Hedgehog Basics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hedgehog Fact Sheet
Hedgehog Descrip�on: This par�cular hedgehog and called a Four-toed hedgehog. The Four-toed hedgehog only has 4 toes on each hind foot. The hedgehog has a very dis�nc�ve prickly spiny coat and long coarse hair on its face and underparts. An adult hedgehog can grow between 14 to 30 cen�meters long. Females are larger than males. Habitat: Class: Mammalia The four-toed hedgehog is found across central Africa. Order: Eulipotyphla They prefer grassy environments or open woodland Family: Erinaceidae with eleva�ons as high a 6,600 �. Their main predators Genus & Species: Erinaceus are Verreaux’s eagles, owls, jackals, hyenas and honey badgers. They prefer temperatures in the mid Life Span: up to 3 years in wild and up to 10 80’s F. When the hot dry season occurs and food is in cap�vity scarce they will go into a state of aes�va�on - inac�vity and lowered metabolic rate and when the temperature Fun Facts: gets colder it will go into a state of hiberna�on. Hedghogs rarely lose their quills during adulthood. Adapta�ons: Hedgehogs sleep in rolled up in a ball to protect The four-toed hedgehog is a solitary, nocturnal animal themselves. normally found along the ground. They have a high They have a special circular muscle that runs tolerance for toxins and have been known to eat along the sides of its body and across its neck scorpions and venomous snakes. When a�acked by and bo�om. When this muscle contracts it a predator, it can scream loudly. -
Mammals of Jordan
© Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Mammals of Jordan Z. AMR, M. ABU BAKER & L. RIFAI Abstract: A total of 78 species of mammals belonging to seven orders (Insectivora, Chiroptera, Carni- vora, Hyracoidea, Artiodactyla, Lagomorpha and Rodentia) have been recorded from Jordan. Bats and rodents represent the highest diversity of recorded species. Notes on systematics and ecology for the re- corded species were given. Key words: Mammals, Jordan, ecology, systematics, zoogeography, arid environment. Introduction In this account we list the surviving mammals of Jordan, including some reintro- The mammalian diversity of Jordan is duced species. remarkable considering its location at the meeting point of three different faunal ele- Table 1: Summary to the mammalian taxa occurring ments; the African, Oriental and Palaearc- in Jordan tic. This diversity is a combination of these Order No. of Families No. of Species elements in addition to the occurrence of Insectivora 2 5 few endemic forms. Jordan's location result- Chiroptera 8 24 ed in a huge faunal diversity compared to Carnivora 5 16 the surrounding countries. It shelters a huge Hyracoidea >1 1 assembly of mammals of different zoogeo- Artiodactyla 2 5 graphical affinities. Most remarkably, Jordan Lagomorpha 1 1 represents biogeographic boundaries for the Rodentia 7 26 extreme distribution limit of several African Total 26 78 (e.g. Procavia capensis and Rousettus aegypti- acus) and Palaearctic mammals (e. g. Eri- Order Insectivora naceus concolor, Sciurus anomalus, Apodemus Order Insectivora contains the most mystacinus, Lutra lutra and Meles meles). primitive placental mammals. A pointed snout and a small brain case characterises Our knowledge on the diversity and members of this order. -
Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus Opercularis)
animals Article Housing, Husbandry and Welfare of a “Classic” Fish Model, the Paradise Fish (Macropodus opercularis) Anita Rácz 1,* ,Gábor Adorján 2, Erika Fodor 1, Boglárka Sellyei 3, Mohammed Tolba 4, Ádám Miklósi 5 and Máté Varga 1,* 1 Department of Genetics, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] 2 Budapest Zoo, Állatkerti krt. 6-12, H-1146 Budapest, Hungary; [email protected] 3 Fish Pathology and Parasitology Team, Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungária krt. 21, 1143 Budapest, Hungary; [email protected] 4 Department of Zoology, Faculty of Science, Helwan University, Helwan 11795, Egypt; [email protected] 5 Department of Ethology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1C, 1117 Budapest, Hungary; [email protected] * Correspondence: [email protected] (A.R.); [email protected] (M.V.) Simple Summary: Paradise fish (Macropodus opercularis) has been a favored subject of behavioral research during the last decades of the 20th century. Lately, however, with a massively expanding genetic toolkit and a well annotated, fully sequenced genome, zebrafish (Danio rerio) became a central model of recent behavioral research. But, as the zebrafish behavioral repertoire is less complex than that of the paradise fish, the focus on zebrafish is a compromise. With the advent of novel methodologies, we think it is time to bring back paradise fish and develop it into a modern model of Citation: Rácz, A.; Adorján, G.; behavioral and evolutionary developmental biology (evo-devo) studies. The first step is to define the Fodor, E.; Sellyei, B.; Tolba, M.; housing and husbandry conditions that can make a paradise fish a relevant and trustworthy model. -
Veganism: a New Approach to Health Miljana Z
Chapter Veganism: A New Approach to Health Miljana Z. Jovandaric Abstract The word vegan was given by Donald Watson in 1944 in Leicester, England, who, together with several other members of the Vegetarian Society, wanted to establish a group of vegetarians who did not consume milk or dairy products. When the proposal was rejected, Watson and like-minded people founded The Vegan Society, which advocated a complete plant-based diet, excluding meat, fish, eggs, milk and dairy products (cheese, butter) and honey. Vegans do not wear fur items, wool, bone, goat, coral, pearl or any other material of animal origin. According to surveys, vegans make up between 0.2% and 1.3% of the US population and between 0.25% and 7% of the UK population. Vegan foods contain lower levels of cholesterol and fat than the usual diet. Keywords: veganism, health, supplements 1. Introduction Veganism is a philosophy and lifestyle that seeks to exclude the use of animals for food or clothing and includes all other forms of diet of non-animal origin. Vegan diet is based on cereals, legumes, fruits and vegetables. Vegans do not eat meat, fish, seafood, eggs, milk, dairy products, honey threads carry things made of fur, wool, bones, leather, coral, pearls or any other materials of animal origin. Within the commitment to a vegan lifestyle, there is a group of people who eat exclusively fresh raw fruits, vegetables without heat treatment. This group of vegans is called a row food diet. Veganism differs from vegetarianism in that it is reduced entirely to a plant-based diet, while vegetarians also eat some products of animal origin, when animals are not killed when obtaining these products, e.g. -
Differential Loss of Embryonic Globin Genes During the Radiation of Placental Mammals
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Jay F. Storz Publications Papers in the Biological Sciences 9-2-2008 Differential loss of embryonic globin genes during the radiation of placental mammals Juan C. Opazo Instituto de Ecología y Evolución, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia, Chile Federico Hoffmann Instituto Carlos Chagas Fiocruz, Rua Prof. Algacyr Munhoz Mader 3775-CIC, 81350-010, Curitiba, Brazil Jay F. Storz University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/bioscistorz Part of the Genetics and Genomics Commons Opazo, Juan C.; Hoffmann, Federico; and Storz, Jay F., "Differential loss of embryonic globin genes during the radiation of placental mammals" (2008). Jay F. Storz Publications. 26. https://digitalcommons.unl.edu/bioscistorz/26 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Jay F. Storz Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Proceedings of the National Academy of Sciences, USA 105:35 (September 2, 2008), pp. 12950–12955; doi 10.1073/pnas.0804392105 Copyright © 2008 by The National Academy of Sciences of the USA. Used by permission. http://www.pnas.org/cgi/doi/10.1073/pnas.0804392105 Author contributions: J.C.O. and J.F.S. designed research; J.C.O. and F.G.H. performed research; J.C.O. and F.G.H. analyzed data; and J.C.O. and J.F.S. wrote the paper. -
Lovewisdom, Johnny. Modern Live Juice Therapy
MODERN LIVE JUICE THERAPY by Johnny Lovewisdom Note: The author and publisher are not responsible for any adverse effects or consequences occurring from the ideas, procedures or suggestions in this book. This book is not intended to replace the advice of a trained health professional. If you have a health problem you should consult a holistically and nutritionally inclined health professional. Copyright 1964 by Johnny Lovewisdom FOREWORD This work was begun in 1962 and finished in 1964, which included my moving from the cool damp 8,000 foot altitude “temperate” climate at my place on the river near Otavalo, north Ecuador, to the warm dry 6,800 foot “tropical” climate of my new home at “Paradise” Vilcabamba, south Ecuador. The first chapter begins with my mind drowned in diseased condition of body, fighting kidney failure constantly only 3 or 4 days from death, a lack of circulation in the lower extremities, pale and discouraged: Someone was saying “Physician, heal thyself”. Finishing this book, after a year at my new found Paradise I forgot to mention my own condition, praising the health work of others thru live juice therapy. When people ask me if it is true that Vilcabamba is an “Isle of Immunity”, I tell them, not only does it heal cardiovascular ailments, arthritis, rheumatism, asthma, etc. but I don’t know of a condi- tion that Vilcabamba’s location could not help! “But what about the plague of anemia and some kidney trouble the inhabitants complain about?” But look here, I reply, everyone is remarking how pale I arrived and how rosy and healthier appearance I have gained, healing my anemia. -
Proceedings of the 1 Australasian Regional Environmental
Proceedings of the 1st Australasian Regional Environmental Enrichment Conference. 1st -2nd November, 2006. The Royal Melbourne Zoological Gardens. Day 1 1 Wednesday 1 st November • Starting a training program for Sun Bear ( Helarctos malaynus ) at Perth Zoo: Incorporating animal management, medical management and behavioural enrichment. o Karen Rotherham- Perth Zoo • Life can be serious……but it can also be seriously good fun! o Michelle Whybrow- Auckland Zoo • (In)Valuable, Versatile Volunteers o Ray Wilton- Melbourne Zoo • Enrichment – a way of life, not just a novel object o Kerrie Haynes-Lovell- Queensland. • Evaluating enrichment: Why and how? o Margaret Hawkins- Zoological parks Board of NSW • Captivating Canids; Dingo enrichment at Healesville Sanctuary o Raegan Di Paolo and Adrian Mifsud- Healesville Sanctuary • Environmental Enrichment for shelter cats and dogs o Linda Marston - Anthrozoology Research Group, Monash University • A Behaviour Enrichment Plan for Tasmanian Devils Sarcophilus harrisii o Mandy Smith- Adelaide Zoo • Enriched Learning o Rick Hammond- Melbourne Zoo • The Challenges of enriching the birds and mammals of the Australian Bush Precinct at Melbourne Zoo o Megan Richardson and Karina Cartwright- Melbourne Zoo • When Enrichment Goes Bad o Dr Kate Bodley- Melbourne Zoo • Environmental Enrichment Plan for Elasmobranchs at Shark Bay o Sara Smith- Sea World, Gold Coast, Australia • Werribee’s Immobilisation Sling- Enrichment for all o Bev Drake & Joe Parsons- Werribee Open Range Zoo • Animal & Keeper Friendly Enrichment Toys o Joe Parsons- Aussie Dog 2 Starting a training program for Sun Bear ( Helarctos malaynus ) at Perth Zoo: Incorporating animal management, medical management and behavioural enrichment. Karen Rotherham Perth Zoo. Abstract We will soon be receiving two sun bears from Cambodia, 1.1. -
Subterranean Mammals Show Convergent Regression in Ocular Genes and Enhancers, Along with Adaptation to Tunneling
RESEARCH ARTICLE Subterranean mammals show convergent regression in ocular genes and enhancers, along with adaptation to tunneling Raghavendran Partha1, Bharesh K Chauhan2,3, Zelia Ferreira1, Joseph D Robinson4, Kira Lathrop2,3, Ken K Nischal2,3, Maria Chikina1*, Nathan L Clark1* 1Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States; 2UPMC Eye Center, Children’s Hospital of Pittsburgh, Pittsburgh, United States; 3Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States; 4Department of Molecular and Cell Biology, University of California, Berkeley, United States Abstract The underground environment imposes unique demands on life that have led subterranean species to evolve specialized traits, many of which evolved convergently. We studied convergence in evolutionary rate in subterranean mammals in order to associate phenotypic evolution with specific genetic regions. We identified a strong excess of vision- and skin-related genes that changed at accelerated rates in the subterranean environment due to relaxed constraint and adaptive evolution. We also demonstrate that ocular-specific transcriptional enhancers were convergently accelerated, whereas enhancers active outside the eye were not. Furthermore, several uncharacterized genes and regulatory sequences demonstrated convergence and thus constitute novel candidate sequences for congenital ocular disorders. The strong evidence of convergence in these species indicates that evolution in this environment is recurrent and predictable and can be used to gain insights into phenotype–genotype relationships. DOI: https://doi.org/10.7554/eLife.25884.001 *For correspondence: [email protected] (MC); [email protected] (NLC) Competing interests: The Introduction authors declare that no The subterranean habitat has been colonized by numerous animal species for its shelter and unique competing interests exist. -
Wild Animal Welfare: Management of Wildlife Lecture Notes
Module 21 Wild Animal Welfare: Management of Wildlife Lecture Notes Slide 1: This lecture was first developed for World Animal Protection by Dr Christine Leeb (University of Bristol) in 2003 and updated by Dr Matt Leach (University of Bristol) in 2007. It was revised by World Animal Protection scientific advisors in 2012 using updates provided by Dr Caroline Hewson. Slide 2: Today’s lecture introduces you to some of the biggest welfare issues affecting wildlife. We will concentrate on the main issues affecting free-living wildlife, and then focus on the welfare of captive wildlife. We will also touch on some ways that the welfare issues concerned might be resolved. Slide 3: In this module, we define a wild animal as: a free-living or captive animal from a species that typically lives without human intervention, and whose parents and forebears were not selectively bred for docility or ease of handling. As with other species, our concern for the welfare of wild animals concerns their physical functioning, their mental state/feelings and the performance of behaviours that are important to them. Typically welfare concerns revolve around birds and terrestrial vertebrates. However, note that all vertebrates are sentient, including fish, and that many invertebrates are likely to be sentient too or, at least, to be able to suffer pain. When we consider wild animals within the common ethical frameworks, respect for nature is commonly invoked by conservationists. That framework places more emphasis on the continuing welfare of the species as a whole, such that the functioning, feelings and behavioural aspects of an individual’s experience may be subordinated to the collective feelings, functioning and continued natural behaviour of the species and, perhaps, the wider ecosystem. -
Abstract Book Conference “Insects to Feed the World” | the Netherlands 14-17 May 2014
1st International Conference 14-17 May 2014, Wageningen (Ede), The Netherlands. Insects to feed the world SUMMARY REPORT Insects to Feed the World Conference SUMMARY REPORT Document compiled by Paul Vantomme Senior Forestry Officer [email protected] Christopher Münke FAO Consultant [email protected] Insects for Food and Feed Programme Non-Wood Forest Products Programme Forestry Department FAO 00153 Rome, Italy Insects for Food and Feed: http://www.fao.org/forestry/edibleinsects/en/ and Arnold van Huis Tropical entomologist Laboratory of Entomology [email protected] Joost van Itterbeeck PhD Student Laboratory of Entomology Anouk Hakman Student Laboratory of Entomology Wageningen University and Research Centre Wageningen, The Netherlands www.wageningenur.nl/ent Cover Photograph: Participants attending a Plenary session during the Conference (Photo Paul Vantomme) Table of Contents Objectives of the conference .................................................................................. III Executive summary..................................................................................................IV Summary notes from the sessions.........................................................................VI Conclusion .................................................................................................................X Recommendations ..................................................................................................XII Annex.......................................................................................................................XIII -
Issues Regarding the Use of Sedatives in Fisheries and the Need for Immediate-Release Options J
This article was downloaded by: [Southern Illinois University] On: 12 December 2012, At: 06:46 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Transactions of the American Fisheries Society Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utaf20 Issues Regarding the Use of Sedatives in Fisheries and the Need for Immediate-Release Options J. T. Trushenski a , J. D. Bowker b , S. J. Cooke c , D. Erdahl b , T. Bell b , J. R. MacMillan d , R. P. Yanong e , J. E. Hill e , M. C. Fabrizio f , J. E. Garvey a & S. Sharon g a Fisheries and Illinois Aquaculture Center, Department of Zoology, Southern Illinois University–Carbondale, 1125 Lincoln Drive, Life Science II, Room 173, Carbondale, Illinois, 62901-6511, USA b U.S. Fish and Wildlife Service, Aquatic Animal Drug Approval Partnership Program, 4050 Bridger Canyon Road, Bozeman, Montana, 59715, USA c Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada d Clear Springs Foods, Inc., Post Office Box 712, Buhl, Idaho, 83316, USA e Tropical Aquaculture Laboratory, School of Forest Resources and Conservation, Program in Fisheries and Aquatic Sciences, Institute of Food and Agricultural Sciences, University of Florida, 1408 24th Street Southeast, Ruskin, Florida, 33570, USA f Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia, 23062, USA g Wyoming Game and Fish Department, Casper Regional Office, 3030 Energy Lane, Suite 100, Casper, Wyoming, 82604, USA Version of record first published: 12 Dec 2012. -
Solenodon Genome Reveals Convergent Evolution of Venom in Eulipotyphlan Mammals
Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals Nicholas R. Casewella,1, Daniel Petrasb,c, Daren C. Cardd,e,f, Vivek Suranseg, Alexis M. Mychajliwh,i,j, David Richardsk,l, Ivan Koludarovm, Laura-Oana Albulescua, Julien Slagboomn, Benjamin-Florian Hempelb, Neville M. Ngumk, Rosalind J. Kennerleyo, Jorge L. Broccap, Gareth Whiteleya, Robert A. Harrisona, Fiona M. S. Boltona, Jordan Debonoq, Freek J. Vonkr, Jessica Alföldis, Jeremy Johnsons, Elinor K. Karlssons,t, Kerstin Lindblad-Tohs,u, Ian R. Mellork, Roderich D. Süssmuthb, Bryan G. Fryq, Sanjaya Kuruppuv,w, Wayne C. Hodgsonv, Jeroen Kooln, Todd A. Castoed, Ian Barnesx, Kartik Sunagarg, Eivind A. B. Undheimy,z,aa, and Samuel T. Turveybb aCentre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom; bInstitut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany; cCollaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA 92093; dDepartment of Biology, University of Texas at Arlington, Arlington, TX 76010; eDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; fMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138; gEvolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India; hDepartment of Biology, Stanford University, Stanford, CA 94305; iDepartment of Rancho La Brea, Natural History Museum of Los Angeles County, Los Angeles,