogy and natural history of SFV infection in New World primates (NWPs). To better understand the geographic and species distribution and evolutionary history of SFV in NWPs we extend our previous studies in Brazil by screening 15 genera consisting of 29 NWP species (140 monkeys total), including five genera (Brachyteles, Cacajao, Callimico, Mico, and Pithecia) not previously analyzed. Monkey blood specimens were tested using a combination of both serology and PCR to more accurately estimate prevalence and investigate transmission patterns. Sequences were phylogeneti- cally analyzed to infer SFV and host evolutionary histories. Results: The overall serologic and molecular prevalences were 42.8 and 33.6 %, respectively, with a combined assay prevalence of 55.8 %. Discordant serology and PCR results were observed for 28.5 % of the samples, indicating that both methods are currently necessary for estimating NWP SFV prevalence. SFV prevalence in sexually mature NWPs with a positive result in any of the WB or PCR assays was 51/107 (47.7 %) compared to 20/33 (61 %) for immature animals.
    [Show full text]
  • High-Throughput Human Primary Cell-Based Airway Model for Evaluating Infuenza, Coronavirus, Or Other Respira- Tory Viruses in Vitro
    www.nature.com/scientificreports OPEN High‑throughput human primary cell‑based airway model for evaluating infuenza, coronavirus, or other respiratory viruses in vitro A. L. Gard1, R. J. Luu1, C. R. Miller1, R. Maloney1, B. P. Cain1, E. E. Marr1, D. M. Burns1, R. Gaibler1, T. J. Mulhern1, C. A. Wong1, J. Alladina3, J. R. Coppeta1, P. Liu2, J. P. Wang2, H. Azizgolshani1, R. Fennell Fezzie1, J. L. Balestrini1, B. C. Isenberg1, B. D. Medof3, R. W. Finberg2 & J. T. Borenstein1* Infuenza and other respiratory viruses present a signifcant threat to public health, national security, and the world economy, and can lead to the emergence of global pandemics such as from COVID‑ 19. A barrier to the development of efective therapeutics is the absence of a robust and predictive preclinical model, with most studies relying on a combination of in vitro screening with immortalized cell lines and low‑throughput animal models. Here, we integrate human primary airway epithelial cells into a custom‑engineered 96‑device platform (PREDICT96‑ALI) in which tissues are cultured in an array of microchannel‑based culture chambers at an air–liquid interface, in a confguration compatible with high resolution in‑situ imaging and real‑time sensing. We apply this platform to infuenza A virus and coronavirus infections, evaluating viral infection kinetics and antiviral agent dosing across multiple strains and donor populations of human primary cells. Human coronaviruses HCoV‑NL63 and SARS‑CoV‑2 enter host cells via ACE2 and utilize the protease TMPRSS2 for spike protein priming, and we confrm their expression, demonstrate infection across a range of multiplicities of infection, and evaluate the efcacy of camostat mesylate, a known inhibitor of HCoV‑NL63 infection.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • Genome Sequence of the Basal Haplorrhine Primate Tarsius Syrichta Reveals Unusual Insertions
    ARTICLE Received 29 Oct 2015 | Accepted 17 Aug 2016 | Published 6 Oct 2016 DOI: 10.1038/ncomms12997 OPEN Genome sequence of the basal haplorrhine primate Tarsius syrichta reveals unusual insertions Ju¨rgen Schmitz1,2, Angela Noll1,2,3, Carsten A. Raabe1,4, Gennady Churakov1,5, Reinhard Voss6, Martin Kiefmann1, Timofey Rozhdestvensky1,7,Ju¨rgen Brosius1,4, Robert Baertsch8, Hiram Clawson8, Christian Roos3, Aleksey Zimin9, Patrick Minx10, Michael J. Montague10, Richard K. Wilson10 & Wesley C. Warren10 Tarsiers are phylogenetically located between the most basal strepsirrhines and the most derived anthropoid primates. While they share morphological features with both groups, they also possess uncommon primate characteristics, rendering their evolutionary history somewhat obscure. To investigate the molecular basis of such attributes, we present here a new genome assembly of the Philippine tarsier (Tarsius syrichta), and provide extended analyses of the genome and detailed history of transposable element insertion events. We describe the silencing of Alu monomers on the lineage leading to anthropoids, and recognize an unexpected abundance of long terminal repeat-derived and LINE1-mobilized transposed elements (Tarsius interspersed elements; TINEs). For the first time in mammals, we identify a complete mitochondrial genome insertion within the nuclear genome, then reveal tarsier-specific, positive gene selection and posit population size changes over time. The genomic resources and analyses presented here will aid efforts to more fully understand the ancient characteristics of primate genomes. 1 Institute of Experimental Pathology, University of Mu¨nster, 48149 Mu¨nster, Germany. 2 Mu¨nster Graduate School of Evolution, University of Mu¨nster, 48149 Mu¨nster, Germany. 3 Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Go¨ttingen, Germany.
    [Show full text]
  • Capuchins Are the Most Intelligent New World Monkeys – Perhaps As Intelligent As Chimpanzees
    Hooded Capuchin Cebus paella cay Capuchin IQ - Capuchins are the most intelligent New World monkeys – perhaps as intelligent as chimpanzees. They are noted for their ability to fashion and use tools. Because of their ability to learn and remember, they were once trained as “organ grinder” monkeys, are often used in movies and have even been trained to assist disabled people with routine tasks around the house. Get a Grip - Hooded capuchins have a semi-prehensile tail that they can use to grip objects. They have opposable thumbs and big toes on their hands and feet further enabling them to easily manipulate objects. They use their prehensile tail to anchor themselves when climbing around in the trees and to keep them from falling when they sleep. Unlike some monkeys with prehensile tails, capuchins cannot hang by their tail alone. Classification The hooded capuchin is also been referred to as the tufted or brown capuchin. Class: Mammalia Order: Primate Family: Cebidae Genus: Cebus Species: paella Subspecies: cay Distribution This species ranges through northern South America, specifically Venezuela, Brazil, Guyana, Suriname and French Guiana. Habitat Canopies of tropical and mountain rainforests. Physical Description • Hooded capuchins are 12-22 inches (30-56 cm) long with a 15-22 inch (38-56 cm) tail. • Adults weigh six to eight pounds (3-4 kg). • Their fur is light to dark brown with a distinctive black cap on the head. • They have semi-prehensile tails. • Hooded capuchins have tufts of hair that form ridges along the side of the top of their head. Diet What Does It Eat? In the wild: Fruit, flowers, leaves, insects, birds, eggs, lizards, and small mammals.
    [Show full text]
  • The Effects of Habitat Disturbance on the Populations of Geoffroy's Spider Monkeys in the Yucatan Peninsula
    The Effects of Habitat Disturbance on the Populations of Geoffroy’s Spider Monkeys in the Yucatan Peninsula PhD thesis Denise Spaan Supervisor: Filippo Aureli Co-supervisor: Gabriel Ramos-Fernández August 2017 Instituto de Neuroetología Universidad Veracruzana 1 For the spider monkeys of the Yucatan Peninsula, and all those dedicated to their conservation. 2 Acknowledgements This thesis turned into the biggest project I have ever attempted and it could not have been completed without the invaluable help and support of countless people and organizations. A huge thank you goes out to my supervisors Drs. Filippo Aureli and Gabriel Ramos- Fernández. Thank you for your guidance, friendship and encouragement, I have learnt so much and truly enjoyed this experience. This thesis would not have been possible without you and I am extremely proud of the results. Additionally, I would like to thank Filippo Aureli for all his help in organizing the logistics of field work. Your constant help and dedication to this project has been inspiring, and kept me pushing forward even when it was not always easy to do so, so thank you very much. I would like to thank Dr. Martha Bonilla for offering me an amazing estancia at the INECOL. Your kind words have encouraged and inspired me throughout the past three years, and have especially helped me to get through the last few months. Thank you! A big thank you to Drs. Colleen Schaffner and Jorge Morales Mavil for all your feedback and ideas over the past three years. Colleen, thank you for helping me to feel at home in Mexico and for all your support! I very much look forward to continue working with all of you in the future! I would like to thank the CONACYT for my PhD scholarship and the Instituto de Neuroetología for logistical, administrative and financial support.
    [Show full text]
  • Prevalence of Enzootic Simian Viruses Among Urban Performance Monkeys in Indonesia
    Tropical Medicine and International Health doi:10.1111/j.1365-3156.2005.01524.x volume 10 no 12 pp 1305–1314 december 2005 Prevalence of enzootic simian viruses among urban performance monkeys in Indonesia Michael A. Schillaci1, Lisa Jones-Engel2, Gregory A. Engel3, Yasmina Paramastri4, Entang Iskandar4, Brenda Wilson5, Jonathan S. Allan5, Randall C. Kyes2,6, Robin Watanabe2 and Richard Grant2 1 Department of Social Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada 2 Washington National Primate Research Center, University of Washington, Seattle, WA, USA 3 Swedish/Providence Family Practice Residency, Seattle, WA, USA 4 Primate Research Center, Bogor Agricultural University, Bogor, Indonesia 5 Department of Virology and Immunology, Southwest National Primate Research Center, San Antonio, TX, USA 6 Department of Psychology, University of Washington, Seattle, WA, USA Summary Animal reservoirs are the most important sources of emerging infectious diseases that threaten human populations. Global travel and tourism bring ever-increasing numbers of humans into contact with animals, increasing the likelihood of cross species transmission of infectious agents. Non-human primates come into contact with humans in a variety of contexts and may harbor infectious agents with zoonotic potential. We investigated the prevalence of infection with enzootic simian viruses among 20 urban performance monkeys (Macaca fascicularis) in Jakarta, Indonesia. This report documents for the first time evidence of infection with four simian viruses in urban performance monkeys. Simian foamy virus was detected by PCR in 52.9% of the macaques. Antibodies to simian retrovirus were detected in 10.5% of the macaques. Antibodies to Cercopithecine Herpesvirus 1, were detected in 5.3% of the macaques.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • Simian Malaria in the Brazilian Atlantic Forest: First Description of Natural Infection of Capuchin Monkeys (Cebinae Subfamily) by Plasmodium Simium
    de Alvarenga et al. Malaria Journal (2015) 14:81 DOI 10.1186/s12936-015-0606-6 RESEARCH Open Access Simian malaria in the Brazilian Atlantic forest: first description of natural infection of capuchin monkeys (Cebinae subfamily) by Plasmodium simium Denise Anete Madureira de Alvarenga1, Anielle de Pina-Costa2,3, Taís Nóbrega de Sousa1, Alcides Pissinatti4,5, Mariano G Zalis6, Martha C Suaréz-Mutis7, Ricardo Lourenço-de-Oliveira8, Patrícia Brasil2, Cláudio Tadeu Daniel-Ribeiro3,9 and Cristiana Ferreira Alves de Brito1* Abstract Background: In Brazil, two species of Plasmodium have been described infecting non-human primates, Plasmodium brasilianum and Plasmodium simium. These species are morphologically, genetically and immunologically indistinguishable from the human Plasmodium malariae and Plasmodium vivax parasites, respectively. Plasmodium simium has been observed naturally infecting monkeys of the genera Alouatta and Brachyteles in a restricted area of the Atlantic Forest in the south and southeast regions of Brazil. However, its reported geographical distribution and the diversity of its vertebrate hosts may be underestimated, since available data were largely based on analyses by microscopic examination of peripheral blood, a method with limited sensitivity, considering the potential sub-patent feature of these infections. The present study describes, for the first time, the natural infection of P. simium in capuchin monkeys from the Brazilian Atlantic Forest. Methods: Blood samples from 30 non-human primates belonging to nine species kept in the Primate Centre of Rio de Janeiro were collected. Fragments of spleen and liver from one dead monkey found in the neighborhoods of the Primate Centre were also analysed. Molecular diagnosis was performed by nested PCR (18SSU rRNA) and the amplified fragment was sequenced.
    [Show full text]
  • MANI-002 PHYSICAL ANTHROPOLOGY Indira Gandhi National Open University School of Social Sciences
    MANI-002 PHYSICAL ANTHROPOLOGY Indira Gandhi National Open University School of Social Sciences Block 3 PRIMATE STUDY UNIT 1 Living Primates 5 UNIT 2 Primate Behaviour 24 UNIT 3 Phylogeny of Living Primates and Primate Anatomy 42 Expert Committee Professor I. J. S. Bansal Professor S.Channa Retired, Department of Human Biology Department of Anthropology Punjabi University University of Delhi, Delhi Patiala Professor P. Vijay Prakash Professor K. K. Misra Department of Anthropology Director Andhra University Indira Gandhi Rashtriya Manav Visakhapatnam Sangrahalaya, Bhopal Dr. Nita Mathur Professor Ranjana Ray Associate Professor Retired, Department of Anthropology, Faculty of Sociology Calcutta University School of Social Sciences Kolkata Indira Gandhi National Open University Maidan Garhi, New Delhi Professor P. Chengal Reddy Retired, Department of Anthropology Dr. S. M. Patnaik S V University, Tirupati Associate Professor Department of Anthropology Professor R. K. Pathak University of Delhi, Delhi Department of Anthropology Panjab University Dr. Manoj Kumar Singh Chandigarh Assistant Professor Department of Anthropology Professor A. K. Kapoor University of Delhi, Delhi Department of Anthropology University of Delhi, Delhi Faculty of Anthropology SOSS, IGNOU Professor V.K.Srivastava Principal, Hindu College Dr. Rashmi Sinha, Reader University of Delhi, Delhi Dr. Mitoo Das, Assistant Professor Professor Sudhakar Rao Dr. Rukshana Zaman, Assistant Professor Department of Anthropology Dr. P Venkatramana, Assistant Professor University of Hyderabad, Hyderabad Dr. K. Anil Kumar, Assistant Professor Programme Coordinator: Dr. Rashmi Sinha, SOSS, IGNOU, New Delhi Course Coordinator: Dr. Rashmi Sinha, SOSS, IGNOU, New Delhi Content Editor Language Editor Professor V. Rami Reddy Mrs. Narinder Jit Kaur Retired, Department of Anthropology Retired, Associate Professor in English S V University, Tirupati Government Mohindra College, Patiala Blocks Preparation Team Unit Writers Professor P.
    [Show full text]