University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering - Papers (Archive) Sciences 1-1-2009 Distribution of impurities in magnesium via silicothermic reduction Winny Wulandari Swinburne University of Technology Akbar Rhamdhani Swinburne University of Technology Geoff Brooks Swinburne University of Technology Brian J. Monaghan University of Wollongong,
[email protected] Follow this and additional works at: https://ro.uow.edu.au/engpapers Part of the Engineering Commons https://ro.uow.edu.au/engpapers/1242 Recommended Citation Wulandari, Winny; Rhamdhani, Akbar; Brooks, Geoff; and Monaghan, Brian J.: Distribution of impurities in magnesium via silicothermic reduction 2009, 1401-1415. https://ro.uow.edu.au/engpapers/1242 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
[email protected] Distribution of impurities in magnesium production via silicothermic reduction Distribution of impurities in magnesium via silicothermic reduction Winny Wulandari1, M. Akbar Rhamdhani1, Geoffrey Brooks1, and Brian J. Monaghan2 1Faculty of Engineering and Industrial Sciences, Swinburne University of Technology John St, Hawthorn, Melbourne VIC, 3122, Australia 2Faculty of Engineering, University of Wollongong Northfield Ave, Wollongong NSW, 2522, Australia Abstract The desire for light weight materials, particularly in the automotive field, is fuelling greater magne- sium production. The Pidgeon process is currently the most widely used process for the production of magnesium. This batch process involves reduction of dolomite by ferro-silicon, carried out at temperature between 1100-1200oC under vacuum in a retort, producing magnesium vapour which is then cooled and collected as a condensate. The major attractions of the process are its simplicity and low capital cost; however, the process is also labour and energy intensive.