Advanced Strategies for Tissue Engineering in Regenerative Medicine: a Biofabrication and Biopolymer Perspective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds
polymers Review A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds M. Sai Bhargava Reddy 1 , Deepalekshmi Ponnamma 2 , Rajan Choudhary 3,4,5 and Kishor Kumar Sadasivuni 2,* 1 Center for Nanoscience and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University, Hyderabad 500085, India; [email protected] 2 Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar; [email protected] 3 Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Faculty of Materials Science and Applied Chemistry, Institute of General Chemical Engineering, Riga Technical University, Pulka St 3, LV-1007 Riga, Latvia; [email protected] 4 Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1007 Riga, Latvia 5 Center for Composite Materials, National University of Science and Technology “MISiS”, 119049 Moscow, Russia * Correspondence: [email protected] Abstract: Tissue engineering (TE) and regenerative medicine integrate information and technology from various fields to restore/replace tissues and damaged organs for medical treatments. To achieve this, scaffolds act as delivery vectors or as cellular systems for drugs and cells; thereby, cellular material is able to colonize host cells sufficiently to meet up the requirements of regeneration and repair. This process is multi-stage and requires the development of various components to create the desired neo-tissue or organ. In several current TE strategies, biomaterials are essential compo- nents. While several polymers are established for their use as biomaterials, careful consideration of the cellular environment and interactions needed is required in selecting a polymer for a given Citation: Reddy, M.S.B.; Ponnamma, application. -
Overview of Biomaterials and Their Use in Medical Devices
© 2003 ASM International. All Rights Reserved. www.asminternational.org Handbook of Materials for Medical Devices (#06974G) CHAPTER 1 Overview of Biomaterials and Their Use in Medical Devices A BIOMATERIAL, as defined in this hand- shapes, have relatively low cost, and be readily book, is any synthetic material that is used to available. replace or restore function to a body tissue and Figure 1 lists the various material require- is continuously or intermittently in contact with ments that must be met for successful total joint body fluids (Ref 1). This definition is somewhat replacement. The ideal material or material restrictive, because it excludes materials used combination should exhibit the following prop- for devices such as surgical or dental instru- erties: ments. Although these instruments are exposed A biocompatible chemical composition to to body fluids, they do not replace or augment • avoid adverse tissue reactions the function of human tissue. It should be noted, Excellent resistance to degradation (e.g., cor- however, that materials for surgical instru- • rosion resistance for metals or resistance to ments, particularly stainless steels, are reviewed biological degradation in polymers) briefly in Chapter 3, “Metallic Materials,” in Acceptable strength to sustain cyclic loading this handbook. Similarly, stainless steels and • endured by the joint shape memory alloys used for dental/endodon- A low modulus to minimize bone resorption tic instruments are discussed in Chapter 10, • High wear resistance to minimize wear- “Biomaterials for Dental Applications.” • debris generation Also excluded from the aforementioned defi- nition are materials that are used for external prostheses, such as artificial limbs or devices Uses for Biomaterials (Ref 3) such as hearing aids. -
When Does a Material Become a Biomaterial?
When does a material become a biomaterial? Prof. Dr. Ir. Jan Van Humbeeck MTM-K.U.Leuven 1 When it is allowed making contact with human tissue 2 The goal of using biomaterials: Assisting in • Regenerating • Repairing • Supporting • Replacing defect tissues and esthetic parts. 3 Origin of defects in the body • Life quality: – congenital defects – development defects – diseases – accidents – aesthetic reasons • Tissue degeneration due to aging: – Osteoporosis – Hart failure – Wear of joints 4 A problem of aging Czech expression: If you’re over 60 and wake up one morning and nothing hurts, then you’re probably dead. 5 What is a biomaterial? • A biomaterial is a nonviable material used in a (medical) device, intended to interact with biological systems (biofunctionality). (Williams, 1987) • A biomaterial is a material intended to interface with biological systems to evaluate, treat, augment or replace any tissue, organ or function of the body. • A biomaterial is a material that should perform an intended function over a definite amount of time in a specific biological environment, as good as possible. • Biomaterials are inorganic or organic materials that are biocompatible and can be implanted in the human body to replace or repair failing tissue. 6 History of biomaterials • 1° generation-materials: based on replacing tissue or replacing a function with as low as possible interaction with the surrounding tissue. Those materials were found in the classic industrial markets. Those materials were selected because of their corrosion resistance or inertness when in contact with a tissue. • metals: SS, Ti, Co-Cr • polymers: UHMWPE, PMMA, PMDS • ceramics: Al2O3 7 Did Georg Washingthon A false toe made of out of wood and leather had a wooden set of teeth? was found on a 3,000-year-old mummified body of an Egyptian noblewoman Cripple with supporting pole. -
Regenerative Robotics
This is a repository copy of Regenerative robotics. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/147130/ Version: Published Version Article: Damian, D. orcid.org/0000-0002-0595-0182 (2019) Regenerative robotics. Birth Defects Research. ISSN 2472-1727 https://doi.org/10.1002/bdr2.1533 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Received: 15 May 2019 Accepted: 19 May 2019 DOI: 10.1002/bdr2.1533 REVIEW ARTICLE Regenerative robotics Dana D. Damian Department of Automatic Control and Systems Engineering, University of Abstract Sheffield, Sheffield, United Kingdom Congenital diseases requiring reconstruction of parts of the gastrointestinal tract, skin, or bone are a challenge to alleviate especially in rapidly growing children. Correspondence Dana D. Damian, Department of Automatic Novel technologies may be the answer. This article presents the state-of-art in regen- Control and Systems Engineering, erative robotic technologies, which are technologies that assist tissues and organs to University of Sheffield, Sheffield, United regenerate using sensing and mechanotherapeutical capabilities. -
Biomaterial Scaffolds in Pediatric Tissue Engineering
0031-3998/08/6305-0497 Vol. 63, No. 5, 2008 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2008 International Pediatric Research Foundation, Inc. Biomaterial Scaffolds in Pediatric Tissue Engineering MINAL PATEL AND JOHN P. FISHER Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742 ABSTRACT: This article reviews recent developments and major immune system is not completely developed. However, pedi- issues in the use and design of biomaterials for use as scaffolds in atric patients have exhibited a higher regenerative capacity com- pediatric tissue engineering. A brief history of tissue engineering and pared with adults because younger cells have undergone less the limitations of current tissue-engineering research with respect to stress and age damage. This review studies novel biomaterials as pediatric patients have been introduced. An overview of the charac- scaffolds and pediatric tissue-engineering applications. teristics of an ideal tissue-engineering scaffold for pediatric applica- tions has been presented, including a description of the different types of scaffolds. Applications of scaffolds materials have been high- CHARACTERISTICS OF AN IDEAL SCAFFOLD lighted in the fields of drug delivery, bone, cardiovascular, and skin tissue engineering with respect to the pediatric population. This Before developing a scaffold for any tissue-engineering review highlights biomaterials as scaffolds as an alternative treatment application, the material and biologic properties have to be method for pediatric surgeries due to the ability to create a functional evaluated. Initially, depending upon the application, mechan- cell-scaffold environment. (Pediatr Res 63: 497–501, 2008) ical properties should be studied keeping in mind the sur- rounding environment of the scaffold once placed in an in vivo he field of tissue engineering involves replacement of system. -
Chemical Engineering (CH E) 1
Chemical Engineering (CH E) 1 CH E 210: Material and Energy Balances CHEMICAL ENGINEERING (CH (3-0) Cr. 3. F.S. E) Prereq: Chem 178, Math 166, CH E 160 Introduction to chemical processes. Physical behavior of gases, liquids, Courses primarily for undergraduates: and solids. Application of material and energy balances to chemical engineering equipment and processes. CH E 104: Chemical Engineering Learning Community Cr. R. F. CH E 220: Introduction to Biomedical Engineering Prereq: Enrollment in Chemical Engineering Learning Team (Cross-listed with B M E). (3-0) Cr. 3. S. (1-0) Curriculum in career planning and academic course support for Prereq: BIOL 212, ENGR 160 or equiv, MATH 166, CHEM 167 or CHEM 178, Freshmen learning team. PHYS 222 Engineering analysis of basic biology and engineering problems CH E 160: Chemical Engineering Problems with Computer Applications associated with living systems and health care delivery. The course Laboratory will illustrate biomedical engineering applications in such areas as: (2-2) Cr. 3. F.S. biotechnology, biomechanics, biomaterials and tissue engineering, and Prereq: MATH 143 or satisfactory scores on mathematics placement biosignal and image processing, and will introduce the basic life sciences examinations; credit or enrollment in MATH 165 and engineering concepts associated with these topics. Formulation and solution of engineering problems. Significant figures. Use of SI units. Graphing and curve-fitting. Flowcharting. Introduction CH E 310: Computational Methods in Chemical Engineering to material balances, engineering economics, and design. Use of (3-0) Cr. 3. F.S. spreadsheet programs to solve and present engineering problems. Prereq: CH E 160, CH E 205, CH E 210, MATH 265 Solution of engineering problems using computer programming Numerical methods for solving systems of linear and nonlinear equations, languages. -
Gene Technology in Tissue Engineering
American Journal of Biochemistry and Biotechnology 2 (2): 66-72, 2006 ISSN 1553-3468 © 2006 Science Publications Gene Technology in Tissue Engineering 1Xiao-Dan Sun and 2In-Seop Lee 1Laboratory of Advanced Materials, Department of Materials Science & Engineering, Tsinghua University, Beijing 100084, China 2Institute of Physics & Applied Physics, and Atomic-scale Surface Science Research Center, Yonsei University, Seoul 120-749, Korea Abstract: Scaffold, cells and signaling factors are regarded as the three essential components in tissue engineering. With the development of molecular and cell biology, gene technology is beginning to show a promising position in tissue engineering as it can influence these essential components at DNA-level. By introducing plasmid DNA or genes encoding certain signaling factors (growth factors/cytokines) into the cells, required growth factors/cytokines can be expressed and secreted spatially and temporally by the transfected cells, which will promote the differentiation, proliferation and organization of the cells on the scaffold. Protein-based scaffolds which have specific structures can also be prepared genetically to induce attachment and spreading of the cells. This paper reviews research work of gene technology developed in tissue engineering. Key words: Gene engineering, tissue engineering, molecular biology, cell biology 1. INTRODUCTION Scaffold S D g n u n n o Tissue engineering refers to the science of e p i i io r l s t e p i e a e v r n o h e generating new living tissues to replace, repair or o i r t d p g r r n y o E A augment the diseased/damaged tissue and restore c ķ In tissue/organ function [1]. -
Tissue Engineering
An Introduction to Tissue Engineering Lesley W. Chow [email protected] October 30, 2015 disclosure: not Lehigh bear Tissue Engineering is... “an interdisciplinary field that applies the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ” Langer and Vacanti, Science 1993 Classic Tissue Engineering: The Vacanti Mouse landmark study from 1997 that helped launched the field Cao, Vacanti, Paige, Upton, and Vacanti, Plastic and Reconstructive Surgery 100:297, 1997 Classic Tissue Engineering: The Vacanti Mouse 1 1 scaffold made from poly(glycolic acid) (PGA) and poly(lactic acid) (PLA) cast from plaster replica of an actual ear Cao, Vacanti, Paige, Upton, and Vacanti, Plastic and Reconstructive Surgery 100:297, 1997 Classic Tissue Engineering: The Vacanti Mouse 1 2 SEM micrograph showing cells and ECM on scaffold 1 2 scaffold made from scaffold seeded with poly(glycolic acid) chondrocytes and (PGA) and poly(lactic cultured for 1 week acid) (PLA) cast from plaster replica of an actual ear Cao, Vacanti, Paige, Upton, and Vacanti, Plastic and Reconstructive Surgery 100:297, 1997 Classic Tissue Engineering: The Vacanti Mouse 1 2 SEM micrograph showing cells and ECM on scaffold 1 2 scaffold made from scaffold seeded with poly(glycolic acid) chondrocytes and 3 (PGA) and poly(lactic cultured for 1 week acid) (PLA) cast from plaster replica of an 3 actual ear implanted subcutaneously on the back of a mouse Cao, Vacanti, Paige, Upton, and -
Mechanical Properties of Biomaterials
Mechanical Properties of Biomaterials Academic Resource Center Determining Biomaterial Mechanical Properties • Tensile and Shear properties • Bending properties • Time dependent properties Tensile and Shear properties • Types of forces that can be applied to material: a) Tensile b) Compressive c) Shear d) Torsion Tensile Testing • Force applied as tensile, compressive, or shear. • Parameters measured: Engineering stress (σ) and Engineering strain (ԑ). • σ = F/A0 : Force applied perpendicular to the cross section of sample • ԑ = (li-l0)/l0: l0 is the length of sample before loading, li is the length during testing. Compression Testing • Performed mainly for biomaterials subjected to compressive forces during operation. E.g. orthopedic implants. • Stress and strain equations same as for tensile testing except force is taken negative and l0 larger than li. • Negative stress and strain obtained. Shear Testing • Forces parallel to top and bottom faces • Shear stress (τ) = F/A0 • Shear strain (γ)= tanθ ; θ is the deformation angle. • In some cases, torsion forces may be applied to sample instead of pure shear. Elastic Deformation • Material 1: Ceramics • Stress proportional to strain. • Governed by Hooke’s law: σ = ԑE; τ=Gγ • E :Young’s modulus G: Shear modulus - measure of material stiffness. • Fracture after applying small values of strain: ceramics are brittle in nature. Elastic and Plastic deformation. • Material 2: Metal • Stress proportional to strain with small strain; elastic deformation. • At high strain, stress increases very slowly with increased strain followed by fracture: Plastic deformation. Elastic and Plastic deformation. • Material 3: Plastic deformation polymer • Stress proportional to strain with small strain; elastic deformation. • At high strain, stress nearly independent of strain, shows slight increase: Plastic deformation. -
Advancing Tissue Science and Engineering
ADVANCING TISSUE SCIENCE AND ENGINEERING A MULTI-AGENCY StRatEGIC PLAN ABOUT THE MATES IWG The Multi-Agency Tissue Engineering Science (MATES) Interagency Working Group (IWG), organized under the auspices of the Subcommittee on Biotechnology of the National Science and Technology Council (NSTC), is the means by which Federal agencies involved in tissue engineering stay informed of each other’s activities and coordinate their efforts in a timely and efficient manner. The goals of the MATES IWG are: • To facilitate communication across departments/agencies by regular information exchanges and a common website • To enhance cooperation through co-sponsorship of scientific meetings and workshops, and facilitation of the development of standards • To monitor technology by undertaking cooperative assessments of the status of the field • To provide for support of tissue engineering research through interagency tissue engineering funding opportunity announcements For more information, see the MATES website at http://www.tissueengineering.gov. ABOUT THE NATIONAL SCIENCE AND TECHNOLOGY COUNCIL The National Science and Technology Council (NSTC) was established by Executive Order on November 23, 1993. This cabinet-level council is the principal means by which the President coordinates science, space, and technology policies across the Federal Government. NSTC coordinates diverse paths of the Federal research and development enterprise. An important objective of the NSTC is the establishment of clear national goals for Federal science and technology investments in areas ranging from information technologies and health research to improving transportation systems and strengthening fundamental research. The Council prepares research and development strategies that are coordinated across the Federal agencies to form a comprehensive investment package aimed at accomplishing multiple national goals. -
Tissue Engineering: from Cell Biology to Artificial Organs
干细胞之家www.stemcell8.cn ←点击进入 Tissue Engineering Essentials for Daily Laboratory Work W. W. Minuth, R. Strehl, K. Schumacher 干细胞之家www.stemcell8.cn ←点击进入 干细胞之家www.stemcell8.cn ←点击进入 Tissue Engineering W. W. Minuth, R. Strehl, K. Schumacher 干细胞之家www.stemcell8.cn ←点击进入 Further Titles of Interest Novartis Foundation Symposium Kay C. Dee, David A. Puleo, Rena Bizios Tissue Engineering An Introduction to Tissue- of Cartilage and Bone – Biomaterial Interactions No. 249 2002 ISBN 0-471-25394-4 2003 ISBN 0-470-84481-7 Alan Doyle, J. Bryan Griffiths (Eds.) Rolf D. Schmid, Ruth Hammelehle Cell and Tissue Culture Pocket Guide to Biotechnology for Medical Research and Genetic Engineering 2000 2003 ISBN 0-471-85213-9 ISBN 3-527-30895-4 R. Ian Freshney Michael Hoppert Culture of Animal Cells: Microscopic Techniques A Manual of Basic Technique, in Biotechnology 4th Edition 2003 ISBN 3-527-30198-4 2000 ISBN 0-471-34889-9 R. Ian Freshney, Mary G. Freshney Oliver Kayser, Rainer H. Mu¨ller (Eds.) (Eds.) Pharmaceutical Biotechnology: Culture of Epithelial Cells, Drug Discovery and Clinical 2nd Edition Applications 2002 2004 ISBN 0-471-40121-8 ISBN 3-527-30554-8 干细胞之家www.stemcell8.cn ←点击进入 Tissue Engineering Essentials for Daily Laboratory Work W. W. Minuth, R. Strehl, K. Schumacher 干细胞之家www.stemcell8.cn ←点击进入 Authors This book was carefully produced. Nevertheless, editors, authors and publisher do not warrant the Dr. Will W. Minuth, PhD information contained therein to be free of errors. Raimund Strehl, PhD Readers are advised to keep in mind that state- Karl Schumacher, M.D. ments, data, illustrations, procedural details or other items may inadvertently be inaccurate. -
Robot-Aided Electrospinning Toward Intelligent Biomedical Engineering
Tan et al. Robot. Biomim. (2017) 4:17 DOI 10.1186/s40638-017-0075-1 REVIEW Open Access Robot‑aided electrospinning toward intelligent biomedical engineering Rong Tan1, Xiong Yang1 and Yajing Shen1,2* Abstract The rapid development of robotics ofers new opportunities for the traditional biofabrication in higher accuracy and controllability, which provides great potentials for the intelligent biomedical engineering. This paper reviews the state of the art of robotics in a widely used biomaterial fabrication process, i.e., electrospinning, including its working principle, main applications, challenges, and prospects. First, the principle and technique of electrospinning are intro- duced by categorizing it to melt electrospinning, solution electrospinning, and near-feld electrospinning. Then, the applications of electrospinning in biomedical engineering are introduced briefy from the aspects of drug delivery, tissue engineering, and wound dressing. After that, we conclude the existing problems in traditional electrospinning such as low production, rough nanofbers, and uncontrolled morphology, and then discuss how those problems are addressed by robotics via four case studies. Lastly, the challenges and outlooks of robotics in electrospinning are discussed and prospected. Keywords: Robotics, Electrospinning, Biomedical engineering Introduction electrospinning have high surface area and highly porous Te basic idea of electrospinning originated in the period structure, and furthermore, design fexibility is an impor- from 1934 to 1944, when researchers describes the use of tant advantage of electrospun nanofbers [3]. electrostatic force to produce polymer flament device. Electrospinning has widely been used in biomedi- Te main principle is using high-voltage electrostatic cal engineering, including wound dressings, fltration, feld to stimulate the polymer charged jet and then to and drug delivery systems, as well as tissue engineering obtain the polymer nanofbers by charged jet curing.