Barberpole Phasing and Flanging Illusions

Total Page:16

File Type:pdf, Size:1020Kb

Barberpole Phasing and Flanging Illusions Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015 BARBERPOLE PHASING AND FLANGING ILLUSIONS Fabián Esqueda∗ , Vesa Välimäki Julian Parker Aalto University Native Instruments GmbH Dept. of Signal Processing and Acoustics Berlin, Germany Espoo, Finland [email protected] [email protected] [email protected] ABSTRACT [11, 12] have found that a flanging effect is also produced when a musician moves in front of the microphone while playing, as Various ways to implement infinitely rising or falling spectral the time delay between the direct sound and its reflection from the notches, also known as the barberpole phaser and flanging illu- floor is varied. sions, are described and studied. The first method is inspired by Phasing was introduced in effect pedals as a simulation of the the Shepard-Risset illusion, and is based on a series of several cas- flanging effect, which originally required the use of open-reel tape caded notch filters moving in frequency one octave apart from each machines [8]. Phasing is implemented by processing the input sig- other. The second method, called a synchronized dual flanger, re- nal with a series of first- or second-order allpass filters and then alizes the desired effect in an innovative and economic way using adding this processed signal to the original [13, 14, 15]. Each all- two cascaded time-varying comb filters and cross-fading between pass filter then generates one spectral notch. When the allpass filter them. The third method is based on the use of single-sideband parameters are slowly modulated, the notches move up and down modulation, also known as frequency shifting. The proposed tech- in frequency, as in the flanging effect. The number and distribu- niques effectively reproduce the illusion of endlessly moving spec- tion of the notches are the main differences between phasing and tral notches, particularly at slow modulation speeds and for input flanging, which can sometimes sound quite similar. signals with a rich frequency spectrum. These effects can be pro- grammed in real time and implemented as part of a digital audio Bode developed a barberpole phaser in which the spectral processing system. notches move endlessly in one direction in frequency [16]. The name ‘barberpole’ stems from a rotating cylindrical sign, usually white with a red stripe going around it, which have been tradition- 1. INTRODUCTION ally used in front of barber shops in England and in the US. As the pole rotates, a visual illusion of the red stripe climbing up end- Shepard introduced in the 1960s the infinitely ascending chromatic lessly along the pole is observed, although the pattern is actually scale, which was produced with additive synthesis [1, 2]. Risset expanded this idea by designing a continuously rising and falling sweep [3, 4]. The spectrum of two instances of the Shepard tone are shown in Figure 1. It is seen that the sinusoidal components are equally spaced in the logarithmic frequency scale, as each compo- nent is one octave higher than the previous one. A bell-shaped spectral envelope function takes care of the fade-in and fade-out of harmonic components. In addition to Shepard-Risset tones, other auditory illusions have been discovered, including binaural para- doxes [5] and rhythms which appear to be gaining speed in a nev- erending manner [4, 6]. This paper discusses impossible-sounding phasing and flanging effects inspired by the Shepard-Risset tones. Flanging is a delay-based audio effect which generates a se- Magnitude (dB) ries of sweeping notches on the spectrum of a signal [7, 8, 9, 10]. Historically, analog flanging was achieved by mixing the output of two tape machines and varying their speed by applying pres- sure on the flanges—hence the effect’s name [7, 9, 10]. Adding a signal with a delayed version of itself results in a comb filtering effect, introducing periodic notches in the output spectrum. As the 20 100 1k 10k Frequency (Hz) length of the delay changes over time, the number of notches and their position also changes, producing the effect’s characteristic Figure 1: Spectrum of a Shepard tone with 10 harmonics (solid swooshing or “jet aircraft” sound [7, 9]. Wanderley and Depalle lines), spaced one octave apart, and a raised-cosine spectral en- velope (dotted line) [1]. The dashed lines show the harmonics a ∗ The work of Fabián Esqueda is supported by the CIMO Centre for International Mobility and the Aalto ELEC Doctoral School. short time earlier. DAFX-1 Proc. of the 18th Int. Conference on Digital Audio Effects (DAFx-15), Trondheim, Norway, Nov 30 - Dec 3, 2015 frequencies (denoted by K) each filter will go through before it x[n] H1 (z) H 2(z) HM (z) y[n] completes a full cycle is the same for every filter and is determined by K = bFs/ρc ; (1) th Figure 2: Block diagram for the proposed network of M time- where Fs is the sampling rate of the system. The k center fre- th varying notch filters Hm(z) for m = 1; 2; 3; :::; M. The center quency for the m filter can then be computed from frequencies of these filters are situated at one-octave intervals. [K(m−1)+k−1]=K fc(m; k) = f02 (2) for k = 1; 2; 3; :::; K and m = 1; 2; 3; :::; M. The parameter f0 stationary. Barberpole phasing and flanging effects are currently is the center frequency of the first filter at the beginning of a cycle. available in some audio software, but it is not known to us how Next, the kth center gain of the mth filter is defined as they are implemented [17, 18]. Related recent work has focused on virtual analog models of (L − L )(1 − cos[θ(m; k)]) vintage flanger and phaser circuits, such as the digital modeling of L (m; k) = L + max min ; (3) c min 2 the nonlinear behavior caused by the use of operational transcon- ductance amplifiers [19] and bucket-brigade devices [20]. Eichas where Lmin and Lmax are the minimum and maximum attenuation et al. [21] have presented a detailed virtual analog model of a fa- levels in dB, respectively, and Lmax < Lmin < 0. The function θ mous phaser. Furthermore, some research has focused on under- is defined as standing how flanging, phasing, and other audio effects processing (m − 1)K + k − 1 is recognized by humans [22] or by the computer [23]. θ(m; k) = 2π : (4) In this paper we investigate ways to implement barberpole MK phasing and flanging effects. The inspiration for this comes from In summary, we must implement M notches that sweep uni- inverting the Shepard-Risset tone, i.e. replacing the spectral peaks formly throughout K frequencies, each with its own attenuation with notches, to create a new impossible audio effect. In the end, level. In order to achieve this amount of control for each filter, we we found that there are at least three different principles to obtain can use a parametric equalizer (EQ) filter structure [24]. This type this effect. This paper is organized as follows. Section 2 discusses of second-order IIR filter is commonly used in graphic equalizers, the basic cascaded notch filter technique to simulate the barber- since it allows users to increase (boost) or reduce (cut) the gain of pole phasing effect. Section 3 introduces a novel flanging method a specific frequency band. using a pair of delay lines. Section 4 describes a third method, The z-domain transfer function for the cutting case of the para- derived from that of Bode, which has its roots in single-sideband metric equalizer filter is given by modulation. Finally, Section 5 provides some concluding remarks. cos( 2πfc ) 1+Gβ Fs −1 1−Gβ −2 1+β − 2 1+β z + 1+β z H(z) = ; (5) cos( 2πfc ) 2. CASCADED TIME-VARYING NOTCH FILTERS Fs −1 1−β −2 1 − 2 1+β z + 1+β z The illusion of endless rising or falling sweeping notches, simi- Lc=20 lar to that of the phasing effect, can be achieved using a network where G is the scalar gain at the center frequency fc (i.e. 10 ) of cascaded time-varying notch filters (see Figure 2). To do so, and β is defined as we follow the design of the Shepard tone and place the center fre- s 2 quencies of the filters at one-octave intervals. This design choice GB − 1 ∆! β = 2 2 tan ; (6) translates into notches uniformly distributed along the logarithmic G − GB 2 frequency axis. The amount of attenuation caused by each filter is determined using an inverted version of the raised-cosine envelope where ∆! is the width of the filter at gain level GB [24]. Figure originally proposed by Shepard [1] (see Figure 1). 3 illustrates the relationship between these three parameters for a Considering the case of a rising notch sweep, as the center fre- filter with arbitrary center frequency f Hz. quencies of the filters move up the spectrum, notches approaching Now, the definition of ∆! is rather ambiguous in this case. It is generally taken to be the width of the filter 3 dB below the the Nyquist limit (fN ) will gradually disappear. Similarly, notches 2 coming from the low end of the spectrum will increase in depth reference level (i.e. GB = 1=2). In our case, since notches near as they reach the middle frequencies. Since the one-octave in- DC and fN may not reach this level of attenuation, this particular terval between notches is preserved at every time step, the center definition is inadequate.
Recommended publications
  • Metaflanger Table of Contents
    MetaFlanger Table of Contents Chapter 1 Introduction 2 Chapter 2 Quick Start 3 Flanger effects 5 Chorus effects 5 Producing a phaser effect 5 Chapter 3 More About Flanging 7 Chapter 4 Controls & Displa ys 11 Section 1: Mix, Feedback and Filter controls 11 Section 2: Delay, Rate and Depth controls 14 Section 3: Waveform, Modulation Display and Stereo controls 16 Section 4: Output level 18 Chapter 5 Frequently Asked Questions 19 Chapter 6 Block Diagram 20 Chapter 7.........................................................Tempo Sync in V5.0.............22 MetaFlanger Manual 1 Chapter 1 - Introduction Thanks for buying Waves processors. MetaFlanger is an audio plug-in that can be used to produce a variety of classic tape flanging, vintage phas- er emulation, chorusing, and some unexpected effects. It can emulate traditional analog flangers,fill out a simple sound, create intricate harmonic textures and even generate small rough reverbs and effects. The following pages explain how to use MetaFlanger. MetaFlanger’s Graphic Interface 2 MetaFlanger Manual Chapter 2 - Quick Start For mixing, you can use MetaFlanger as a direct insert and control the amount of flanging with the Mix control. Some applications also offer sends and returns; either way works quite well. 1 When you insert MetaFlanger, it will open with the default settings (click on the Reset button to reload these!). These settings produce a basic classic flanging effect that’s easily tweaked. 2 Preview your audio signal by clicking the Preview button. If you are using a real-time system (such as TDM, VST, or MAS), press ‘play’. You’ll hear the flanged signal.
    [Show full text]
  • Neural Modelling of Periodically Modulated Time-Varying Effects
    Proceedings of the 23rd International Conference on Digital Audio Effects (DAFx2020),(DAFx-20), Vienna, Vienna, Austria, Austria, September September 8–12, 2020-21 2020 NEURAL MODELLING OF PERIODICALLY MODULATED TIME-VARYING EFFECTS Alec Wright and Vesa Välimäki ∗ Acoustics Lab, Dept. of Signal Processing and Acoustics Aalto University Espoo, Finland [email protected] ABSTRACT In recent years, numerous studies on virtual analog modelling of guitar amplifiers [11, 12, 13, 14, 4, 15] and other nonlinear sys- This paper proposes a grey-box neural network based approach tems [16, 17] using neural networks have been published. Neural to modelling LFO modulated time-varying effects. The neural network modelling of time-varying audio effects has received less network model receives both the unprocessed audio, as well as attention, with the first publications being published over the past the LFO signal, as input. This allows complete control over the year [18, 3]. Whilst Martínez et al. report that accurate emulations model’s LFO frequency and shape. The neural networks are trained of several time-varying effects were achieved, the model utilises using guitar audio, which has to be processed by the target effect bi-directional Long Short Term Memory (LSTM) and is therefore and also annotated with the predicted LFO signal before training. non-causal and unsuitable for real-time applications. A measurement signal based on regularly spaced chirps was used In this paper we present a general approach for real-time mod- to accurately predict the LFO signal. The model architecture has elling of audio effects with parameters that are modulated by a been previously shown to be capable of running in real-time on a Low Frequency Oscillator (LFO) signal.
    [Show full text]
  • Metaflanger User Manual
    MetaFlanger Table of Contents Chapter 1 Introduction 2 Chapter 2 Quick Start 3 Flanger effects 5 Chorus effects 5 Producing a phaser effect 5 Chapter 3 More About Flanging 7 Chapter 4 Controls & Displa ys 11 Section 1: Mix, Feedback and Filter controls 11 Section 2: Delay, Rate and Depth controls 14 Section 3: Waveform, Modulation Display and Stereo controls 16 Section 4: Output level 18 Section 5: WaveSystem Toolbar 18 Chapter 5 Frequently Asked Questions 19 Chapter 6 Block Diagram 20 Chapter 7.........................................................Tempo Sync in V5.0.............22 MetaFlanger Manual 1 Chapter 1 - Introduction Thanks for buying Waves processors. Thank you for choosing Waves! In order to get the most out of your new Waves plugin, please take a moment to read this user guide. To install software and manage your licenses, you need to have a free Waves account. Sign up at www.waves.com. With a Waves account you can keep track of your products, renew your Waves Update Plan, participate in bonus programs, and keep up to date with important information. We suggest that you become familiar with the Waves Support pages: www.waves.com/support. There are technical articles about installation, troubleshooting, specifications, and more. Plus, you’ll find company contact information and Waves Support news. The following pages explain how to use MetaFlanger. MetaFlanger’s Graphic Interface 2 MetaFlanger Manual Chapter 2 - Quick Start For mixing, you can use MetaFlanger as a direct insert and control the amount of flanging with the Mix control. Some applications also offer sends and returns; either way works quite well.
    [Show full text]
  • 21065L Audio Tutorial
    a Using The Low-Cost, High Performance ADSP-21065L Digital Signal Processor For Digital Audio Applications Revision 1.0 - 12/4/98 dB +12 0 -12 Left Right Left EQ Right EQ Pan L R L R L R L R L R L R L R L R 1 2 3 4 5 6 7 8 Mic High Line L R Mid Play Back Bass CNTR 0 0 3 4 Input Gain P F R Master Vol. 1 2 3 4 5 6 7 8 Authors: John Tomarakos Dan Ledger Analog Devices DSP Applications 1 Using The Low Cost, High Performance ADSP-21065L Digital Signal Processor For Digital Audio Applications Dan Ledger and John Tomarakos DSP Applications Group, Analog Devices, Norwood, MA 02062, USA This document examines desirable DSP features to consider for implementation of real time audio applications, and also offers programming techniques to create DSP algorithms found in today's professional and consumer audio equipment. Part One will begin with a discussion of important audio processor-specific characteristics such as speed, cost, data word length, floating-point vs. fixed-point arithmetic, double-precision vs. single-precision data, I/O capabilities, and dynamic range/SNR capabilities. Comparisions between DSP's and audio decoders that are targeted for consumer/professional audio applications will be shown. Part Two will cover example algorithmic building blocks that can be used to implement many DSP audio algorithms using the ADSP-21065L including: Basic audio signal manipulation, filtering/digital parametric equalization, digital audio effects and sound synthesis techniques. TABLE OF CONTENTS 0. INTRODUCTION ................................................................................................................................................................4 1.
    [Show full text]
  • Recording and Amplifying of the Accordion in Practice of Other Accordion Players, and Two Recordings: D
    CA1004 Degree Project, Master, Classical Music, 30 credits 2019 Degree of Master in Music Department of Classical music Supervisor: Erik Lanninger Examiner: Jan-Olof Gullö Milan Řehák Recording and amplifying of the accordion What is the best way to capture the sound of the acoustic accordion? SOUNDING PART.zip - Sounding part of the thesis: D. Scarlatti - Sonata D minor K 141, V. Trojan - The Collapsed Cathedral SOUND SAMPLES.zip – Sound samples Declaration I declare that this thesis has been solely the result of my own work. Milan Řehák 2 Abstract In this thesis I discuss, analyse and intend to answer the question: What is the best way to capture the sound of the acoustic accordion? It was my desire to explore this theme that led me to this research, and I believe that this question is important to many other accordionists as well. From the very beginning, I wanted the thesis to be not only an academic material but also that it can be used as an instruction manual, which could serve accordionists and others who are interested in this subject, to delve deeper into it, understand it and hopefully get answers to their questions about this subject. The thesis contains five main chapters: Amplifying of the accordion at live events, Processing of the accordion sound, Recording of the accordion in a studio - the specifics of recording of the accordion, Specific recording solutions and Examples of recording and amplifying of the accordion in practice of other accordion players, and two recordings: D. Scarlatti - Sonata D minor K 141, V. Trojan - The Collasped Cathedral.
    [Show full text]
  • Contents About the Author
    2 THE SERIOUS GUITARIST | EsseNtiaL BOOK OF Gear CONTENTS About the Author ..................................................... 3 2000 and Beyond ............................................38 Part 3: The Technical Stuff ..................................82 Introduction .............................................................. 4 Amp Modeling ...............................................39 The Science of Sound .....................................82 Guitar Apps ...................................................39 Vibrations........................................................82 Part 1: The History of Guitar Gear ...................... 5 8- and 9-String Guitars ...............................39 Amplitude and Types of Waves .................82 The1930s ............................................................. 5 Guitar-Based Video Games ......................40 Overtones (Harmonics) ..............................82 The First Electric Guitars .............................. 5 Look, Ma, No Amp! ......................................40 Modulation .....................................................83 The First Amplifiers ........................................ 6 Fractal Audio Systems Axe-FX II ..............40 The Order of Effects ....................................83 Early 7-String Guitar ...................................... 8 Looking Ahead ..............................................41 Understanding Guitar Amps ..........................84 Early Talk Box .................................................. 8 Tube Amps .....................................................84
    [Show full text]
  • User's Manual
    USER’S MANUAL G-Force GUITAR EFFECTS PROCESSOR IMPORTANT SAFETY INSTRUCTIONS The lightning flash with an arrowhead symbol The exclamation point within an equilateral triangle within an equilateral triangle, is intended to alert is intended to alert the user to the presence of the user to the presence of uninsulated "dan- important operating and maintenance (servicing) gerous voltage" within the product's enclosure that may instructions in the literature accompanying the product. be of sufficient magnitude to constitute a risk of electric shock to persons. 1 Read these instructions. Warning! 2 Keep these instructions. • To reduce the risk of fire or electrical shock, do not 3 Heed all warnings. expose this equipment to dripping or splashing and 4 Follow all instructions. ensure that no objects filled with liquids, such as vases, 5 Do not use this apparatus near water. are placed on the equipment. 6 Clean only with dry cloth. • This apparatus must be earthed. 7 Do not block any ventilation openings. Install in • Use a three wire grounding type line cord like the one accordance with the manufacturer's instructions. supplied with the product. 8 Do not install near any heat sources such • Be advised that different operating voltages require the as radiators, heat registers, stoves, or other use of different types of line cord and attachment plugs. apparatus (including amplifiers) that produce heat. • Check the voltage in your area and use the 9 Do not defeat the safety purpose of the polarized correct type. See table below: or grounding-type plug. A polarized plug has two blades with one wider than the other.
    [Show full text]
  • In the Studio: the Role of Recording Techniques in Rock Music (2006)
    21 In the Studio: The Role of Recording Techniques in Rock Music (2006) John Covach I want this record to be perfect. Meticulously perfect. Steely Dan-perfect. -Dave Grohl, commencing work on the Foo Fighters 2002 record One by One When we speak of popular music, we should speak not of songs but rather; of recordings, which are created in the studio by musicians, engineers and producers who aim not only to capture good performances, but more, to create aesthetic objects. (Zak 200 I, xvi-xvii) In this "interlude" Jon Covach, Professor of Music at the Eastman School of Music, provides a clear introduction to the basic elements of recorded sound: ambience, which includes reverb and echo; equalization; and stereo placement He also describes a particularly useful means of visualizing and analyzing recordings. The student might begin by becoming sensitive to the three dimensions of height (frequency range), width (stereo placement) and depth (ambience), and from there go on to con­ sider other special effects. One way to analyze the music, then, is to work backward from the final product, to listen carefully and imagine how it was created by the engineer and producer. To illustrate this process, Covach provides analyses .of two songs created by famous producers in different eras: Steely Dan's "Josie" and Phil Spector's "Da Doo Ron Ron:' Records, tapes, and CDs are central to the history of rock music, and since the mid 1990s, digital downloading and file sharing have also become significant factors in how music gets from the artists to listeners. Live performance is also important, and some groups-such as the Grateful Dead, the Allman Brothers Band, and more recently Phish and Widespread Panic-have been more oriented toward performances that change from night to night than with authoritative versions of tunes that are produced in a recording studio.
    [Show full text]
  • The Perceptual Attraction of Pre-Dominant Chords 1
    Running Head: THE PERCEPTUAL ATTRACTION OF PRE-DOMINANT CHORDS 1 The Perceptual Attraction of Pre-Dominant Chords Jenine Brown1, Daphne Tan2, David John Baker3 1Peabody Institute of The Johns Hopkins University 2University of Toronto 3Goldsmiths, University of London [ACCEPTED AT MUSIC PERCEPTION IN APRIL 2021] Author Note Jenine Brown, Department of Music Theory, Peabody Institute of the Johns Hopkins University, Baltimore, MD, USA; Daphne Tan, Faculty of Music, University of Toronto, Toronto, ON, Canada; David John Baker, Department of Computing, Goldsmiths, University of London, London, United Kingdom. Corresponding Author: Jenine Brown, Peabody Institute of The John Hopkins University, 1 E. Mt. Vernon Pl., Baltimore, MD, 21202, [email protected] 1 THE PERCEPTUAL ATTRACTION OF PRE-DOMINANT CHORDS 2 Abstract Among the three primary tonal functions described in modern theory textbooks, the pre-dominant has the highest number of representative chords. We posit that one unifying feature of the pre-dominant function is its attraction to V, and the experiment reported here investigates factors that may contribute to this perception. Participants were junior/senior music majors, freshman music majors, and people from the general population recruited on Prolific.co. In each trial four Shepard-tone sounds in the key of C were presented: 1) the tonic note, 2) one of 31 different chords, 3) the dominant triad, and 4) the tonic note. Participants rated the strength of attraction between the second and third chords. Across all individuals, diatonic and chromatic pre-dominant chords were rated significantly higher than non-pre-dominant chords and bridge chords. Further, music theory training moderated this relationship, with individuals with more theory training rating pre-dominant chords as being more attracted to the dominant.
    [Show full text]
  • User Guide Multi Processor FX
    MPX 1 Multi Processor FX User Guide Unpacking and Inspection After unpacking the MPX 1, save all packing materials in case you ever need to ship the unit. Thoroughly inspect the unit and packing materials for signs of damage. Report any shipment damage to the carrier at once; report equipment malfunction to your dealer. Precautions Save these instructions for later use. Follow all instructions and warnings marked on the unit. Always use with the correct line voltage. Refer to the manufacturer's operating instructions for power requirements. Be advised that different operating voltages may require the use of a different line cord and/or attachment plug. Do not install the unit in an unventilated rack, or directly above heat producing equipment such as power amplifiers. Observe the maximum ambient operating temperature listed in the product specification. Slots and openings on the case are provided for ventilation; to ensure reliable operation and prevent it from overheating, these openings must not be blocked or covered. Never push objects of any kind through any of the ventilation slots. Never spill a liquid of any kind on the unit. This product is equipped with a 3-wire grounding type plug. This is a safety feature and should not be defeated. Never attach audio power amplifier outputs directly to any of the unit's connectors. To prevent shock or fire hazard, do not expose the unit to rain or moisture, or operate it where it will be exposed to water. Do not attempt to operate the unit if it has been dropped, damaged, exposed to liquids, or if it exhibits a distinct change in performance indicating the need for service.
    [Show full text]
  • A History of Audio Effects
    applied sciences Review A History of Audio Effects Thomas Wilmering 1,∗ , David Moffat 2 , Alessia Milo 1 and Mark B. Sandler 1 1 Centre for Digital Music, Queen Mary University of London, London E1 4NS, UK; [email protected] (A.M.); [email protected] (M.B.S.) 2 Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth PL4 8AA, UK; [email protected] * Correspondence: [email protected] Received: 16 December 2019; Accepted: 13 January 2020; Published: 22 January 2020 Abstract: Audio effects are an essential tool that the field of music production relies upon. The ability to intentionally manipulate and modify a piece of sound has opened up considerable opportunities for music making. The evolution of technology has often driven new audio tools and effects, from early architectural acoustics through electromechanical and electronic devices to the digitisation of music production studios. Throughout time, music has constantly borrowed ideas and technological advancements from all other fields and contributed back to the innovative technology. This is defined as transsectorial innovation and fundamentally underpins the technological developments of audio effects. The development and evolution of audio effect technology is discussed, highlighting major technical breakthroughs and the impact of available audio effects. Keywords: audio effects; history; transsectorial innovation; technology; audio processing; music production 1. Introduction In this article, we describe the history of audio effects with regards to musical composition (music performance and production). We define audio effects as the controlled transformation of a sound typically based on some control parameters. As such, the term sound transformation can be considered synonymous with audio effect.
    [Show full text]
  • Robfreeman Recordingramones
    Rob Freeman (center) recording Ramones at Plaza Sound Studios 1976 THIRTY YEARS AGO Ramones collided with a piece of 2” magnetic tape like a downhill semi with no brakes slamming into a brick wall. While many memories of recording the Ramones’ first album remain vivid, others, undoubtedly, have dulled or even faded away. This might be due in part to the passing of years, but, moreover, I attribute it to the fact that the entire experience flew through my life at the breakneck speed of one of the band’s rapid-fire songs following a heady “One, two, three, four!” Most album recording projects of the day averaged four to six weeks to complete; Ramones, with its purported budget of only $6000, zoomed by in just over a week— start to finish, mixed and remixed. Much has been documented about the Ramones since their first album rocked the New York punk scene. A Google search of the Internet yields untold numbers of web pages filled with a myriad of Ramones facts and an equal number of fictions. (No, Ramones was not recorded on the Radio City Music Hall stage as is so widely reported…read on.) But my perspective on recording Ramones is unique, and I hope to provide some insight of a different nature. I paint my recollections in broad strokes with the following… It was snowy and cold as usual in early February 1976. The trek up to Plaza Sound Studios followed its usual path: an escape into the warm refuge of Radio City Music Hall through the stage door entrance, a slow creep up the private elevator to the sixth floor, a trudge up another flight
    [Show full text]