Reface CS/DX/CP/YC Owner's Manual
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metaflanger Table of Contents
MetaFlanger Table of Contents Chapter 1 Introduction 2 Chapter 2 Quick Start 3 Flanger effects 5 Chorus effects 5 Producing a phaser effect 5 Chapter 3 More About Flanging 7 Chapter 4 Controls & Displa ys 11 Section 1: Mix, Feedback and Filter controls 11 Section 2: Delay, Rate and Depth controls 14 Section 3: Waveform, Modulation Display and Stereo controls 16 Section 4: Output level 18 Chapter 5 Frequently Asked Questions 19 Chapter 6 Block Diagram 20 Chapter 7.........................................................Tempo Sync in V5.0.............22 MetaFlanger Manual 1 Chapter 1 - Introduction Thanks for buying Waves processors. MetaFlanger is an audio plug-in that can be used to produce a variety of classic tape flanging, vintage phas- er emulation, chorusing, and some unexpected effects. It can emulate traditional analog flangers,fill out a simple sound, create intricate harmonic textures and even generate small rough reverbs and effects. The following pages explain how to use MetaFlanger. MetaFlanger’s Graphic Interface 2 MetaFlanger Manual Chapter 2 - Quick Start For mixing, you can use MetaFlanger as a direct insert and control the amount of flanging with the Mix control. Some applications also offer sends and returns; either way works quite well. 1 When you insert MetaFlanger, it will open with the default settings (click on the Reset button to reload these!). These settings produce a basic classic flanging effect that’s easily tweaked. 2 Preview your audio signal by clicking the Preview button. If you are using a real-time system (such as TDM, VST, or MAS), press ‘play’. You’ll hear the flanged signal. -
Neural Modelling of Periodically Modulated Time-Varying Effects
Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020),(DAFx-20), Vienna, Vienna, Austria, Austria, September September 8–12, 2020-21 2020 NEURAL MODELLING OF PERIODICALLY MODULATED TIME-VARYING EFFECTS Alec Wright and Vesa Välimäki ∗ Acoustics Lab, Dept. of Signal Processing and Acoustics Aalto University Espoo, Finland [email protected] ABSTRACT In recent years, numerous studies on virtual analog modelling of guitar amplifiers [11, 12, 13, 14, 4, 15] and other nonlinear sys- This paper proposes a grey-box neural network based approach tems [16, 17] using neural networks have been published. Neural to modelling LFO modulated time-varying effects. The neural network modelling of time-varying audio effects has received less network model receives both the unprocessed audio, as well as attention, with the first publications being published over the past the LFO signal, as input. This allows complete control over the year [18, 3]. Whilst Martínez et al. report that accurate emulations model’s LFO frequency and shape. The neural networks are trained of several time-varying effects were achieved, the model utilises using guitar audio, which has to be processed by the target effect bi-directional Long Short Term Memory (LSTM) and is therefore and also annotated with the predicted LFO signal before training. non-causal and unsuitable for real-time applications. A measurement signal based on regularly spaced chirps was used In this paper we present a general approach for real-time mod- to accurately predict the LFO signal. The model architecture has elling of audio effects with parameters that are modulated by a been previously shown to be capable of running in real-time on a Low Frequency Oscillator (LFO) signal. -
Metaflanger User Manual
MetaFlanger Table of Contents Chapter 1 Introduction 2 Chapter 2 Quick Start 3 Flanger effects 5 Chorus effects 5 Producing a phaser effect 5 Chapter 3 More About Flanging 7 Chapter 4 Controls & Displa ys 11 Section 1: Mix, Feedback and Filter controls 11 Section 2: Delay, Rate and Depth controls 14 Section 3: Waveform, Modulation Display and Stereo controls 16 Section 4: Output level 18 Section 5: WaveSystem Toolbar 18 Chapter 5 Frequently Asked Questions 19 Chapter 6 Block Diagram 20 Chapter 7.........................................................Tempo Sync in V5.0.............22 MetaFlanger Manual 1 Chapter 1 - Introduction Thanks for buying Waves processors. Thank you for choosing Waves! In order to get the most out of your new Waves plugin, please take a moment to read this user guide. To install software and manage your licenses, you need to have a free Waves account. Sign up at www.waves.com. With a Waves account you can keep track of your products, renew your Waves Update Plan, participate in bonus programs, and keep up to date with important information. We suggest that you become familiar with the Waves Support pages: www.waves.com/support. There are technical articles about installation, troubleshooting, specifications, and more. Plus, you’ll find company contact information and Waves Support news. The following pages explain how to use MetaFlanger. MetaFlanger’s Graphic Interface 2 MetaFlanger Manual Chapter 2 - Quick Start For mixing, you can use MetaFlanger as a direct insert and control the amount of flanging with the Mix control. Some applications also offer sends and returns; either way works quite well. -
The Vox Continental
Review: The Vox Continental ANDY BURTON · FEB 12, 2018 Reimagining a Sixties Icon The original Vox Continental, rst introduced by British manufacturer Jennings Musical Industries in 1962, is a classic “combo organ”. This sleek, transistor-based portable electric organ is deeply rooted in pop-music history, used by many of the biggest rock bands of the ’60’s and beyond. Two of the most prominent artists of the era to use a Continental as a main feature of their sound were the Doors (for example, on their classic 1967 breakthrough hit “Light My Fire”) and the Animals (“House Of The Rising Sun”). John Lennon famously played one live with the Beatles at the biggest-ever rock show to date, at New York’s Shea Stadium in 1965. The Continental was bright orange-red with reverse-color keys, which made it stand out visually, especially on television (which had recently transitioned from black-and-white to color). The sleek design, as much as the sound, made it the most popular combo organ of its time, rivaled only by the Farsa Compact series. The sound, generated by 12 transistor-based oscillators with octave-divider circuits, was thin and bright - piercing even. And decidedly low-delity and egalitarian. The classier, more lush-sounding and expensive Hammond B-3 / Leslie speaker combination eectively required a road crew to move around, ensuring that only acts with a big touring budget could aord to carry one. By contrast, the Continental and its combo- organ rivals were something any keyboard player in any band, famous or not, could use onstage. -
Electric Organ Electric Organ Discharge
1050 Electric Organ return to the opposite pole of the source. This is 9. Zakon HH, Unguez GA (1999) Development and important in freshwater fish with water conductivity far regeneration of the electric organ. J exp Biol – below the conductivity of body fluids (usually below 202:1427 1434 μ μ 10. Westby GWM, Kirschbaum F (1978) Emergence and 100 S/cm for tropical freshwaters vs. 5,000 S/cm for development of the electric organ discharge in the body fluids, or, in resistivity terms, 10 kOhm × cm vs. mormyrid fish, Pollimyrus isidori. II. Replacement of 200 Ohm × cm, respectively) [4]. the larval by the adult discharge. J Comp Physiol A In strongly electric fish, impedance matching to the 127:45–59 surrounding water is especially obvious, both on a gross morphological level and also regarding membrane physiology. In freshwater fish, such as the South American strongly electric eel, there are only about 70 columns arranged in parallel, consisting of about 6,000 electrocytes each. Therefore, in this fish, it is the Electric Organ voltage that is maximized (500 V or more). In a marine environment, this would not be possible; here, it is the current that should be maximized. Accordingly, in Definition the strong electric rays, such as the Torpedo species, So far only electric fishes are known to possess electric there are many relatively short columns arranged in organs. In most cases myogenic organs generate electric parallel, yielding a low-voltage strong-current output. fields. Some fishes, like the electric eel, use strong – The number of columns is 500 1,000, the number fields for prey catching or to ward off predators, while of electrocytes per column about 1,000. -
Contents About the Author
2 THE SERIOUS GUITARIST | EsseNtiaL BOOK OF Gear CONTENTS About the Author ..................................................... 3 2000 and Beyond ............................................38 Part 3: The Technical Stuff ..................................82 Introduction .............................................................. 4 Amp Modeling ...............................................39 The Science of Sound .....................................82 Guitar Apps ...................................................39 Vibrations........................................................82 Part 1: The History of Guitar Gear ...................... 5 8- and 9-String Guitars ...............................39 Amplitude and Types of Waves .................82 The1930s ............................................................. 5 Guitar-Based Video Games ......................40 Overtones (Harmonics) ..............................82 The First Electric Guitars .............................. 5 Look, Ma, No Amp! ......................................40 Modulation .....................................................83 The First Amplifiers ........................................ 6 Fractal Audio Systems Axe-FX II ..............40 The Order of Effects ....................................83 Early 7-String Guitar ...................................... 8 Looking Ahead ..............................................41 Understanding Guitar Amps ..........................84 Early Talk Box .................................................. 8 Tube Amps .....................................................84 -
Early Reception Histories of the Telharmonium, the Theremin, And
Electronic Musical Sounds and Material Culture: Early Reception Histories of the Telharmonium, the Theremin, and the Hammond Organ By Kelly Hiser A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Music) at the UNIVERSITY OF WISCONSIN-MADISON 2015 Date of final oral examination: 4/21/2015 The dissertation is approved by the following members of the Final Oral Committee ` Susan C. Cook, Professor, Professor, Musicology Pamela M. Potter, Professor, Professor, Musicology David Crook, Professor, Professor, Musicology Charles Dill, Professor, Professor, Musicology Ann Smart Martin, Professor, Professor, Art History i Table of Contents Acknowledgements ii List of Figures iv Chapter 1 1 Introduction, Context, and Methods Chapter 2 29 29 The Telharmonium: Sonic Purity and Social Control Chapter 3 118 Early Theremin Practices: Performance, Marketing, and Reception History from the 1920s to the 1940s Chapter 4 198 “Real Organ Music”: The Federal Trade Commission and the Hammond Organ Chapter 5 275 Conclusion Bibliography 291 ii Acknowledgements My experience at the University of Wisconsin-Madison has been a rich and rewarding one, and I’m grateful for the institutional and personal support I received there. I was able to pursue and complete a PhD thanks to the financial support of numerous teaching and research assistant positions and a Mellon-Wisconsin Summer Fellowship. A Public Humanities Fellowship through the Center for the Humanities allowed me to actively participate in the Wisconsin Idea, bringing skills nurtured within the university walls to new and challenging work beyond them. As a result, I leave the university eager to explore how I might share this dissertation with both academic and public audiences. -
User Guide Multi Processor FX
MPX 1 Multi Processor FX User Guide Unpacking and Inspection After unpacking the MPX 1, save all packing materials in case you ever need to ship the unit. Thoroughly inspect the unit and packing materials for signs of damage. Report any shipment damage to the carrier at once; report equipment malfunction to your dealer. Precautions Save these instructions for later use. Follow all instructions and warnings marked on the unit. Always use with the correct line voltage. Refer to the manufacturer's operating instructions for power requirements. Be advised that different operating voltages may require the use of a different line cord and/or attachment plug. Do not install the unit in an unventilated rack, or directly above heat producing equipment such as power amplifiers. Observe the maximum ambient operating temperature listed in the product specification. Slots and openings on the case are provided for ventilation; to ensure reliable operation and prevent it from overheating, these openings must not be blocked or covered. Never push objects of any kind through any of the ventilation slots. Never spill a liquid of any kind on the unit. This product is equipped with a 3-wire grounding type plug. This is a safety feature and should not be defeated. Never attach audio power amplifier outputs directly to any of the unit's connectors. To prevent shock or fire hazard, do not expose the unit to rain or moisture, or operate it where it will be exposed to water. Do not attempt to operate the unit if it has been dropped, damaged, exposed to liquids, or if it exhibits a distinct change in performance indicating the need for service. -
KEMPER PROFILER Addendum 8.6 Legal Notice
KEMPER PROFILER Addendum 8.6 Legal Notice This manual, as well as the software and hardware described in it, is furnished under license and may be used or copied only in accordance with the terms of such license. The content of this manual is furnished for informational use only, is subject to change without notice and should not be construed as a commitment by Kemper GmbH. Kemper GmbH assumes no responsibility or liability for any errors or inaccuracies that may appear in this book. Except as permitted by such license, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, by smoke signals or otherwise without the prior written permission of Kemper GmbH. KEMPER™, PROFILER™, PROFILE™, PROFILING™, PROFILER PowerHead™, PROFILER PowerRack™, PROFILER Stage™, PROFILER Remote™, KEMPER Kone™, KEMPER Kabinet™, KEMPER Power Kabinet™, KEMPER Rig Exchange™, KEMPER Rig Manager™, PURE CABINET™, and CabDriver™ are trademarks of Kemper GmbH. All features and specifications are subject to change without notice. (Rev. September 2021). © Copyright 2021 Kemper GmbH. All rights reserved. www.kemper-amps.com Table of Contents What is new? 1 What is new in version 8.6? 2 Double Tracker 2 Acoustic Simulator Enhancements 3 Auto Swell Sensitivity 3 PROFILER Stage Wi-Fi Enhancement 4 What is new in version 8.5? 5 Important Hints for Users of KEMPER Power Kabinet 5 KEMPER Rig Manager for iOS®* 6 Wi-Fi with PROFILER Stage 9 What is new in version 8.2? 11 Power Amp -
User Manual M32 User Manual
User Manual M32 Digital Console for Live and Studio with 40 Input Channels, 32 MIDAS Microphone Preamplifiers and 25 Mix Buses 2 M32 User Manual Table of Contents Precautions ..................................................................... 4 Introduction.................................................................... 5 1. Control Surface .......................................................... 6 1.1 Channel Strip - Input Channels ...................................... 6 1.2 Channel Strip - Group/Bus Channels ........................... 7 1.3 Config/Preamp .................................................................... 8 1.4 Gate .......................................................................................... 8 1.5 Dynamics ............................................................................... 9 1.6 Equaliser ................................................................................. 9 1.7 Bus Sends ............................................................................. 10 1.8 Main Bus ............................................................................... 11 1.9 RECORDER ........................................................................... 11 1.10 Main Display (Summary) .............................................. 12 1.11 Monitor ............................................................................... 13 1.12 Talkback .............................................................................. 15 1.13 Show Control ................................................................... -
Analysis of Flanging and Phasing Algorithms in Music Technology
AALTO UNIVERSITY SCHOOL OF ELECTRICAL ENGINEERING UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DE TELECOMUNICACIÓN BACHELOR THESIS Analysis of Flanging and Phasing Algorithms in Music Technology Author: Antonio Fuentes Ros Director: Vesa Välimäki Co-director: Rafael Toledo-Moreo October 2019 Acknowledgements: I would like to thank my parents for making this experience possible and for the constant support and love received from them. I would also like to express my gratitude and appreciation to Rafael and Vesa, as they have invested hours of their time in helping me leading this project. Also, many thanks for the support received from the amazing friends I have, as well as the ones I have met throughout this beautiful experience. INDEX 1. INTRODUCTION .................................................................................................... 6 1.1 Content and structure of the project ............................................................... 6 1.2 Objectives .......................................................................................................... 8 2. AUDIO EFFECTS AND ALGORITHMS ............................................................. 9 2.1 Phaser ................................................................................................................. 9 2.1.1 Presentation ................................................................................................. 9 2.1.2 Transfer function ........................................................................................ -
THE SOCIAL CONSTRUCTION of the EARLY ELECTRONIC MUSIC SYNTHESIZER Author(S): Trevor Pinch and Frank Trocco Source: Icon, Vol
International Committee for the History of Technology (ICOHTEC) THE SOCIAL CONSTRUCTION OF THE EARLY ELECTRONIC MUSIC SYNTHESIZER Author(s): Trevor Pinch and Frank Trocco Source: Icon, Vol. 4 (1998), pp. 9-31 Published by: International Committee for the History of Technology (ICOHTEC) Stable URL: http://www.jstor.org/stable/23785956 Accessed: 27-01-2018 00:41 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms International Committee for the History of Technology (ICOHTEC) is collaborating with JSTOR to digitize, preserve and extend access to Icon This content downloaded from 70.67.225.215 on Sat, 27 Jan 2018 00:41:54 UTC All use subject to http://about.jstor.org/terms THE SOCIAL CONSTRUCTION OF THE EARLY ELECTRONIC MUSIC SYNTHESIZER Trevor Pinch and Frank Troceo In this paper we examine the sociological history of the Moog and Buchla music synthesizers. These electronic instruments were developed in the mid-1960s. We demonstrate how relevant social groups exerted influence on the configuration of synthesizer construction. In the beginning, the synthesizer was a piece of technology that could be designed in a variety of ways. Despite this interpretative flexibility in its design, it stabilised as a keyboard instrument.