Role of Collagen in Wound Management

Total Page:16

File Type:pdf, Size:1020Kb

Role of Collagen in Wound Management Clinical REVIEW Role of collagen in wound management Collagen is structurally and functionally a key protein of the extracellular matrix which is also involved in scar formation during the healing of connective tissues. Many collagen dressings have been developed to enhance wound repair, particularly of non-infected, chronic, indolent skin ulcers. The use of collagen dressings is supported by relatively sparse and insufficient scientific data. This review identifies the supporting evidence for the use of the dressings which are available, often with widely different claimed advantages and modes of action, and considers future developments and assessment of collagen dressings. Aravindan Rangaraj, Keith Harding, David Leaper The principal function of collagen is 8 Protein synthesis in the extracellular KEY WORDS to act as a scaffold in connective tissue, matrix (ECM) mostly in its type I, II and III forms. In 8 Synthesis and release of Collagen early healing wounds, type III is laid inflammatory cytokines and Wound healing down first, with the proportion of type growth factors Dressings I increasing as scar formation progresses 8 Interactions between enzymes which Chronic wounds and is remodelled. Collagen deposition remodel the ECM, including matrix and remodelling contribute to the metalloproteinases (MMPs) and their increased tensile strength of the wound, tissue inhibitors (TIMPs), which are which is approximately 20% of normal summarised in Table 1. by three weeks after injury, gradually ollagen is the unique, triple reaching a maximum of 70% of that of Collagen in chronic wound healing helix protein molecule, which normal skin (Desmouliere et al, 1995). In chronic wounds involving skin, defined Cforms the major part of the Although epithelial structures can heal as those which do not heal in optimal extracellular dermal matrix (ECM), by regeneration, connective tissues conditions within six weeks (Mustoe together with the glycosaminoglycans, cannot and depend on the process et al, 2006), the complex interactive proteoglycans, laminin, fibronectin, elastin of repair mostly by the formation of processes described above are and cellular components (Hopkinson, collagenous scar tissue (Berry et al, deranged. Conversely, there is not a lack 1992a, b; Berry et al, 1998; Enoch and 1998), predominantly of type I, which of normal healing but often hyperactivity Leaper, 2008). Collagen is the most serves to restore tissue continuity, which is out of phase, non-progressive, abundant protein in animal tissues and strength and function. Collagen is a and with a persistent, uncoordinated, accounts for 70–80% of the dry weight brittle substitute for unwounded tissue, mixed acute and chronic inflammatory of the dermis (Hopkinson, 1992a). and scar tissue rarely exceeds 70% of response (Schultz and Mast, 1998; Mainly produced by fibroblasts, at least unwounded tissue strength. Trengrove et al, 1999; Hansen et al, 21 genetically distinct collagens have 2003; Kim et al, 2003; Diegelmann and currently been identified, with six of In embryos, it has been shown that Evans, 2004), which has also been well these being present in the skin. Collagen cutaneous wounds can heal without a summarised at molecular level (Agren type I comprises approximately 70% of scar (Rowlatt et al, 1979; Moulin et al, and Werthen, 2007). The most common collagen in the skin, with type III being 2005; Redd et al, 2004), but this has yet cause of this ‘hard-to-heal’ chronicity is 10%, and trace amounts of collagen type to be translated into a tissue engineered infection, which can be hard to define IV, V, VI and VII (Uitto et al, 1989; Hay, alternative solution. In addition to being and range from increasing microbial 1991). the main component of scar tissue, colonisation, which is inevitable in open collagen has a key role in: wounds healing by secondary intention, Aravindan Rangaraj is Clinical Research Fellow; Keith 8 The control of the inflammatory through to increasing contamination and Harding is Head of Section of Wound Healing; David response to injury and subsequent clinically overt infection. The concept of Leaper is Visiting Professor; all at Department of repair with functions that influence ‘critical colonisation”, or alternatively an Dermatology and Wound Healing, School of Medicine, cellular mitogenesis, differentiation excessive local bioburden, which acts as Cardiff University, Cardiff and migration a prequel to infection, is widely accepted 54 Wounds UK, 2011, Vol 7, No 2 Leaper/Harding.indd 2 16/06/2011 12:21 Clinical REVIEW but is not accurately measurable (White and Cutting, 2008). Nevertheless, control Table 1 of colonisation and infection through Influence of collagen in the inflammatory response to injury local, topical (antiseptics) and systemic (antibiotics) antimicrobials is pivotal to preparation of the wound bed, before 8 Cellular differentiation, angiogenesis and mitogenesis wound closure following contraction through formation of ‘healthy’ granulation 8 Protein synthesis and ECM deposition tissue and epithelialisation. Other factors 8 Cellular migration (keratinocytes and epithelialisation, fibroblasts, monocyte/ critical to the successful preparation macrophages, neutrophils) of the wound bed include scrupulous debridement of non-viable tissue and 8 Induction of collagenases foreign material, by all methodologies 8 Wound contraction available (including sharp surgical debridement and topical negative 8 Platelet aggregation and induction clotting cascades pressure [TNP] therapy) (Wolcott et 8 Induction of growth factors and cytokines through degradation products al, 2009). This can only be achieved in conjunction with optimal holistic care; 8 Cell surface receptors (integrins) in cell-signalling and induction of other ECM molecules again through local (such as attention and proteins to adequate arterial supply or pressure References: relief) and systemic (such as diabetic Doillon and Silver, 1986; Montesano et al, 1983; Albini and Adelman-Grill, 1985; Newman and Tucci, control) interventions. Once these 1990; Petersen et al, 1990; Shaw et al, 1990; Klein et al, 1991; Schiro et al, 1991; Hynes, 1992; Madri criteria are met, with a prepared wound and Marx, 1992; Scharfetter-Kochanek et al, 1992; Sudbeck et al, 1994; Krieg, 1995; Clark, 1996; bed and control of any underlying Schultz and Mast, 1998; Pilcher et al, 1997, 1999; Feng et al, 1999; Davis et al, 2000; Steffensen et pathological processes, successful healing al, 2001; Armstrong and Jude, 2002; Ruszczak, 2003; Diegelmann and Evans, 2004; Mirastschijski et can occur. It is at this stage that collagen al, 2004; Schultz et al, 2005; Ulrich et al, 2005; Agren and Werthen, 2007; Cavallini, 2007; Clark et al, or collagen-derived dressings may have a 2007; Hodde and Johnson, 2007; DiCosmo, 2009; Schultz and Wysocki, 2009 role in wound healing strategies. Along with the critical collagen functions listed in Table 1, several other capillary angiogenesis (Hunt and Pai, data and non-comparative case factors relating to poor wound healing, 1975), and an abnormal excessive reports. The use of collagen in wound directly affect collagen metabolism. local inflammatory response leading management has not yet been clearly Included among the extrinsic factors to abnormal, hypertrophic or keloid translated into a platform for widespread is diabetes, in which hyperglycaemia scarring (Wang et al, 2007). clinical use, as these studies only offer reduces normal collagen production evidence for collagen as a dressing matrix and induces non-enzymatic glycosylation Collagen dressings in wound management and not as an active agent. of collagen and keratin, leading to The use of collagen dressings may seem formation of abnormal rigid collagen attractive in view of their functions to: By comparison, the use of collagen and adding to tissue breakdown (Black 8 Inhibit or deactivate MMPs materials as a scaffold in hernia and et al, 2003). Collagen over production 8 Increase fibroblast production abdominal wound repair (Holl-Allen, can form abnormal scars, which impede and permeation 1984; Buinewicz and Rosen, 2004; Parker wound healing (Gault, 1999). A chronic 8 Aid in the uptake and bioavailability et al, 2006; Baillie et al, 2007; Jehle et al, wound burden among the elderly has of fibronectin 2007) seems to be clinically and cost- been documented (Wilkinson et al, 8 Help to preserve leukocytes, effective, but their use as a dressing in 1993), and much of this age-related, macrophages, fibroblasts, and healing indolent chronic skin wounds, delayed wound healing is caused epithelial cells healing by secondary intention, has yet by impaired collagen synthesis and 8 Assist in the maintenance of to be convincingly proven, despite the increased degradation (Ashcroft et al, the chemical and thermostatic fact that there are many such products 2002). Smoking affects the synthesis microenvironment of the wound already available (Table 2). rates of collagen, MMP and TIMP1 (Burton et al, 1978; Doillon et al, levels in the skin, leading to imbalances 1984, 1986, 1988; Palmieri, 1992; This review looks at the in collagen turnover (Knuutinen et Brett, 2008). currently available data to explore al, 2002). Intrinsic factors include and substantiate any case for the variations in oxygen tension which These data suggest a compelling development and clinical use of collagen can alter fibroblast proliferation and theoretical role for collagen as a dressing sheet dressings, paste or fleece for the collagen production, and also
Recommended publications
  • Energy Healing
    57618_CH03_Pass2.QXD 10/30/08 1:19 PM Page 61 © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. CHAPTER 3 Energy Healing Our remedies oft in ourselves do lie. —WILLIAM SHAKESPEARE LEARNING OBJECTIVES 1. Describe the types of energy. 2. Explain the universal energy field (UEF). 3. Explain the human energy field (HEF). 4. Describe the seven auric layers. 5. Describe the seven chakras. 6. Define the concept of energy healing. 7. Describe various types of energy healing. INTRODUCTION For centuries, traditional healers worldwide have practiced methods of energy healing, viewing the body as a complex energy system with energy flowing through or over its surface (Rakel, 2007). Until recently, the Western world largely ignored the Eastern interpretation of humans as energy beings. However, times have changed dramatically and an exciting and promising new branch of academic inquiry and clinical research is opening in the area of energy healing (Oschman, 2000; Trivieri & Anderson, 2002). Scientists and energy therapists around the world have made discoveries that will forever alter our picture of human energetics. The National Institutes of Health (NIH) is conducting research in areas such as energy healing and prayer, and major U.S. academic institutions are conducting large clinical trials in these areas. Approaches in exploring the concepts of life force and healing energy that previously appeared to compete or conflict have now been found to support each other. Conner and Koithan (2006) note 61 57618_CH03_Pass2.QXD 10/30/08 1:19 PM Page 62 © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION. 62 CHAPTER 3 • ENERGY HEALING that “with increased recognition and federal funding for energetic healing, there is a growing body of research that supports the use of energetic healing interventions with patients” (p.
    [Show full text]
  • Purinergic Signalling in Skin
    PURINERGIC SIGNALLING IN SKIN AINA VH GREIG MA FRCS Autonomic Neuroscience Institute Royal Free and University College School of Medicine Rowland Hill Street Hampstead London NW3 2PF in the Department of Anatomy and Developmental Biology University College London Gower Street London WCIE 6BT 2002 Thesis Submitted for the Degree of Doctor of Philosophy University of London ProQuest Number: U643205 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U643205 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Purinergic receptors, which bind ATP, are expressed on human cutaneous kératinocytes. Previous work in rat epidermis suggested functional roles of purinergic receptors in the regulation of proliferation, differentiation and apoptosis, for example P2X5 receptors were expressed on kératinocytes undergoing proliferation and differentiation, while P2X? receptors were associated with apoptosis. In this thesis, the aim was to investigate the expression of purinergic receptors in human normal and pathological skin, where the balance between these processes is changed. A study was made of the expression of purinergic receptor subtypes in human adult and fetal skin.
    [Show full text]
  • Wound Classification
    Wound Classification Presented by Dr. Karen Zulkowski, D.N.S., RN Montana State University Welcome! Thank you for joining this webinar about how to assess and measure a wound. 2 A Little About Myself… • Associate professor at Montana State University • Executive editor of the Journal of the World Council of Enterstomal Therapists (JWCET) and WCET International Ostomy Guidelines (2014) • Editorial board member of Ostomy Wound Management and Advances in Skin and Wound Care • Legal consultant • Former NPUAP board member 3 Today We Will Talk About • How to assess a wound • How to measure a wound Please make a note of your questions. Your Quality Improvement (QI) Specialists will follow up with you after this webinar to address them. 4 Assessing and Measuring Wounds • You completed a skin assessment and found a wound. • Now you need to determine what type of wound you found. • If it is a pressure ulcer, you need to determine the stage. 5 Assessing and Measuring Wounds This is important because— • Each type of wound has a different etiology. • Treatment may be very different. However— • Not all wounds are clear cut. • The cause may be multifactoral. 6 Types of Wounds • Vascular (arterial, venous, and mixed) • Neuropathic (diabetic) • Moisture-associated dermatitis • Skin tear • Pressure ulcer 7 Mixed Etiologies Many wounds have mixed etiologies. • There may be both venous and arterial insufficiency. • There may be diabetes and pressure characteristics. 8 Moisture-Associated Skin Damage • Also called perineal dermatitis, diaper rash, incontinence-associated dermatitis (often confused with pressure ulcers) • An inflammation of the skin in the perineal area, on and between the buttocks, into the skin folds, and down the inner thighs • Scaling of the skin with papule and vesicle formation: – These may open, with “weeping” of the skin, which exacerbates skin damage.
    [Show full text]
  • Repair, Regeneration, and Fibrosis Gregory C
    91731_ch03 12/8/06 7:33 PM Page 71 3 Repair, Regeneration, and Fibrosis Gregory C. Sephel Stephen C. Woodward The Basic Processes of Healing Regeneration Migration of Cells Stem cells Extracellular Matrix Cell Proliferation Remodeling Conditions That Modify Repair Cell Proliferation Local Factors Repair Repair Patterns Repair and Regeneration Suboptimal Wound Repair Wound Healing bservations regarding the repair of wounds (i.e., wound architecture are unaltered. Thus, wounds that do not heal may re- healing) date to physicians in ancient Egypt and battle flect excess proteinase activity, decreased matrix accumulation, Osurgeons in classic Greece. The liver’s ability to regenerate or altered matrix assembly. Conversely, fibrosis and scarring forms the basis of the Greek myth involving Prometheus. The may result from reduced proteinase activity or increased matrix clotting of blood to prevent exsanguination was recognized as accumulation. Whereas the formation of new collagen during the first necessary event in wound healing. At the time of the repair is required for increased strength of the healing site, American Civil War, the development of “laudable pus” in chronic fibrosis is a major component of diseases that involve wounds was thought to be necessary, and its emergence was not chronic injury. appreciated as a symptom of infection but considered a positive sign in the healing process. Later studies of wound infection led The Basic Processes of Healing to the discovery that inflammatory cells are primary actors in the repair process. Although scurvy (see Chapter 8) was described in Many of the basic cellular and molecular mechanisms necessary the 16th century by the British navy, it was not until the 20th for wound healing are found in other processes involving dynamic century that vitamin C (ascorbic acid) was found to be necessary tissue changes, such as development and tumor growth.
    [Show full text]
  • Wound Care: the Basics
    Wound Care: The Basics Suzann Williams-Rosenthal, RN, MSN, WOC, GNP Norma Branham, RN, MSN, WOC, GNP University of Virginia May, 2010 What Type of Wound is it? How long has it been there? Acute-generally heal in a couple weeks, but can become chronic: Surgical Trauma Chronic -do not heal by normal repair process-takes weeks to months: Vascular-venous stasis, arterial ulcers Pressure ulcers Diabetic foot ulcers (neuropathic) Chronic Wounds Pressure Ulcer Staging Where is it? Where is it located? Use anatomical location-heel, ankle, sacrum, coccyx, etc. Measurements-in centimeters Length X Width X Depth • Length = greatest length (head to toe) • Width = greatest width (side to side) • Depth = measure by marking the depth with a Q- Tip and then hold to a ruler Wound Characteristics: Describe by percentage of each type of tissue: Granulation tissue: • red, cobblestone appearance (healing, filling in) Necrotic: • Slough-yellow, tan dead tissue (devitalized) • Eschar-black/brown necrotic tissue, can be hard or soft Evaluating additional tissue damage: Undermining Separation of tissue from the surface under the edge of the wound • Describe by clock face with patients head at 12 (“undermining is 1 cm from 12 to 4 o’clock”) Tunneling Channel that runs from the wound edge through to other tissue • “tunneling at 9 o’clock, measuring 3 cm long” Wound Drainage and Odor Exudate Fluid from wound • Document the amount, type and odor • Light, moderate, heavy • Drainage can be clear, sanguineous (bloody), serosanguineous (blood-tinged),
    [Show full text]
  • SOCH111 History of Healing Last Modified: 17-Jun-2021
    SUBJECT OUTLINE Subject Name: Subject Code: History of Healing SOCH111 SECTION 1 – GENERAL INFORMATION Award/s: Total Course Credit Points: Level: Bachelor of Health Science (Naturopathy) 128 1st Year Bachelor of Health Science (Myotherapy) 96 1st Year Bachelor of Health Science (Nutritional and Dietetic Medicine) 96 1st Year Bachelor of Complementary Medicine 48 1st Year Diploma of Health Science 32 1st Year Duration: 1 Semester Subject is: Core Subject Credit Points: 4 Student Workload: No. timetabled hours per week: No. personal study hours per week: Total hours per week: 6 4 10 Delivery Mode*: ☐ On campus ☒ Online / Digital ☐ Blended ☐ Intensive Weekly Session^ Format/s - 2 sessions per week: ☒ eLearning modules: Lectures: Interactive adaptive online learning modules Tutorials: can include asynchronous tutor moderated discussion forum and activities, learning journal activities or other web-based resources *All modes are supported by the online learning management system which will include subject documents such as handouts, readings and assessment guides. ^A ‘session’ is made up of 3 hours of timetabled / online study time per week unless otherwise specified. Each subject has a set number of sessions as outlined above. Study Pattern: ☒ Full Time ☒ Part Time Pre-requisites: Nil Co-requisites: Nil SECTION 2 – ACADEMIC DETAILS Subject Rationale This subject provides the student with an understanding of the history and philosophy underpinning traditional and other whole medical systems from early human existence to the present day in diverse cultures worldwide. Social, Australian College of Natural Medicine Pty Ltd trading as Endeavour College of Natural Health, FIAFitnation (National CRICOS #00231G, RTO #31489) SOCH111 History of Healing Last modified: 17-Jun-2021 Version: 27.0 Page 1 of 10 cultural and political developments are considered in the evolution of healing and medicine, as well as the parallel developments in anatomy, physiology and other sciences.
    [Show full text]
  • Evidence for the Nonmuscle Nature of The" Myofibroblast" of Granulation Tissue and Hypertropic Scar. an Immunofluorescence Study
    American Journal of Pathology, Vol. 130, No. 2, February 1988 Copyright i American Association of Pathologists Evidencefor the Nonmuscle Nature ofthe "Myofibroblast" ofGranulation Tissue and Hypertropic Scar An Immunofluorescence Study ROBERT J. EDDY, BSc, JANE A. PETRO, MD, From the Department ofAnatomy, the Department ofSurgery, and JAMES J. TOMASEK, PhD Division ofPlastic and Reconstructive Surgery, and the Department of Orthopaedic Surgery, New York Medical College, Valhalla, New York Contraction is an important phenomenon in wound cell-matrix attachment in smooth muscle and non- repair and hypertrophic scarring. Studies indicate that muscle cells, respectively. Myofibroblasts can be iden- wound contraction involves a specialized cell known as tified by their intense staining of actin bundles with the myofibroblast, which has morphologic character- either anti-actin antibody or NBD-phallacidin. Myofi- istics of both smooth muscle and fibroblastic cells. In broblasts in all tissues stained for nonmuscle but not order to better characterize the myofibroblast, the au- smooth muscle myosin. In addition, nonmuscle myo- thors have examined its cytoskeleton and surrounding sin was localized as intracellular fibrils, which suggests extracellular matrix (ECM) in human burn granula- their similarity to stress fibers in cultured fibroblasts. tion tissue, human hypertrophic scar, and rat granula- The ECM around myofibroblasts stains intensely for tion tissue by indirect immunofluorescence. Primary fibronectin but lacks laminin, which suggests that a antibodies used in this study were directed against 1) true basal lamina is not present. The immunocytoche- smooth muscle myosin and 2) nonmuscle myosin, mical findings suggest that the myofibroblast is a spe- components ofthe cytoskeleton in smooth muscle and cialized nonmuscle type of cell, not a smooth muscle nonmuscle cells, respectively, and 3) laminin and 4) cell.
    [Show full text]
  • Collagen in Wound Healing
    bioengineering Review Collagen in Wound Healing Shomita S. Mathew-Steiner, Sashwati Roy and Chandan K. Sen * Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN 46202, USA; [email protected] (S.S.M.-S.); [email protected] (S.R.) * Correspondence: [email protected]; Tel.: +1-317-278-2735 Abstract: Normal wound healing progresses through inflammatory, proliferative and remodeling phases in response to tissue injury. Collagen, a key component of the extracellular matrix, plays critical roles in the regulation of the phases of wound healing either in its native, fibrillar conformation or as soluble components in the wound milieu. Impairments in any of these phases stall the wound in a chronic, non-healing state that typically requires some form of intervention to guide the process back to completion. Key factors in the hostile environment of a chronic wound are persistent inflammation, increased destruction of ECM components caused by elevated metalloproteinases and other enzymes and improper activation of soluble mediators of the wound healing process. Collagen, being central in the regulation of several of these processes, has been utilized as an adjunct wound therapy to promote healing. In this work the significance of collagen in different biological processes relevant to wound healing are reviewed and a summary of the current literature on the use of collagen-based products in wound care is provided. Keywords: extracellular matrix; collagen; signaling; inflammation; wound healing; collagen dressings; engineered collagen Citation: Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound 1. Introduction Healing. Bioengineering 2021, 8, 63. Sophisticated regulation by a number of key factors including the environment of the https://doi.org/10.3390/ wound which is rich in extracellular matrix (ECM) drives the process of wound healing [1,2].
    [Show full text]
  • Tissue Examination to Monitor Antiangiogenic Therapy: a Phase I Clinical Trial with Endostatin1
    3366 Vol. 7, 3366–3374, November 2001 Clinical Cancer Research Tissue Examination to Monitor Antiangiogenic Therapy: A Phase I Clinical Trial with Endostatin1 Christoph Mundhenke, James P. Thomas, INTRODUCTION George Wilding, Fred T. Lee, Fred Kelzc, Neoplasms depend on the formation of new of blood Rick Chappell, Rosemary Neider, vessels (angiogenesis) for continued growth and metastatic Linda A. Sebree, and Andreas Friedl2 spread. Without angiogenesis, tumors remain small and do not threaten the life of the host (1). In normal resting tissues, Comprehensive Cancer Center [C. M., J. P. T., G. W., F. T. L., F. K., R. C., R. N., A. F.], Department of Pathology and Laboratory where blood vessel growth is minimal, angiogenesis is con- Medicine [L. A. S., A. F.], and Department of Biostatistics [R. C.], trolled by a balance of angiogenic stimulators and inhibitors. University of Wisconsin Madison, Wisconsin 53792; and Department This balance is perturbed in tumors to favor angiogenesis of Obstetrics and Gynecology, University of Kiel, 24105 Germany either by overproduction of angiogenesis inducers or by lack [C. M.] of inhibitors (2). Recently, several naturally occurring angiogenesis inhibi- ABSTRACT tors have been identified. The most potent inhibitor appears to Purpose: The purpose of this study was to determine the be endostatin, the COOH-terminal proteolytic fragment of the effect of the angiogenesis inhibitor endostatin on blood ves- basement membrane component collagen XVIII (3). In a xeno- sels in tumors and wound sites. transplantation model, endostatin administration leads to pro- Experimental Design: In a Phase I dose escalation study, nounced tumor regression, suggesting that the peptide induces cancer patients were treated with daily infusions of human regression of existing blood vessels in addition to preventing the recombinant endostatin.
    [Show full text]
  • The Treatment of Impaired Wound Healing in Diabetes: Looking Among Old Drugs
    pharmaceuticals Review The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs Simona Federica Spampinato 1 , Grazia Ilaria Caruso 1,2, Rocco De Pasquale 3, Maria Angela Sortino 1,* and Sara Merlo 1 1 Department of Biomedical and Biotechnological Sciences, Section of Pharmacology University of Catania, 95123 Catania, Italy; [email protected] (S.F.S.); [email protected] (G.I.C.); [email protected] (S.M.) 2 Ph.D. Program in Biotechnologies, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy 3 Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-095-4781192 Received: 16 March 2020; Accepted: 29 March 2020; Published: 1 April 2020 Abstract: Chronic wounds often occur in patients with diabetes mellitus due to the impairment of wound healing. This has negative consequences for both the patient and the medical system and considering the growing prevalence of diabetes, it will be a significant medical, social, and economic burden in the near future. Hence, the need for therapeutic alternatives to the current available treatments that, although various, do not guarantee a rapid and definite reparative process, appears necessary. We here analyzed current treatments for wound healing, but mainly focused the attention on few classes of drugs that are already in the market with different indications, but that have shown in preclinical and few clinical trials the potentiality to be used in the treatment of impaired wound healing. In particular, repurposing of the antiglycemic agents dipeptidylpeptidase 4 (DPP4) inhibitors and metformin, but also, statins and phenyotin have been analyzed.
    [Show full text]
  • Products & Technology Wound Inflammation and the Role of A
    Products & technology Wound inflammation and the role of a multifunctional polymeric dressing Temporary inflammation is a normal response in acute wound healing. However, in chronic wounds, the inflammatory phase is dysfunctional in nature. This results in delayed healing, and causes further problems such as increased pain, odour and Intro high levels of exudate production. It is important to choose a dressing that addresses all of these factors while meeting the patient’s needs. Multifunctional polymeric Authors: Keith F Cutting membrane dressings (e.g. PolyMem®, Ferris) can help to simplify this choice and Authors: Peter Vowden assist healthcare professionals in chronic wound care. The unique actions of xxxxx Cornelia Wiegand PolyMem® have been proven to reduce and prevent inflammation, swelling, bruising and pain to promote rapid healing, working in the deep tissues beneath the skin[1,2]. he mechanism of acute wound healing — the vascular and cellular stages. During is a well-described complex cellular vascular response, immediately on injury there is T interaction[3] that can be divided into an initial transient vasoconstriction that can be several integrated processes: haemostasis, measured in seconds. This is promptly followed inflammation, proliferation, epithelialisation by vasodilation under the influence of histamine and tissue remodeling. Inflammation is a key and nitric oxide (NO) that cause an inflow of blood. component of acute wound healing, clearing An increase in vascular permeability promotes damaged extracellular matrix, cells and debris leakage of serous fluid (protein-rich exudate) into from zones of tissue damage. This is normally a the extravascular compartment, which in turn time-limited orchestrated process. Successful increases the concentration of cells and clotting progression of the inflammatory phase allows factors.
    [Show full text]
  • Cell Sheets from Adipose Tissue MSC Induce Healing of Pressure Ulcer and Prevent Fibrosis Via Trigger Effects on Granulation Tissue Growth and Vascularization
    International Journal of Molecular Sciences Article Cell Sheets from Adipose Tissue MSC Induce Healing of Pressure Ulcer and Prevent Fibrosis via Trigger Effects on Granulation Tissue Growth and Vascularization Natalya Alexandrushkina 1,2,* , Peter Nimiritsky 1,2 , Roman Eremichev 1, Vladimir Popov 2 , Mikhail Arbatskiy 2, Natalia Danilova 1, Pavel Malkov 1,2, Zhanna Akopyan 1,2, Vsevolod Tkachuk 1,2 and Pavel Makarevich 1,2 1 Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovskiy av., 27-10, 119191 Moscow, Russia; [email protected] (P.N.); [email protected] (R.E.); [email protected] (N.D.); [email protected] (P.M.); [email protected] (Z.A.); [email protected] (V.T.); [email protected] (P.M.) 2 Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av., 27-1, 119192 Moscow, Russia; [email protected] (V.P.); [email protected] (M.A.) * Correspondence: [email protected] Received: 3 June 2020; Accepted: 1 August 2020; Published: 4 August 2020 Abstract: We report a comparative study of multipotent mesenchymal stromal cells (MSC) delivered by injection, MSC-based cell sheets (CS) or MSC secretome to induce healing of cutaneous pressure ulcer in C57Bl/6 mice. We found that transplantation of CS from adipose-derived MSC resulted in reduction of fibrosis and recovery of skin structure with its appendages (hair and cutaneous glands). Despite short retention of CS on ulcer surface (3–7 days) it induced profound changes in granulation tissue (GT) structure, increasing its thickness and altering vascularization pattern with reduced blood vessel density and increased maturation of blood vessels.
    [Show full text]