Endothelial Semaphorin 7A Promotes Seawater Aspiration‑Induced Acute Lung Injury Through Plexin C1 and Β1 Integrin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neural Map Formation in the Mouse Olfactory System
Cell. Mol. Life Sci. (2014) 71:3049–3057 DOI 10.1007/s00018-014-1597-0 Cellular and Molecular Life Sciences REVIEW Neural map formation in the mouse olfactory system Haruki Takeuchi · Hitoshi Sakano Received: 25 November 2013 / Revised: 26 February 2014 / Accepted: 27 February 2014 / Published online: 18 March 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract In the mouse olfactory system, odorants are Introduction detected by ~1,000 different odorant receptors (ORs) pro- duced by olfactory sensory neurons (OSNs). Each OSN In the mouse, various odorants are detected with approxi- expresses only one functional OR species, which is referred mately 1,000 different odorant receptors (ORs) expressed to as the “one neuron–one receptor” rule. Furthermore, OSN in the olfactory sensory neurons (OSNs) [1]. Each OSN in axons bearing the same OR converge to a specific projection the olfactory epithelium (OE) expresses only one functional site in the olfactory bulb (OB) forming a glomerular struc- OR gene in a mono-allelic manner [2]. Furthermore, OSNs ture, i.e., the “one glomerulus–one receptor” rule. Based on expressing the same OR converge their axons to a spe- these basic rules, binding signals of odorants detected by cific pair of glomeruli at stereotyped locations in the olfac- OSNs are converted to topographic information of activated tory bulb (OB) (Fig. 1a, b) [3]. Thus, the odor information glomeruli in the OB. During development, the glomerular detected in the OE is topographically represented as the pat- map is formed by the combination of two genetically pro- tern of activated glomeruli in the OB (Fig. -
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
Immuno 2014 No. 1
Journal of Blood Group Serology and Molecular Genetics VOLUME 30, N UMBER 1, 2014 Immunohematology Journal of Blood Group Serology and Molecular Genetics Volume 30, Number 1, 2014 CONTENTS R EPORT 1 Indirect antiglobulin test-crossmatch using low-ionic-strength saline–albumin enhancement medium and reduced incubation time: effectiveness in the detection of most clinically significant antibodies and impact on blood utilization C.L. Dinardo, S.L. Bonifácio, and A. Mendrone, Jr. R EV I EW 6 Raph blood group system M. Hayes R EPORT 11 I-int phenotype among three individuals of a Parsi community from Mumbai, India S.R. Joshi C A SE R EPORT 14 Evans syndrome in a pediatric liver transplant recipient with an autoantibody with apparent specificity for the KEL4 (Kpb) antigen S.A. Koepsell, K. Burright-Hittner, and J.D. Landmark R EV I EW 18 JMH blood group system: a review S.T. Johnson R EPORT 24 Demonstration of IgG subclass (IgG1 and IgG3) in patients with positive direct antiglobulin tests A. Singh, A. Solanki, and R. Chaudhary I N M EMOR ia M 28 George Garratty, 1935–2014 Patricia A. Arndt and Regina M. Leger 30 A NNOUNCEMENTS 34 A DVERT I SEMENTS 39 I NSTRUCT I ONS FOR A UTHORS E D I TOR - I N -C H I EF E D I TOR ia L B OA RD Sandra Nance, MS, MT(ASCP)SBB Philadelphia, Pennsylvania Patricia Arndt, MT(ASCP)SBB Paul M. Ness, MD Pomona, California Baltimore, Maryland M A N AG I NG E D I TOR James P. -
The Involvement of Rho Gtpases in Plexin Mediated Signal Transduction
The Involvement of Rho GTPases in Plexin Mediated Signal Transduction Laura Turner A thesis submitted to the University of London for the degree of Doctor of Philosophy November 2003 MRC Laboratory for Molecular Cell Biology University of London Gower Street London WCIE 6BT ProQuest Number: U642461 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest U642461 Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ABSTRACT Plexins are a family of conserved transmembrane proteins. Together with neuropilins, they act as receptors for the semaphorin family of growth cone guidance molecules. Whilst it is clear that guidance involves cytoskeletal changes, little is known of the mechanisms via which plexins regulate growth cone morphology. Hints suggesting the involvement of Rho GTPases stem from observations of localised actin rearrangements elicited by plexins and semaphorins. This feeling is consolidated by the demonstration of the Rac dependent nature of plexin induced cellular responses. To investigate plexin mediated signal transduction, a heterologous assay for semaphorin induced collapse has been developed and characterised. Studies using jasplakinolide indicate that Sema3A-Fc induced collapse requires actin dissassembly. -
Dendritic Cell Migration Semaphorin 7A Promotes Chemokine-Driven
Semaphorin 7A Promotes Chemokine-Driven Dendritic Cell Migration Anoek van Rijn, Leonie Paulis, Joost te Riet, Angela Vasaturo, Inge Reinieren-Beeren, Alie van der Schaaf, This information is current as Arthur J. Kuipers, Luuk P. Schulte, Bart C. Jongbloets, R. of September 28, 2021. Jeroen Pasterkamp, Carl G. Figdor, Annemiek B. van Spriel and Sonja I. Buschow J Immunol 2016; 196:459-468; Prepublished online 23 November 2015; Downloaded from doi: 10.4049/jimmunol.1403096 http://www.jimmunol.org/content/196/1/459 Supplementary http://www.jimmunol.org/content/suppl/2015/11/21/jimmunol.140309 http://www.jimmunol.org/ Material 6.DCSupplemental References This article cites 41 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/196/1/459.full#ref-list-1 Why The JI? Submit online. by guest on September 28, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. -
Multiomics of Azacitidine-Treated AML Cells Reveals Variable And
Multiomics of azacitidine-treated AML cells reveals variable and convergent targets that remodel the cell-surface proteome Kevin K. Leunga, Aaron Nguyenb, Tao Shic, Lin Tangc, Xiaochun Nid, Laure Escoubetc, Kyle J. MacBethb, Jorge DiMartinob, and James A. Wellsa,1 aDepartment of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143; bEpigenetics Thematic Center of Excellence, Celgene Corporation, San Francisco, CA 94158; cDepartment of Informatics and Predictive Sciences, Celgene Corporation, San Diego, CA 92121; and dDepartment of Informatics and Predictive Sciences, Celgene Corporation, Cambridge, MA 02140 Contributed by James A. Wells, November 19, 2018 (sent for review August 23, 2018; reviewed by Rebekah Gundry, Neil L. Kelleher, and Bernd Wollscheid) Myelodysplastic syndromes (MDS) and acute myeloid leukemia of DNA methyltransferases, leading to loss of methylation in (AML) are diseases of abnormal hematopoietic differentiation newly synthesized DNA (10, 11). It was recently shown that AZA with aberrant epigenetic alterations. Azacitidine (AZA) is a DNA treatment of cervical (12, 13) and colorectal (14) cancer cells methyltransferase inhibitor widely used to treat MDS and AML, can induce interferon responses through reactivation of endoge- yet the impact of AZA on the cell-surface proteome has not been nous retroviruses. This phenomenon, termed viral mimicry, is defined. To identify potential therapeutic targets for use in com- thought to induce antitumor effects by activating and engaging bination with AZA in AML patients, we investigated the effects the immune system. of AZA treatment on four AML cell lines representing different Although AZA treatment has demonstrated clinical benefit in stages of differentiation. The effect of AZA treatment on these AML patients, additional therapeutic options are needed (8, 9). -
Spatial and Temporal Second Messenger Codes for Growth Cone Turning
Spatial and temporal second messenger codes for growth cone turning Xavier Nicol1,2, Kwan Pyo Hong, and Nicholas C. Spitzer Neurobiology Section, Division of Biological Sciences, Kavli Institute for Brain and Mind, University of California at San Diego, La Jolla, CA 92093 Edited* by Lynn T. Landmesser, Case Western Reserve University, Cleveland, OH, and approved July 5, 2011 (received for review January 6, 2011) Cyclic AMP (cAMP) and calcium are ubiquitous, interdependent se- generated in growth cones in response to Netrin-1, the principal cond messengers that regulate a wide range of cellular processes. axon guidance molecule required for attraction of commissural During development of neuronal networks they are critical for the axons by the spinal floor plate. We report a major difference in first step of circuit formation, transducing signals required for axon cAMP/calcium interplay between filopodia and the growth cone fi pathfinding. Surprisingly, the spatial and temporal cAMP and cal- center. Optogenetic elevation of cAMP in lopodia but not in fi cium codes used by axon guidance molecules are unknown. Here, growth cone centers drives growth cone attraction. Both lopo- we identify characteristics of cAMP and calcium transients gener- dial and growth cone center signaling pathways are mediated by ated in growth cones during Netrin-1–dependent axon guidance. In activation of the same Netrin-1 receptor, Deleted in Colorectal Cancer (DCC). We show that cAMP dynamics are also essential filopodia, Netrin-1–dependent Deleted in Colorectal Cancer (DCC) for midline crossing of commissural axons in vivo. receptor activation induces a transient increase in cAMP that causes a brief increase in calcium transient frequency. -
1,25-Dihydroxyvitamin D3-Induced Genes in Osteoblasts
1,25-DIHYDROXYVITAMIN D3-INDUCED GENES IN OSTEOBLASTS: UNCOVERING NEW FUNCTIONS FOR MENINGIOMA 1 AND SEMAPHORIN 3B IN SKELETAL PHYSIOLOGY by XIAOXUE ZHANG Submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Thesis advisor: Paul N. MacDonald Department of Pharmacology CASE WESTERN RESERVE UNIVERSITY May 2009 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. I dedicate this thesis to my mother and father for their lifelong love, encouragement and sacrifice TABLE OF CONTENTS Table of Contents ii List of Tables iii List of Figures iv Acknowledgements vii Abbreviations x Abstract xiii Chapter I Introduction 1 Chapter II Meningioma 1 (MN1) is a 1,25-dihydroxyvitamin D3- 44 induced transcription coactivator that promotes osteoblast proliferation, motility, differentiation, and function Chapter III Semaphorin 3B (SEMA3B) is a 1,25- 108 dihydroxyvitamin D3-induced gene in osteoblasts that promotes -
Semaphorin 3B Is a 1,25-Dihydroxyvitamin D3 -Induced
0888-8809/08/$15.00/0 Molecular Endocrinology 22(6):1370–1381 Printed in U.S.A. Copyright © 2008 by The Endocrine Society doi: 10.1210/me.2007-0363 Semaphorin 3B Is a 1,25-Dihydroxyvitamin D3-Induced Gene in Osteoblasts that Promotes Osteoclastogenesis and Induces Osteopenia in Mice Amelia L. M. Sutton,* Xiaoxue Zhang,* Diane R. Dowd, Yogendra P. Kharode, Barry S. Komm, and Paul N. MacDonald Department of Pharmacology (A.L.M.S., X.Z., D.R.D., P.N.M.), Case Western Reserve University, Cleveland Ohio 44106; and Women’s Heath Research Institute (Y.P.K., B.S.K.), Wyeth Research, Collegeville, Pennsylvania 19426 The vitamin D endocrine system is important for global skeletal homeostasis in intact animals and skeletal homeostasis. 1,25-Dihydroxyvitamin D3 osteoblast function in cell culture. Osteoblast-tar- [1,25(OH)2D3] impacts bone indirectly by promot- geted expression of SEMA3B in mice resulted in ing intestinal absorption of calcium and phosphate reduced bone mineral density and aberrant trabec- and directly by acting on osteoblasts and oste- ular structure compared with nontransgenic litter- oclasts. Despite the direct actions of 1,25(OH)2D3 mates. Histomorphometry studies indicated that in bone, relatively little is known of the mecha- this was likely due to increased osteoclast num- nisms or target genes that are regulated by bers and activity. Indeed, primary osteoblasts ob- 1,25(OH)2D3 in skeletal cells. Here, we identify tained from SEMA3B transgenic mice stimulated semaphorin 3B (SEMA3B) as a 1,25(OH)2D3-stimu- osteoclastogenesis to a greater extent than non- lated gene in osteoblastic cells. -
Regulation of Axonal Development by Natriuretic Peptide Hormones
Regulation of axonal development by natriuretic peptide hormones Zhen Zhao and Le Ma1 Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, Neuroscience Graduate Program, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90089 Edited by Cornelia I. Bargmann, The Rockefeller University, New York, NY, and approved August 28, 2009 (received for review June 24, 2009) Natriuretic peptides (NPs) are a family of cardiac- and vascular- entially binds to Npr2, could be the environmental cue respon- derived hormones that are well known for regulating blood sible for generating bifurcated axonal branches. These results pressure, but their expression in the brain poses an intriguing yet suggest an intriguing hypothesis that NPs provide a general unanswered question concerning their roles in the nervous system. extracellular mechanism to regulate different processes, such as Here, we report several unique activities of these hormones in branching and guidance, during axonal development via the regulating axonal development of dorsal root ganglion (DRG) regulation of cGMP signaling. neurons in the spinal cord. First, the C-type NP (CNP) is expressed To test this hypothesis, we first examined a spontaneous in a restricted area of the dorsal spinal cord and provides a cue that mouse mutant with a mutation in the Nppc gene encoding the is necessary for bifurcation of central sensory afferents. Second, in CNP precursor and found a similar bifurcation defect during the culture of embryonic DRG neurons, CNP stimulates branch sensory afferent development. In addition, we conducted a formation, induces axon outgrowth, and attracts growth cones. systematic analysis of the functions of NPs in axonal develop- Furthermore, these activities are mediated by cyclic guanosine- ment by using the primary culture of DRG neurons. -
Clinical Significance of Antibodies to Antigens in the Raph, John Milton
R EVIEW Proceedings from the International Society of Blood Transfusion Working Party on Immunohaematology, Workshop on the Clinical Significance of Red Blood Cell Alloantibodies, September 2, 2016, Dubai Clinical significance of antibodies to antigens in the Raph, John Milton Hagen, I, Globoside, Gill, Rh-associated glycoprotein, FORS, JR, LAN, Vel, CD59, and Augustine blood group systems M. Moghaddam and A.A. Naghi This article reviews information on the clinical significance and 6 shared missense mutation c.511C>T (p.Argl71Cys) as of antibodies to antigens in the Raph, John Milton Hagen, I, well as a synonymous single-nucleotide mutation (c.579A>G) Globoside, Gill, Rh-associated glycoprotein, FORS, JR, LAN, Vel, and had no clinical features. Although the CD151 protein is CD59, and Augustine blood group systems. Antibodies to many of the antigens in these groups are rarely encountered because of the critical to cell adhesion and signaling and is implicated in high prevalence of the associated antigens in most populations. cancer progression, its significance in transfusion medicine is For many of these antibodies, the clinical significance—that is, limited to only one report of a hemolytic transfusion reaction the potential to cause reduced survival of transfused antigen- 3 positive red blood cells or a transfusion reaction (e.g., anti-P, (HTR). Least-incompatible RBC units should be selected anti-Jra, and anti-Lan), and/or hemolytic disease of the fetus and for transfusion to patients with anti-MER2.2 No information newborn (e.g., anti-RHAG4 and anti-Vel)—has been documented. on anti-MER2 causing hemolytic disease of the fetus and For other antibodies, their prevalence is so rare that information newborn (HDFN) is available.4 on the clinical significance of their antibodies is not available (e.g., anti-FORS1). -
Sema4a Induces Cell Morphological Changes Through B-Type Plexin-Mediated Signaling
225-230.qxd 18/12/2009 10:31 Ì Page 225 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 25: 225-230, 2010 225 Sema4A induces cell morphological changes through B-type plexin-mediated signaling KAZUNORI YUKAWA1, TETSUJI TANAKA2, KENJI YOSHIDA1, NORIKO TAKEUCHI1, TAKUJI ITO1, HYOTA TAKAMATSU3, HITOSHI KIKUTANI4 and ATSUSHI KUMANOGOH3 1Department of Physiology, Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503; 2Department of Obstetrics and Gynecology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509; Department of 3Immunopathology; 4Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan Received September 14, 2009; Accepted November 6, 2009 DOI: 10.3892/ijmm_00000334 Abstract. Semaphorins are a family of secreted and membrane- compared with the control plasmid. Sema4A thus induces bound proteins known as axonal pathfinders. Sema4A, a growth cone collapse through the down-regulation of R-Ras member of class 4 semaphorins, induces growth cone collapse activity in mouse hippocampal neurons. of hippocampal neurons. The binding of Sema4A to growth cones indicates the presence of receptors transmitting signals Introduction through the intracellular effectors to induce growth cone collapse in hippocampal neurons. Transfection experiments Semaphorins compose a large family of phylogenetically of the candidate receptor genes into COS-7 cells conserved soluble and transmembrane molecules, which are demonstrated that Sema4A binds to axonal guidance further divided into eight classes (1). Semaphorins were receptors Plexin-B1, -B2 and -B3. To identify the functional originally identified as repulsive axonal guidance cues which Sema4A receptor and the signal transduction machinery, induce growth cone collapse in developing neurons (2-4).