SPECIAL STUDY D2 Interim Report: Development of a Supercomputing Strategy in Europe

Total Page:16

File Type:pdf, Size:1020Kb

SPECIAL STUDY D2 Interim Report: Development of a Supercomputing Strategy in Europe SPECIAL STUDY D2 Interim Report: Development of a Supercomputing Strategy in Europe (SMART 2009/0055, Contract Number 2009/S99-142914) Earl C. Joseph, Ph.D. Steve Conway Chris Ingle Gabriella Cattaneo Cyril Meunier Nathaniel Martinez Author(s) IDC: Earl C. Joseph, Ph.D., Steve Conway, Chris Ingle, Gabriella Cattaneo, Cyril Meunier and Nathaniel Martinez Deliverable D2 Interim Report Date of July 7, 2010 delivery Version 2.0 Addressee Bernhard FABIANEK officers Performance Computing Officer A P.508.872.8200 F.508.935.4015 www.idc.com www.idc.com F.508.935.4015 P.508.872.8200 A European Commission DG Information Society Unit F03 — office BU25 04/087 25 Avenue Beaulieu, B-1160 Bruxelles Tel: Email: Contract ref. Contract Nr 2009/S99-142914 Global Headquarters: 5 Speen Street Framingham, MA 01701 US Framingham, MA Street Global Headquarters: 5 Speen Filing Information: April 2010, IDC #IDCWP12S : Special Study IDC OPINION This is the Interim Report (Deliverable D2) of the study, "Development of a Supercomputing Strategy in Europe" by IDC, the multinational market research and consulting company specialized in the ICT markets, on behalf of DG Information Society and Media of the European Commission. This D2 Interim Report presents the main results of the supercomputer market and industry analysis and the overview of main the technology trends and requirements (WP1 and WP2 of the study workplan). With the terms supercomputers or HPC (High Performance Computers) in this study, we refer to all technical computing servers and clusters used to solve problems that are computationally intensive or data intensive, excluding desktop computers. The results presented in this report will feed into the next phase of the study, which is the development of the Strategic Agenda for Supercomputing in Europe, to be presented in the Final Report of the study. We greatly thank the Technical Working Group contributors for their ideas, insights, and suggestions, which helped to crystallize the findings in this report. The Technical Working Groups are made up of members of this project's Technical and Strategy Committee, along with IDC representatives. External team members included: Hervé Mouren, TER@TEC and Christian Saguez, TER@TEC; Richard Blake, STFC Daresbury Laboratory; Arndt Bode and Herbert Huber, Leibniz-Rechenzentrum/LRZ Munich; and Friedel Hossfeld, Forschungszentrum Jülich. Findings include: ` Europe is under-investing in HPC, while other nations grew their supercomputer Europe is under investing in HPC, investments dramatically even in 2009, the most difficult year of the global while other nation’s economic recession. investments grew their supercomputer investments ` HPC use is indispensable for advancing both science and industrial dramatically competitiveness. ` Supercomputing revenues (annual spending on systems priced above €375,000, or $500,000) increased by 25% worldwide in 2009, but decreased 9% in Europe. ` HPC research funding in Europe includes a diversity of EU, national and regional programs, and few countries have a coherent HPC development strategy. ` HPC stakeholders from research, industry and academia rank U.S. and Japanese HPC research programs ahead of Europe's research programs. ` There is strong support for expanding PRACE (Partnership For Advanced Computing in Europe) to respond to growing industry demand for HPC capacity. ` The transition to petascale and exascale computing creates opportunities for Europe's scientific and computing communities to return to the forefront of development for the next generation of research and HPC software technologies. #IDCWP12S ©2010 IDC EXECUTIVE SUMMARY Supercomputing has become a key element for the competitiveness of knowledge- European stakeholders from based economies. But in recent years, Europe has under-invested in High industry, research and Performance Computing (HPC), both in annual spending on computing resources and academia believe that in research investments, while other nations' investments grew even during the Europe has a chance to jump back at the economic recession. European stakeholders from industry, research, and academia forefront of the believe that Europe has a chance to jump back to the forefront of development for the development of the next generation of next generation of HPC-based research, and for the applications and other software HPC technologies required for the transition to petascale and exascale computing. This section presents key findings on the HPC market in Europe, based on the research carried out by IDC on behalf of DG Information Society and Media of the European Commission. Again, the main goal of this project is to develop a supercomputing strategy for Europe, and this Interim Report presents the results of IDC's field research carried out in the period December to March, 2010. The Final Report due out in a few months will present the recommended strategy. The research conducted for the Interim Report included a broad survey of the European HPC stakeholders (scientific and engineering end users, vendors, and others); in-depth interviews with supercomputing stakeholders from funding agencies and research centers in Europe, the U.S. and Japan; and case studies of four major HPC centers in Europe, to illustrate the situations of centers of this kind. Although the main focus of this report is on the HPC market and industry in Europe, the supercomputing market is global in scope. To help put the European HPC market in perspective, this report also presents research findings and other information about HPC in other major world regions, particularly North America, Japan, and other areas of the Asia-Pacific region, including developments in China and India. HPC Market Size According to IDC's HPC tracking research, the worldwide market for HPC systems was worth about €6.45 billion in 2009. And although the recession pummeled lower- priced HPC systems, the market for high-end HPC systems grew substantially even during the difficult global recession year of 2009, when revenue for HPC systems priced above $500,000 (€375,000) increased by 25% and revenue for HPC systems priced above $3 million (€2.25 million) jumped an impressive 65%. EU HPC system revenue in 2009 amounted to about €1.9 billion ($2.5 billion), or 29.4% of worldwide revenue, compared with 49.5% for North America, 10.5% for the Asia-Pacific region without Japan, and 9.5% for Japan. EU's share of the worldwide market slipped nearly 2% from the pre-recession 2007 high of 33.1%. During the same period (2007-2009), North America's market share grew nearly 2%, from 47.8% to 49.5%. IDC forecasts that the worldwide market for HPC systems will expand at a healthy 6.3% compound annual growth rate to surpass €8.3 billion ($11 billion) in 2013. The Broader HPC Ecosystem The addition of the other categories, including storage, service, application software, and middleware, to system revenue pushed the aggregate value of the worldwide HPC market in 2009 to €12.9 billion, and to €17.3 billion as forecast for 2013. The ©2010 IDC #IDCWP12S revenue growth rate for the non-computer categories has been, and is projected to remain, higher than for the HPC systems. Storage in particular has been growing at a pace several percentage points higher than HPC systems, owing to the "data explosion" associated with running increasingly large, complex HPC problems and workloads. Aggregate HPC revenue (spending) within the EU amounted to €3.3 billion in 2009. IDC forecasts that total HPC spending IDC forecasts that total HPC spending within the EU will more than double to surpass within the EU will €4.5 billion by 2013. As with the worldwide forecast, the compute category is more than double to expected to experience the lowest growth rate among the revenue categories. surpass €4.5 billion by 2013 "Supercomputers" Segment For Systems Priced at $500,000/€375,000 and Higher In the "supercomputer" segment for HPC systems priced at $500,000/€375,000 and up, IBM was most often the EU market share leader in 2005-2009, with HP jumping ahead of IBM only in 2008 and otherwise remaining a close second. Together, IBM and HP captured 78% of the EU market in this price band in 2009. The third-place vendor, Bull, accounted for only about 5% of the market. The Very High End Bracket For Systems Priced at $3 Million/€2.25 Million and Up The topmost price band, for HPC systems sold for more than $3 million/€2.25 million, is especially relevant for HPC leadership initiatives. In 2009, the most recent historical year, IBM easily led all other vendors by capturing nearly half (46%) of EU revenue for HPC systems in this price band. HP finished second, with about half of IBM's market share (23%), followed by Cray (11%), Bull (9%), and SGI (6%). Only about 5% of the revenue in this highly competitive segment went to "others." Over the last five years (2005 to 2009), the EU market for these high-end supercomputers grew at a rate of only about 2.7% a year, while the U.S. grew by 14% and the world as a whole grew by 13%. Clearly, the EU is not investing at the same level as many other nations in the critical over-$3 million supercomputer category. HPC Server Market Suppliers During the period 2005 to 2008, HP was consistently the leading supplier of HPC systems in the EU region, with IBM running second and Dell a more distant third. In 2009, IBM exceeded HP by a small amount. In 2009, the EU HPC market share for these three vendors totaled 77%, leaving less than one-quarter of the market for all others to share. The only EU-based vendor on the list, Bull, had 2009 EU HPC market share of only 1.8%. Note, however, that the "Other" category was really the third-place finisher, ahead of Dell with 11.6% market share.
Recommended publications
  • National HPC Task-Force Modeling and Organizational Guidelines
    FP7-INFRASTRUCTURES-2010-2 HP-SEE High-Performance Computing Infrastructure for South East Europe’s Research Communities Deliverable 2.2 National HPC task-force modeling and organizational guidelines Author(s): HP-SEE Consortium Status –Version: Final Date: June 14, 2011 Distribution - Type: Public Code: HPSEE-D2.2-e-2010-05-28 Abstract: Deliverable D2.2 defines the guidelines for set-up of national HPC task forces and their organisational model. It identifies and addresses all topics that have to be considered, collects and analyzes experiences from several European and SEE countries, and use them to provide guidelines to the countries from the region in setting up national HPC initiatives. Copyright by the HP-SEE Consortium The HP-SEE Consortium consists of: GRNET Coordinating Contractor Greece IPP-BAS Contractor Bulgaria IFIN-HH Contractor Romania TUBITAK ULAKBIM Contractor Turkey NIIFI Contractor Hungary IPB Contractor Serbia UPT Contractor Albania UOBL ETF Contractor Bosnia-Herzegovina UKIM Contractor FYR of Macedonia UOM Contractor Montenegro RENAM Contractor Moldova (Republic of) IIAP NAS RA Contractor Armenia GRENA Contractor Georgia AZRENA Contractor Azerbaijan D2.2 National HPC task-force modeling and organizational guidelines Page 2 of 53 This document contains material, which is the copyright of certain HP-SEE beneficiaries and the EC, may not be reproduced or copied without permission. The commercial use of any information contained in this document may require a license from the proprietor of that information. The beneficiaries do not warrant that the information contained in the report is capable of use, or that use of the information is free from risk, and accept no liability for loss or damage suffered by any person using this information.
    [Show full text]
  • Department of Energy National Laboratories and Plants: Leadership in Cloud Computing (Brochure), U.S. Department of Energy (DOE)
    Department of Energy National Laboratories and Plants Leadership in Cloud Computing Prepared by the National Renewable Energy Laboratory (NREL), a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy; NREL is operated by the Alliance for Sustainable Energy, LLC. JJJTABLE OF CONTENTS U.S. DEPARTMENT OF ENERGY NEVADA NATIONAL SECURITY SITE ........................................34 LABORATORIES AND PLANTS ......................................................4 Current State ...............................................................................34 Cloud Vision .................................................................................34 ABOUT THIS REPORT .....................................................................8 Key Initiatives ..............................................................................34 History of Computing ...............................................................9 Evolution of Computing Models ...........................................9 OAK RIDGE NATIONAL LABORATORY ....................................36 What is Cloud Computing? ....................................................9 Current State and Future Work ............................................36 Cloud Security .............................................................................10 RightPath – DOE/NNSA Cloud Strategy ...........................11 PACIFIC NORTHWEST NATIONAL LABORATORY ..............38 Vision ..............................................................................................38
    [Show full text]
  • Innovatives Supercomputing in Deutschland
    inSiDE • Vol. 6 No.1 • Spring 2008 Innovatives Supercomputing in Deutschland Editorialproposals for the development of soft- Contents ware in the field of high performance Welcome to this first issue of inSiDE in computing. The projects within this soft- 2008. German supercomputing is keep- ware framework are expected to start News ing the pace of the last year with the in autumn 2008 and inSiDE will keep Automotive Simulation Centre Stuttgart (ASCS) founded 4 Gauss Centre for Supercomputing taking reporting on this. the lead. The collaboration between the JUGENE officially unveiled 6 three national supercomputing centres Again we have included a section on (HLRS, LRZ and NIC) is making good applications running on one of the three PRACE Project launched 7 progress. At the same time European main German supercomputing systems. supercomputing has seen a boost. In this In this issue the reader will find six issue you will read about the most recent articles about the various fields of appli- Applications developments in the field in Germany. cations and how they exploit the various Drag Reduction by Dimples? architectures made available. The sec- An Investigation Relying Upon HPC 8 In January the European supercomput- tion not only reflects the wide variety of ing infrastructure project PRACE was simulation research in Germany but at Turbulent Convection in large-aspect-ratio Cells 14 started and is making excellent prog- the same time nicely shows how various Editorial ress led by Prof. Achim Bachem from architectures provide users with the Direct Numerical Simulation Contents the Gauss Centre. In February the fast- best hardware technology for all of their of Flame / Acoustic Interactions 18 est civil supercomputer JUGENE was problems.
    [Show full text]
  • Intel® Technologies Advance Supercomputing for U.S. Security
    White Paper Government High Performance Computing Intel® Technologies Advance Supercomputing at National Laboratories for U.S. Security Penguin Clusters with Intel® Omni-Path Architecture and Intel® Xeon® Processors Deliver Enhanced Performance and Scalability for Department of Energy’s Workhorse Supercomputers, the Commodity Technology Systems 1 Executive Summary Table of Contents America’s nuclear stockpile of weapons is aging, yet they must be certified as Executive Summary ................1 effective without physical testing. That is the challenge of the Department of Energy’s National Nuclear Security Administration (NNSA). Without underground Protecting America—Safely .........2 testing, scientists must test, validate, and certify the nuclear stockpile using a Stockpile Stewardship Through combination of focused above-ground experiments, computational science and Computational Science. .2 simulations that run on large computing clusters. The Commodity Technology The Commodity Technology Systems 2 System 1 (CTS-1) deployment has over 15 Penguin Computing, Inc. supercomputer Scalable Computing at the Tri-labs. 2 clusters consisting of 83 Tundra* Scalable Units (SU). These clusters incorporate Building Scalable Systems with Intel® Intel® Xeon® processors and many other Intel® technologies, and Asetek* DCLC Omni-Path Architecture and Intel® direct chip cooling technologies. All clusters began deployment at the NNSA’s Architecture. 3 tri-labs in early 2016, providing the computational power for scientists to carry Driving Next-Generation
    [Show full text]
  • Recent Developments in Supercomputing
    John von Neumann Institute for Computing Recent Developments in Supercomputing Th. Lippert published in NIC Symposium 2008, G. M¨unster, D. Wolf, M. Kremer (Editors), John von Neumann Institute for Computing, J¨ulich, NIC Series, Vol. 39, ISBN 978-3-9810843-5-1, pp. 1-8, 2008. c 2008 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above. http://www.fz-juelich.de/nic-series/volume39 Recent Developments in Supercomputing Thomas Lippert J¨ulich Supercomputing Centre, Forschungszentrum J¨ulich 52425 J¨ulich, Germany E-mail: [email protected] Status and recent developments in the field of supercomputing on the European and German level as well as at the Forschungszentrum J¨ulich are presented. Encouraged by the ESFRI committee, the European PRACE Initiative is going to create a world-leading European tier-0 supercomputer infrastructure. In Germany, the BMBF formed the Gauss Centre for Supercom- puting, the largest national association for supercomputing in Europe. The Gauss Centre is the German partner in PRACE. With its new Blue Gene/P system, the J¨ulich supercomputing centre has realized its vision of a dual system complex and is heading for Petaflop/s already in 2009. In the framework of the JuRoPA-Project, in cooperation with German and European industrial partners, the JSC will build a next generation general purpose system with very good price-performance ratio and energy efficiency.
    [Show full text]
  • (PDF) Kostenlos
    David Gugerli | Ricky Wichum Simulation for All David Gugerli Ricky Wichum The Politics of Supercomputing in Stuttgart David Gugerli, Ricky Wichum SIMULATION FOR ALL THE POLITICS OF SUPERCOMPUTING IN STUTTGART Translator: Giselle Weiss Cover image: Installing the Cray-2 in the computing center on 7 October 1983 (Polaroid UASt). Cover design: Thea Sautter, Zürich © 2021 Chronos Verlag, Zürich ISBN 978-3-0340-1621-6 E-Book (PDF): DOI 10.33057/chronos.1621 German edition: ISBN 978-3-0340-1620-9 Contents User’s guide 7 The centrality issue (1972–1987) 13 Gaining dominance 13 Planning crisis and a flood of proposals 15 5 Attempted resuscitation 17 Shaping policy and organizational structure 22 A diversity of machines 27 Shielding users from complexity 31 Communicating to the public 34 The performance gambit (1988–1996) 41 Simulation for all 42 The cost of visualizing computing output 46 The false security of benchmarks 51 Autonomy through regional cooperation 58 Stuttgart’s two-pronged solution 64 Network to the rescue (1997–2005) 75 Feasibility study for a national high-performance computing network 77 Metacomputing – a transatlantic experiment 83 Does the university really need an HLRS? 89 Grid computing extends a lifeline 95 Users at work (2006–2016) 101 6 Taking it easy 102 With Gauss to Europe 106 Virtual users, and users in virtual reality 109 Limits to growth 112 A history of reconfiguration 115 Acknowledgments 117 Notes 119 Bibliography 143 List of Figures 153 User’s guide The history of supercomputing in Stuttgart is fascinating. It is also complex. Relating it necessarily entails finding one’s own way and deciding meaningful turning points.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Name: Mateo Valero Position: Full Professor (since 1983) Contact: Phone: +34-93- Affiliation: Universitat Politécnica de Catalunya 4016979 / 6986 (UPC) Fax: +34-93-4017055 Computer Architecture Department E-mail: [email protected] Postal Address: Jordi Girona 1-3, Módulo D6 URL 08034 – Barcelona, Spain www.ac.upc.es/homes/mateo 1. Summary Professor Mateo Valero, born in 1952 (Alfamén, Zaragoza), obtained his Telecommunication Engineering Degree from the Technical University of Madrid (UPM) in 1974 and his Ph.D. in Telecommunications from the Technical University of Catalonia (UPC) in 1980. He has been teaching at UPC since 1974; since 1983 he has been a full professor at the Computer Architecture Department. He has also been a visiting professor at ENSIMAG, Grenoble (France) and at the University of California, Los Angeles (UCLA). He has been Chair of the Computer Architecture Department (1983-84; 1986-87; 1989- 90 and 2001-2005) and the Dean of the Computer Engineering School (1984-85). His research is in the area of computer architecture, with special emphasis on high performance computers: processor organization, memory hierarchy, systolic array processors, interconnection networks, numerical algorithms, compilers and performance evaluation. Professor Valero has co-authored over 600 publications: over 450 in Conferences and the rest in Journals and Books Chapters. He was involved in the organization of more than 300 International Conferences as General Chair (11), including ICS95, ISCA98, ICS99 and PACT01, Steering Committee member (85), Program Chair (26) including ISCA06, Micro05, ICS07 and PACT04, Program Committee member (200), Invited Speaker (70), and Session Chair (61). He has given over 400 talks in conferences, universities and companies.
    [Show full text]
  • Financing the Future of Supercomputing: How to Increase
    INNOVATION FINANCE ADVISORY STUDIES Financing the future of supercomputing How to increase investments in high performance computing in Europe years Financing the future of supercomputing How to increase investment in high performance computing in Europe Prepared for: DG Research and Innovation and DG Connect European Commission By: Innovation Finance Advisory European Investment Bank Advisory Services Authors: Björn-Sören Gigler, Alberto Casorati and Arnold Verbeek Supervisor: Shiva Dustdar Contact: [email protected] Consultancy support: Roland Berger and Fraunhofer SCAI © European Investment Bank, 2018. All rights reserved. All questions on rights and licensing should be addressed to [email protected] Financing the future of supercomputing Foreword “Disruptive technologies are key enablers for economic growth and competitiveness” The Digital Economy is developing rapidly worldwide. It is the single most important driver of innovation, competitiveness and growth. Digital innovations such as supercomputing are an essential driver of innovation and spur the adoption of digital innovations across multiple industries and small and medium-sized enterprises, fostering economic growth and competitiveness. Applying the power of supercomputing combined with Artificial Intelligence and the use of Big Data provide unprecedented opportunities for transforming businesses, public services and societies. High Performance Computers (HPC), also known as supercomputers, are making a difference in the everyday life of citizens by helping to address the critical societal challenges of our times, such as public health, climate change and natural disasters. For instance, the use of supercomputers can help researchers and entrepreneurs to solve complex issues, such as developing new treatments based on personalised medicine, or better predicting and managing the effects of natural disasters through the use of advanced computer simulations.
    [Show full text]
  • RES Updates, Resources and Access / European HPC Ecosystem
    RES updates, resources and Access European HPC ecosystem Sergi Girona RES Coordinator RES: HPC Services for Spain •The RES was created in 2006. •It is coordinated by the Barcelona Supercomputing Center (BSC-CNS). •It forms part of the Spanish “Map of Unique Scientific and Technical Infrastructures” (ICTS). RES: HPC Services for Spain RES is made up of 12 institutions and 13 supercomputers. BSC MareNostrum CESGA FinisTerrae CSUC Pirineus & Canigo BSC MinoTauro UV Tirant UC Altamira UPM Magerit CénitS Lusitania & SandyBridge UMA PiCaso IAC La Palma UZ CaesarAugusta SCAYLE Caléndula UAM Cibeles 1 10 100 1000 TFlop/s (logarithmiC sCale) RES: HPC Services for Spain • Objective: coordinate and manage high performance computing services to promote the progress of excellent science and innovation in Spain. • It offers HPC services for non-profit, open R&D purposes. • Since 2006, it has granted more than 1,000 Million CPU hours to 2,473 research activities. Research areas Hours granted per area 23% AECT 30% Mathematics, physics Astronomy, space and engineering and earth sciences BCV FI QCM 19% 28% Life and health Chemistry and sciences materials sciences RES supercomputers BSC (MareNostrum 4) 165888 cores, 11400 Tflops Main processors: Intel(R) Xeon(R) Platinum 8160 Memory: 390 TB Disk: 14 PB UPM (Magerit II) 3920 cores, 103 Tflops Main processors : IBM Power7 3.3 GHz Memory: 7840 GB Disk: 1728 TB UMA (Picasso) 4016 cores, 84Tflops Main processors: Intel SandyBridge-EP E5-2670 Memory: 22400 GB Disk: 720 TB UV (Tirant 3) 5376 cores, 111,8 Tflops
    [Show full text]
  • Academic Supercomputing in Europe (Sixth Edition, Fall 2003)
    Academic Supercomputing in Europe (Sixth edition, fall 2003) Rossend Llurba The Hague/Den Haag, januari 2004 Netherlands National Computing Facilities Foundation Academic Supercomputing in Europe Facilities & Policies - fall 2003 Seventh edition Llurba, R. (Rossend) ISBN 90-70608-37-5 Copyright © 2004 by Stichting Nationale Computerfaciliteiten Postbus 93575, 2509 AN Den Haag, The Netherlands http://www.nwo.nl/ncf All rights reserved. No part of this publication may be reproduced, in any form or by any means, without permission of the author. Contents PREFACE ..............................................................................................................................................1 1 EUROPEAN PROGRAMMES AND INITIATIVES ................................................................................3 1.1 EUROPEAN UNION...................................................................................................................................................................3 1.2 SUPRANATIONAL CENTRES AND CO-OPERATIONS. ....................................................................................................................5 2 PAN-EUROPEAN RESEARCH NETWORKING ...................................................................................7 2.1 NETWORK ORGANISATIONS......................................................................................................................................................7 2.2 OPERATIONAL NETWORKS.......................................................................................................................................................7
    [Show full text]
  • Investigation Report on Existing HPC Initiatives
    European Exascale Software Initiative Investigation Report on Existing HPC Initiatives CONTRACT NO EESI 261513 INSTRUMENT CSA (Support and Collaborative Action) THEMATIC INFRASTRUCTURE Due date of deliverable: 30.09.2010 Actual submission date: 29.09.2010 Publication date: Start date of project: 1 JUNE 2010 Duration: 18 months Name of lead contractor for this deliverable: EPSRC Authors: Xu GUO (EPCC), Damien Lecarpentier (CSC), Per Oster (CSC), Mark Parsons (EPCC), Lorna Smith (EPCC) Name of reviewers for this deliverable: Jean-Yves Berthou (EDF), Peter Michielse (NCF) Abstract: This deliverable investigates large-scale HPC projects and initiatives around the globe with particular focus on Europe, Asia, and the US and trends concerning hardware, software, operation and support. Revision JY Berthou, 28/09/2010 Project co-funded by the European Commission within the Seventh Framework Programme (FP7/2007-2013) Dissemination Level : PU PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) 1 INVESTIGATION ON EXISTING HPC INITIATIVES CSA-2010-261513 D2.1 29/09/2010 Table of Contents 1. EXECUTIVE SUMMARY ............................................................................................................. 6 2. INTRODUCTION ........................................................................................................................
    [Show full text]
  • Potential Use of Supercomputing Resources in Europe and in Spain for CMS (Including Some Technical Points)
    Potential use of supercomputing resources in Europe and in Spain for CMS (including some technical points) Presented by Jesus Marco (IFCA, CSIC-UC, Santander, Spain) on behalf of IFCA team, And with tech contribution from Jorge Gomes, LIP, Lisbon, Portugal @ CMS First Open Resources Computing Workshop CERN 21 June 2016 Some background… The supercomputing node at the University of Cantabria, named ALTAMIRA, is hosted and operated by IFCA It is not large (2500 cores) but it is included in the Supercomputing Network in Spain, that has quite significant resources (more than 80K cores) that will be doubled along next year. As these resources are granted on the basis of the scientific interest of the request, CMS teams in Spain could directly benefit of their use "for free". However the request needs to show the need for HPC resources (multicore architecture in CMS case) and the possibility to run in a “existing" framework (OS, username/passw. access, etc.). My presentation aims to cover these points and ask for experience from other teams/experts on exploiting this possibility. The EU PRACE initiative joins many different supercomputers at different levels (Tier-0, Tier-1) and could also be explored. Evolution of the Spanish Supercomputing Network (RES) See https://www.bsc.es/marenostrum-support-services/res Initially (2005) most of the resources were based on IBM-Power +Myrinet Since 2012 many of the centers evolved to use Intel x86 + Infiniband • First one was ALTAMIRA@UC: – 2.500 Xeon E5 cores with FDR IB to 1PB on GPFS • Next: MareNostrum
    [Show full text]