Can Machines Think? Even Though Descartes' Argument That the Mind

Total Page:16

File Type:pdf, Size:1020Kb

Can Machines Think? Even Though Descartes' Argument That the Mind Can machines think? Even though Descartes’ argument that the mind is distinct from the body fails, the general point that Descartes wants to make remains a challenge. It is that if the mind has essential properties that are not shared by the body, then it must be distinct from the body. The principle he uses is: If X has at least one property which Y cannot have, then X and Y are not identical. In fact, if X has a property which nothing else has, then that property is the essential property of X. That is it is the property which makes X what it is and makes X distinct from all the other things. Thus when Socrates asks Euthyphro to give a single definite characteristic that makes piety what it is, he is asking Euthyphro to tell him the essential property of piety. An example is Aristotle’s definition of man (human beings) which is: Man is a rational animal. What he means is that humans are a kind of animals, but they share a characteristic which marks them off from all the other animals which is the characteristic of being rational or having reason. No other animals have this property, thus being rational is the essential property of human beings. (Aristotle has been proved wrong, but what really matters is that the idea of an essential property is illuminated by his definition). Descartes wants to point out that the property of indubitability is the essential property of the mind. In other places, he lists other essential properties that the mind has but the body does not have. The issue is whether these so-called essential properties of the mind can be explained in terms of physicality. If they can, then they are not essential properties of the mind at all, but are properties that some physical things also have; and thus the mind is not distinct from the body. In this lecture, I will focus upon the claim that thinking is an essential property of the mind and upon an attempt to invalidate the claim. The reason why I will do this is because Descartes gives prominence to it in his argument and this leads people who argue against his thesis to do the same. But thinking is only one mental state among many, the question thus must be asked why Descartes should focus upon it. It is clear that Descartes believes that thinking is something unique to the mind, and that the thinking mind is unique to humans. He believes that animals and machines built to be like humans do not have reason. They therefore do not have a mind. His assumptions can be put in the following way: For a thing to have a mind it must have reason. For a thing to have reason it must be able to think. His argument is that there are two tests whether these non-humans have reason or not and they fail the test. The first test is that anything that has reason must be able to use language. Both animals and machines fail the test. Animals can only imitate words and sentences uttered by us; machines can only put words into particular sequences as programed by us. Both cannot put those words into various sentences to express different things. To be able to do that requires the use of reason and thus failure to do so shows that animals and machines do not have reason. The second test is a generalization of the first. Animals and machines might be able to perform certain tasks far better than us, but they cannot invent new tasks apart from those determined by nature or by human artifice. This shows that they do not have reason. In the case of machines, to make a machine perform a different task than what it is designed to do requires putting in another set of parts to perform another task. To keep on adding parts so they can perform like humans is improbable. Humans can use reason to think of ways to do various tasks. In short, Descartes assumes that reason is inventive; in other words, reason is free to go beyond instinct. To prove that machines can think, one has to prove that a machine can pass the tests. (Can you think of other criterions different from the ones Descartes uses? Tell me what you think.) Not only Descartes, but we also often think that human beings are privileged creatures in the universe. But why do we think that thinking is unique to humans? Human beings are unique because they have free will. To have a free will means to have a choice of action; and to be able to choose requires thinking. Animals only act according to their instincts. Humans also have instincts but we often act against them; and that proves that we do have free will. On the other hand, religious beliefs lead us to think that we have a mind distinct from the body, something that might survive death, something which we call ‘the soul’ which will go either to heaven or hell after death; and since we believe that reasoning and thinking are what only we, among all animals, are capable of, we tend to link thinking and the mind together in such a way that the essence of the mind is thinking. Morever, our body is composed purely of matter i.e. it is a physical thing. When we think of the mind as distinct from the body, we are taking it to be an immaterial thing, a soul which survives the death of the body. When we link thinking with the mind, we then link thinking with an immaterial thing. We do say that the brain does the thinking, but when we regard the mind as distinct from the body we are assuming that in fact the mind does the thinking and uses the brain as a vehicle. We thus believe that purely material things cannot think. Scientists nowadays have proofs that some animals can think. Therefore dualists (people who believe the mind is distinct from the body) have to admit that some animals have souls and that human beings are not unique in that regard. Nevertheless, dualists can consistently continue to think that the mind is distinct from the body. The above picture the dualists have will be shattered if somebody can prove that some material things can think. For if some material things can think, then it is a simpler explanation to say that thinking is done by the brain and there is no immaterial mind behind the thinking. To conceive of humans as composing of two entirely different elements provides a very complicated explanation which faces a serious problem. Material things can be causes and effects of one another because they have mass, but how can an immaterial thing affect material things when it doesn’t have a mass. If we have a reason to believe that some material things can think, then this solves the problem. We don’t have to have two completely different things the connection between which is mysterious. The problem with dualism is that it believes material things can’t think, thus it has to posit another entity to explain thinking and in the process creates a very difficult problem. The idea that some material things can think was suggested by Alan Turing (1912- 1954), who was a famous British scientist. His work with computers made him believe that since computers were getting smarter and were doing intelligent work as good as or even better than humans, one day computers would be made to function at the level of human intelligence. How do we know when that day will come? Turing answered by first restating the question “Can machines think?” because he thought this question was not precise and might generate prejudices. He suggested the idea of ‘the imitation game’ as a way to rephrase the question and at the same time as a model for the test that would decide whether machines can think or not. This test is nowadays called “the Turing test”. I will let Turing explain in his own words what the imitation game is and how the question should be rephrased. I propose to consider the question, "Can machines think?" This should begin with definitions of the meaning of the terms "machine" and "think." The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous, If the meaning of the words "machine" and "think" are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to the question, "Can machines think?" is to be sought in a statistical survey such as a Gallup poll. But this is absurd. Instead of attempting such a definition I shall replace the question by another, which is closely related to it and is expressed in relatively unambiguous words. The new form of the problem can be described in terms of a game which we call the 'imitation game." It is played with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The interrogator stays in a room apart front the other two. The object of the game for the interrogator is to determine which of the other two is the man and which is the woman. He knows them by labels X and Y, and at the end of the game he says either "X is A and Y is B" or "X is B and Y is A." The interrogator is allowed to put questions to A and B thus: C: Will X please tell me the length of his or her hair? Now suppose X is actually A, then A must answer.
Recommended publications
  • KNOWLEDGE ACCORDING to IDEALISM Idealism As a Philosophy
    KNOWLEDGE ACCORDING TO IDEALISM Idealism as a philosophy had its greatest impact during the nineteenth century. It is a philosophical approach that has as its central tenet that ideas are the only true reality, the only thing worth knowing. In a search for truth, beauty, and justice that is enduring and everlasting; the focus is on conscious reasoning in the mind. The main tenant of idealism is that ideas and knowledge are the truest reality. Many things in the world change, but ideas and knowledge are enduring. Idealism was often referred to as “idea-ism”. Idealists believe that ideas can change lives. The most important part of a person is the mind. It is to be nourished and developed. Etymologically Its origin is: from Greek idea “form, shape” from weid- also the origin of the “his” in his-tor “wise, learned” underlying English “history.” In Latin this root became videre “to see” and related words. It is the same root in Sanskrit veda “knowledge as in the Rig-Veda. The stem entered Germanic as witan “know,” seen in Modern German wissen “to know” and in English “wisdom” and “twit,” a shortened form of Middle English atwite derived from æt “at” +witen “reproach.” In short Idealism is a philosophical position which adheres to the view that nothing exists except as it is an idea in the mind of man or the mind of God. The idealist believes that the universe has intelligence and a will; that all material things are explainable in terms of a mind standing behind them. PHILOSOPHICAL RATIONALE OF IDEALISM a) The Universe (Ontology or Metaphysics) To the idealist, the nature of the universe is mind; it is an idea.
    [Show full text]
  • Is AI Intelligent, Really? Bruce D
    Seattle aP cific nivU ersity Digital Commons @ SPU SPU Works Summer August 23rd, 2019 Is AI intelligent, really? Bruce D. Baker Seattle Pacific nU iversity Follow this and additional works at: https://digitalcommons.spu.edu/works Part of the Artificial Intelligence and Robotics Commons, Comparative Methodologies and Theories Commons, Epistemology Commons, Philosophy of Science Commons, and the Practical Theology Commons Recommended Citation Baker, Bruce D., "Is AI intelligent, really?" (2019). SPU Works. 140. https://digitalcommons.spu.edu/works/140 This Article is brought to you for free and open access by Digital Commons @ SPU. It has been accepted for inclusion in SPU Works by an authorized administrator of Digital Commons @ SPU. Bruce Baker August 23, 2019 Is AI intelligent, really? Good question. On the surface, it seems simple enough. Assign any standard you like as a demonstration of intelligence, and then ask whether you could (theoretically) set up an AI to perform it. Sure, it seems common sense that given sufficiently advanced technology you could set up a computer or a robot to do just about anything that you could define as being doable. But what does this prove? Have you proven the AI is really intelligent? Or have you merely shown that there exists a solution to your pre- determined puzzle? Hmmm. This is why AI futurist Max Tegmark emphasizes the difference between narrow (machine-like) and broad (human-like) intelligence.1 And so the question remains: Can the AI be intelligent, really, in the same broad way its creator is? Why is this question so intractable? Because intelligence is not a monolithic property.
    [Show full text]
  • Artificial Intelligence and National Security
    Artificial Intelligence and National Security Artificial intelligence will have immense implications for national and international security, and AI’s potential applications for defense and intelligence have been identified by the federal government as a major priority. There are, however, significant bureaucratic and technical challenges to the adoption and scaling of AI across U.S. defense and intelligence organizations. Moreover, other nations—particularly China and Russia—are also investing in military AI applications. As the strategic competition intensifies, the pressure to deploy untested and poorly understood systems to gain competitive advantage could lead to accidents, failures, and unintended escalation. The Bipartisan Policy Center and Georgetown University’s Center for Security and Emerging Technology (CSET), in consultation with Reps. Robin Kelly (D-IL) and Will Hurd (R-TX), have worked with government officials, industry representatives, civil society advocates, and academics to better understand the major AI-related national and economic security issues the country faces. This paper hopes to shed more clarity on these challenges and provide actionable policy recommendations, to help guide a U.S. national strategy for AI. BPC’s effort is primarily designed to complement the work done by the Obama and Trump administrations, including President Barack Obama’s 2016 The National Artificial Intelligence Research and Development Strategic Plan,i President Donald Trump’s Executive Order 13859, announcing the American AI Initiative,ii and the Office of Management and Budget’s subsequentGuidance for Regulation of Artificial Intelligence Applications.iii The effort is also designed to further June 2020 advance work done by Kelly and Hurd in their 2018 Committee on Oversight 1 and Government Reform (Information Technology Subcommittee) white paper Rise of the Machines: Artificial Intelligence and its Growing Impact on U.S.
    [Show full text]
  • Theory of Mind As Inverse Reinforcement Learning. Current
    Available online at www.sciencedirect.com ScienceDirect Theory of mind as inverse reinforcement learning 1,2 Julian Jara-Ettinger We review the idea that Theory of Mind—our ability to reason think or want based on how they behave. Research in about other people’s mental states—can be formalized as cognitive science suggests that we infer mental states by inverse reinforcement learning. Under this framework, thinking of other people as utility maximizers: constantly expectations about how mental states produce behavior are acting to maximize the rewards they obtain while mini- captured in a reinforcement learning (RL) model. Predicting mizing the costs that they incur [3–5]. Using this assump- other people’s actions is achieved by simulating a RL model tion, even children can infer other people’s preferences with the hypothesized beliefs and desires, while mental-state [6,7], knowledge [8,9], and moral standing [10–12]. inference is achieved by inverting this model. Although many advances in inverse reinforcement learning (IRL) did not have Theory of mind as inverse reinforcement human Theory of Mind in mind, here we focus on what they learning reveal when conceptualized as cognitive theories. We discuss Computationally, our intuitions about how other minds landmark successes of IRL, and key challenges in building work can be formalized using frameworks developed in a human-like Theory of Mind. classical area of AI: model-based reinforcement learning 1 Addresses (hereafter reinforcement learning or RL) . RL problems 1 Department of Psychology, Yale University, New Haven, CT, United focus on how to combine a world model with a reward States function to produce a sequence of actions, called a policy, 2 Department of Computer Science, Yale University, New Haven, CT, that maximizes agents’ rewards while minimizing their United States costs.
    [Show full text]
  • Artificial Intelligence in the Context of Human Consciousness
    Running head: AI IN THE CONTEXT OF HUMAN CONSCIOUSNESS 1 Artificial Intelligence in the Context of Human Consciousness Hannah DeFries A Senior Thesis submitted in partial fulfillment of the requirements for graduation in the Honors Program Liberty University Spring 2019 AI IN THE CONTEXT OF HUMAN CONSCIOUSNESS 2 Acceptance of Senior Honors Thesis This Senior Honors Thesis is accepted in partial fulfillment of the requirements for graduation from the Honors Program of Liberty University. ______________________________ Kyung K. Bae, Ph.D. Thesis Chair ______________________________ Jung-Uk Lim, Ph.D. Committee Member ______________________________ Mark Harris, Ph.D. Committee Member ______________________________ James H. Nutter, D.A. Honors Director ______________________________ Date AI IN THE CONTEXT OF HUMAN CONSCIOUSNESS 3 Abstract Artificial intelligence (AI) can be defined as the ability of a machine to learn and make decisions based on acquired information. AI’s development has incited rampant public speculation regarding the singularity theory: a futuristic phase in which intelligent machines are capable of creating increasingly intelligent systems. Its implications, combined with the close relationship between humanity and their machines, make achieving understanding both natural and artificial intelligence imperative. Researchers are continuing to discover natural processes responsible for essential human skills like decision-making, understanding language, and performing multiple processes simultaneously. Artificial intelligence
    [Show full text]
  • Defense Primer: National and Defense Intelligence
    Updated December 30, 2020 Defense Primer: National and Defense Intelligence The Intelligence Community (IC) is charged with providing Intelligence Program (NIP) budget appropriations, which insight into actual or potential threats to the U.S. homeland, are a consolidation of appropriations for the ODNI; CIA; the American people, and national interests at home and general defense; and national cryptologic, reconnaissance, abroad. It does so through the production of timely and geospatial, and other specialized intelligence programs. The apolitical products and services. Intelligence products and NIP, therefore, provides funding for not only the ODNI, services result from the collection, processing, analysis, and CIA and IC elements of the Departments of Homeland evaluation of information for its significance to national Security, Energy, the Treasury, Justice and State, but also, security at the strategic, operational, and tactical levels. substantially, for the programs and activities of the Consumers of intelligence include the President, National intelligence agencies within the DOD, to include the NSA, Security Council (NSC), designated personnel in executive NGA, DIA, and NRO. branch departments and agencies, the military, Congress, and the law enforcement community. Defense intelligence comprises the intelligence organizations and capabilities of the Joint Staff, the DIA, The IC comprises 17 elements, two of which are combatant command joint intelligence centers, and the independent, and 15 of which are component organizations military services that address strategic, operational or of six separate departments of the federal government. tactical requirements supporting military strategy, planning, Many IC elements and most intelligence funding reside and operations. Defense intelligence provides products and within the Department of Defense (DOD).
    [Show full text]
  • Artificial Intelligence: How Does It Work, Why Does It Matter, and What Can We Do About It?
    Artificial intelligence: How does it work, why does it matter, and what can we do about it? STUDY Panel for the Future of Science and Technology EPRS | European Parliamentary Research Service Author: Philip Boucher Scientific Foresight Unit (STOA) PE 641.547 – June 2020 EN Artificial intelligence: How does it work, why does it matter, and what can we do about it? Artificial intelligence (AI) is probably the defining technology of the last decade, and perhaps also the next. The aim of this study is to support meaningful reflection and productive debate about AI by providing accessible information about the full range of current and speculative techniques and their associated impacts, and setting out a wide range of regulatory, technological and societal measures that could be mobilised in response. AUTHOR Philip Boucher, Scientific Foresight Unit (STOA), This study has been drawn up by the Scientific Foresight Unit (STOA), within the Directorate-General for Parliamentary Research Services (EPRS) of the Secretariat of the European Parliament. To contact the publisher, please e-mail [email protected] LINGUISTIC VERSION Original: EN Manuscript completed in June 2020. DISCLAIMER AND COPYRIGHT This document is prepared for, and addressed to, the Members and staff of the European Parliament as background material to assist them in their parliamentary work. The content of the document is the sole responsibility of its author(s) and any opinions expressed herein should not be taken to represent an official position of the Parliament. Reproduction and translation for non-commercial purposes are authorised, provided the source is acknowledged and the European Parliament is given prior notice and sent a copy.
    [Show full text]
  • Theory of Mind for a Humanoid Robot
    Theory of Mind for a Humanoid Robot Brian Scassellati MIT Artificial Intelligence Lab 545 Technology Square – Room 938 Cambridge, MA 02139 USA [email protected] http://www.ai.mit.edu/people/scaz/ Abstract. If we are to build human-like robots that can interact naturally with people, our robots must know not only about the properties of objects but also the properties of animate agents in the world. One of the fundamental social skills for humans is the attribution of beliefs, goals, and desires to other people. This set of skills has often been called a “theory of mind.” This paper presents the theories of Leslie [27] and Baron-Cohen [2] on the development of theory of mind in human children and discusses the potential application of both of these theories to building robots with similar capabilities. Initial implementation details and basic skills (such as finding faces and eyes and distinguishing animate from inanimate stimuli) are introduced. I further speculate on the usefulness of a robotic implementation in evaluating and comparing these two models. 1 Introduction Human social dynamics rely upon the ability to correctly attribute beliefs, goals, and percepts to other people. This set of metarepresentational abilities, which have been collectively called a “theory of mind” or the ability to “mentalize”, allows us to understand the actions and expressions of others within an intentional or goal-directed framework (what Dennett [15] has called the intentional stance). The recognition that other individuals have knowl- edge, perceptions, and intentions that differ from our own is a critical step in a child’s development and is believed to be instrumental in self-recognition, in providing a perceptual grounding during language learning, and possibly in the development of imaginative and creative play [9].
    [Show full text]
  • Peirce, Pragmatism, and the Right Way of Thinking
    SANDIA REPORT SAND2011-5583 Unlimited Release Printed August 2011 Peirce, Pragmatism, and The Right Way of Thinking Philip L. Campbell Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily con- stitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.
    [Show full text]
  • Machine Theory of Mind
    Machine Theory of Mind Neil C. Rabinowitz∗ Frank Perbet H. Francis Song DeepMind DeepMind DeepMind [email protected] [email protected] [email protected] Chiyuan Zhang S. M. Ali Eslami Matthew Botvinick Google Brain DeepMind DeepMind [email protected] [email protected] [email protected] Abstract 1. Introduction Theory of mind (ToM; Premack & Woodruff, For all the excitement surrounding deep learning and deep 1978) broadly refers to humans’ ability to rep- reinforcement learning at present, there is a concern from resent the mental states of others, including their some quarters that our understanding of these systems is desires, beliefs, and intentions. We propose to lagging behind. Neural networks are regularly described train a machine to build such models too. We de- as opaque, uninterpretable black-boxes. Even if we have sign a Theory of Mind neural network – a ToM- a complete description of their weights, it’s hard to get a net – which uses meta-learning to build models handle on what patterns they’re exploiting, and where they of the agents it encounters, from observations might go wrong. As artificial agents enter the human world, of their behaviour alone. Through this process, the demand that we be able to understand them is growing it acquires a strong prior model for agents’ be- louder. haviour, as well as the ability to bootstrap to Let us stop and ask: what does it actually mean to “un- richer predictions about agents’ characteristics derstand” another agent? As humans, we face this chal- and mental states using only a small number of lenge every day, as we engage with other humans whose behavioural observations.
    [Show full text]
  • Cognitive Psychology, Intelligence and the Realisation of the Concept in Hegel’S Encyclopaedic Epistemology
    CHAPTER 19 Cognitive Psychology, Intelligence and the Realisation of the Concept in Hegel’s Encyclopaedic Epistemology 127 INTRODUCTION. Hegel’s comprehensive, systematic, highly original philosophy remains an enormous expository and critical challenge. One strategy is to compartmen- talise Hegel’s views, treating the main sections of Hegel’s philosophical Ency- clopaedia as a series of mutually separable philosophical tracts, each of which poses considerable challenges. This pronounced tendency obscures both He- gel’s division of philosophical tasks and their equally important interconnec- tions. The scope, character and relations amongst the various aspects of He- gel’s philosophy have been further obscured by tendencies to dismiss the 1807 Phenomenology of Spirit as an immature first work, to regard The Science of Logic as the master premiss from which all else is to follow, and either to neglect Hegel’s epistemology or to assume he avowed intellectual intuition- ism. This chapter counters these tendencies and compartmentalisations by examining some crucial, illuminating links between Hegel’s Science of Logic, his philosophical psychology and his Philosophy of Nature. So doing shows how Hegel preserved and augmented Kant’s insightful cognitive psychology whilst dispensing with Transcendental Idealism. So doing provides another vantage point on the central themes of this study, and provides further im- portant corroboration. Hegel’s philosophical psychology, or ‘philosophy of subjective spirit’, is broadly, non-reductively naturalistic. His main source is not Descartes, but Aristotle (deVries 1988; Ferrarin 2001, 234–325). Recognising its difficulties, Hegel expressly aims to use Aristotle’s broadly natural account of the various forms and activities of ‘soul’ (animus) to account for our capacities to instan- tiate and exercise the cognitive functions central to Kant’s Critical theory of rational judgment and action.
    [Show full text]
  • Creative Intelligence
    This paper has been prepared for presentation at the "Millennium" Special Issue Conference on "Pragmatism in International Relations Theory" London, 12 October 2002 Creative Intelligence. Pragmatism as a Theory of Thought and Action Gunther Hellmann ”Situations in which the expertise of the social scientist is solicited frequently have the following structure: some new event or bundle of events (...) has happened or is happening before our eyes, and we would like to know what its consequences are (...). Faced with the seemingly reasonable demand for enlightenment on the part of the layman and the policy-maker, and propelled also by his own curiosity, the social scientist now opens his paradigm-box to see how best to handle the job at hand. To his dismay, he then finds, provided he looks carefully, that he is faced with an embarrassment of riches: various available paradigms will produce radically different answers. (...) (o)rdinarily social scientists are happy enough when they have gotten hold of one paradigm or line of causation. As a result, their guesses are often farther off the mark than those of the experienced politician whose intuition is more likely to take a variety of forces into account.”1 ”Those who turn their back on worn-out disciplinary matrices sometimes furnish new philosophical research programmes. Descartes and Carnap are cases in point. At other times, however, this does not apply, as the examples of Montaigne and Heidegger show. Yet research programmes are not indispensable for philosophy. Of course, they have been a great blessing for the professionalization of Philosophy as an academic discipline.
    [Show full text]