Riches12 EPSL Reoshse-Angrites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineralogy and Petrology of the Angrite Northwest Africa 1296 Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D
Mineralogy and petrology of the angrite Northwest Africa 1296 Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D. Badia, C. Göpel, Marcel Bohn To cite this version: Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D. Badia, et al.. Mineralogy and petrology of the angrite Northwest Africa 1296. Meteoritics and Planetary Science, Wiley, 2005, 40 (3), pp.361-375. hal-00113853 HAL Id: hal-00113853 https://hal.archives-ouvertes.fr/hal-00113853 Submitted on 2 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Meteoritics & Planetary Science 40, Nr 3, 361–375 (2005) Abstract available online at http://meteoritics.org Mineralogy and petrology of the angrite Northwest Africa 1296 A. JAMBON,1 J. A. BARRAT,2 O. BOUDOUMA,3 M. FONTEILLES,4 D. BADIA,1 C. GÖPEL,5 and M. BOHN6 1Laboratoire Magie, Université Pierre et Marie Curie, CNRS UMR 7047, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 2UBO-IUEM, CNRS UMR 6538, Place Nicolas Copernic, F29280 Plouzané, France 3Service du MEB, UFR des Sciences de la Terre, Université Pierre et Marie Curie, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 4Pétrologie, Modélisation des Matériaux et Processus, Université Pierre et Marie Curie, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 5Laboratoire de Géochimie et Cosmochimie, Institut de Physique du Globe, CNRS UMR 7579, 4 place Jussieu, 75252 Paris cedex 05, France 6Ifremer-Centre de Brest, CNRS-UMR 6538, BP70, 29280 Plouzané Cedex, France *Corresponding author. -
Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur
Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur To cite this version: Alex Soumbatov-Gur. Phobos, Deimos: Formation and Evolution. [Research Report] Karpov institute of physical chemistry. 2019. hal-02147461 HAL Id: hal-02147461 https://hal.archives-ouvertes.fr/hal-02147461 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur The moons are confirmed to be ejected parts of Mars’ crust. After explosive throwing out as cone-like rocks they plastically evolved with density decays and materials transformations. Their expansion evolutions were accompanied by global ruptures and small scale rock ejections with concurrent crater formations. The scenario reconciles orbital and physical parameters of the moons. It coherently explains dozens of their properties including spectra, appearances, size differences, crater locations, fracture symmetries, orbits, evolution trends, geologic activity, Phobos’ grooves, mechanism of their origin, etc. The ejective approach is also discussed in the context of observational data on near-Earth asteroids, main belt asteroids Steins, Vesta, and Mars. The approach incorporates known fission mechanism of formation of miniature asteroids, logically accounts for its outliers, and naturally explains formations of small celestial bodies of various sizes. -
Thursday, August 11, 2016 EARLY SOLAR SYSTEM CHRONOLOGY I 8:30 A.M
79th Annual Meeting of the Meteoritical Society (2016) sess701.pdf Thursday, August 11, 2016 EARLY SOLAR SYSTEM CHRONOLOGY I 8:30 a.m. Room B Chairs: Gregory Brennecka Audrey Bouvier 8:30 a.m. Kruijer T. S. * Kleine T. Tungsten Isotope Dichotomy Among Iron Meteorite Parent Bodies: Implications for the Timescales of Accretion and Core Formation [#6449] We report new combined Pt and W isotope data for IC, IIC, IIF, IIIE, and IIIF iron meteorites, with the ultimate aim of better understanding the variable pre-exposure 182W/184W signatures observed among different iron meteorite groups. 8:45 a.m. Tissot F. L. H. * Dauphas N. Grove T. L. Heterogeneity in the 238U/235U Ratios of Angrites [#6104] We report the 238U/235U ratios of six angrites. We find that the angrite-parent body was heterogeneous with regards to U isotopes. We correct the Pb-Pb ages of angrites and test their concordance with ages derived from short-lived chronometers. 9:00 a.m. Brennecka G. A. * Amelin Y. Kleine T. Combined 238U/235U and Pb Isotopics of Planetary Core Material: The Absolute Age of the IVA Iron Muonionalusta [#6296] We report a measured 238U/235U for the IVA iron Muonionalusta. This measured value requires an age correction of ~7 Myr to the previously published Pb-Pb age. This has major implications for our understanding of planetary core formation and cooling. 9:15 a.m. Cartwright J. A. * Amelin Y. Koefoed P. Wadhwa M. U-Pb Age of the Ungrouped Achondrite NWA 8486 [#6231] We report the U-Pb age for ungrouped achondrite NWA 8486 (paired with NWA 7325). -
(121514) 1999 UJ7: a Primitive, Slow-Rotating Martian Trojan G
A&A 618, A178 (2018) https://doi.org/10.1051/0004-6361/201732466 Astronomy & © ESO 2018 Astrophysics ? (121514) 1999 UJ7: A primitive, slow-rotating Martian Trojan G. Borisov1,2, A. A. Christou1, F. Colas3, S. Bagnulo1, A. Cellino4, and A. Dell’Oro5 1 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK e-mail: [email protected] 2 Institute of Astronomy and NAO, Bulgarian Academy of Sciences, 72, Tsarigradsko Chaussée Blvd., 1784 Sofia, Bulgaria 3 IMCCE, Observatoire de Paris, UPMC, CNRS UMR8028, 77 Av. Denfert-Rochereau, 75014 Paris, France 4 INAF – Osservatorio Astrofisico di Torino, via Osservatorio 20, 10025 Pino Torinese (TO), Italy 5 INAF – Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125, Firenze, Italy Received 15 December 2017 / Accepted 7 August 2018 ABSTRACT Aims. The goal of this investigation is to determine the origin and surface composition of the asteroid (121514) 1999 UJ7, the only currently known L4 Martian Trojan asteroid. Methods. We have obtained visible reflectance spectra and photometry of 1999 UJ7 and compared the spectroscopic results with the spectra of a number of taxonomic classes and subclasses. A light curve was obtained and analysed to determine the asteroid spin state. Results. The visible spectrum of 1999 UJ7 exhibits a negative slope in the blue region and the presence of a wide and deep absorption feature centred around ∼0.65 µm. The overall morphology of the spectrum seems to suggest a C-complex taxonomy. The photometric behaviour is fairly complex. The light curve shows a primary period of 1.936 d, but this is derived using only a subset of the photometric data. -
Forschungsbericht 2013-2014
Forschungsbericht 2013-2014 Fachbereich 14 - Geowissenschaften Impressum Herausgeber Westfälische Wilhelms-Universität Münster Prorektor für Forschung Schlossplatz 2 48149 Münster E-Mail: [email protected] http://www.uni-muenster.de Bearbeitung und Layout Dr. Sebastian Herwig Westfälische Wilhelms-Universität Münster Abteilung 6.4: Forschungsinformationen und Forschungsberichterstattung Röntgenstraße 19 48149 Münster Telefon: +49 251 83-30347 E-Mail: [email protected] http://www.uni-muenster.de/CRIS Abruf der Forschungsberichte http://www.uni-muenster.de/wwu/dokumentationen/forschungsberichte Münster, den 17.03.2015 Verehrte Leserin, verehrter Leser, Wie wurde mit Religion über die Jahrtausende Staat gemacht? Wie können neue Batteriesysteme zu einer nachhaltigen Energieversorgung von morgen beitragen? Wie visualisieren wir molekulare Vorgänge in Zellen? An diesen und vielen weiteren Fragen forschen die Wissenschaftlerinnen und Wissenschaftler der Westfälischen Wilhelms-Universität Münster in zahlreichen multidisziplinären Verbünden, um hierauf Antworten zu finden. Mit diesem Forschungsbericht erhalten Sie einen zusammenhängenden Überblick über die in den Jahren 2013 und 2014 an der WWU durchgeführten Forschungsprojekte, die daraus hervorgegangenen Veröffentlichungen, die an unsere Wissenschaftlerinnen und Wissenschaftler verliehenen Preise und Auszeichnungen sowie über die an der WWU abgeschlossenen Promotionen und Habilitationen. Die in den Forschungsberichten zusammengefassten Forschungsaktivitäten und -ergebnisse -
Exploring the Geology of a New Differentiated Basaltic Asteroid
BUNBURRA ROCKHOLE: EXPLORING THE GEOLOGY OF A NEW DIFFERENTIATED BASALTIC ASTEROID. G.K. Benedix1,7, P.A. Bland1,7, J. M. Friedrich2,3, D.W. Mittlefehldt4, M.E. Sanborn5, Q.-Z. Yin5, R.C. Greenwood6, I.A. Franchi6, A.W.R. Bevan7, M.C. Towner1 and Grace C. Perotta2. 1Dept. Applied Geology, Curtin University, GPO Box U1987, Perth, WA, 6845 Australia ([email protected]), 2Dept. Chem., Fordham University, 441 East Fordham Road, Bronx, NY 10458 USA, 3Dept. Earth & Planetary Sciences, American Museum of Natural History, New York, NY 10024, USA, 4NASA/Johnson Space Center, Houston, TX, USA, 5Dept. of Earth and Planetary Sciences, University of California at Davis, Davis, CA 95616, USA, 6Planetary & Space Sci., The Open University, Milton Keynes, MK7 6AA, UK, 7Western Australia Museum, Locked Bag 49, Welshpool, WA, 6986, Australia. Introduction: Bunburra Rockhole (BR) is the first versity for chemical analysis. Four of these were ana- recovered meteorite of the Desert Fireball Network [1]. lysed for major and trace elements and two for trace It was initially classified as a basaltic eucrite, based on elements only. Two of these subsamples (A/1 and texture, mineralogy, and mineral chemistry [2] but C/A/2) were analysed at UC Davis to investigate the Cr subsequent O isotopic analyses showed that BR’s isotopic systematics. Homogenized powders from the composition lies significantly far away from the HED two chips were dissolved in Parr bombs for a 96 hour group of meteorites (fig. 1) [1]. This suggested that period at 200°C to insure complete dissolution of re- BR was not a piece of the HED parent body (4 Vesta), fractory minerals such as spinel. -
Radar-Enabled Recovery of the Sutter's Mill Meteorite, A
RESEARCH ARTICLES the area (2). One meteorite fell at Sutter’sMill (SM), the gold discovery site that initiated the California Gold Rush. Two months after the fall, Radar-Enabled Recovery of the Sutter’s SM find numbers were assigned to the 77 me- teorites listed in table S3 (3), with a total mass of 943 g. The biggest meteorite is 205 g. Mill Meteorite, a Carbonaceous This is a tiny fraction of the pre-atmospheric mass, based on the kinetic energy derived from Chondrite Regolith Breccia infrasound records. Eyewitnesses reported hearing aloudboomfollowedbyadeeprumble.Infra- Peter Jenniskens,1,2* Marc D. Fries,3 Qing-Zhu Yin,4 Michael Zolensky,5 Alexander N. Krot,6 sound signals (table S2A) at stations I57US and 2 2 7 8 8,9 Scott A. Sandford, Derek Sears, Robert Beauford, Denton S. Ebel, Jon M. Friedrich, I56US of the International Monitoring System 6 4 4 10 Kazuhide Nagashima, Josh Wimpenny, Akane Yamakawa, Kunihiko Nishiizumi, (4), located ~770 and ~1080 km from the source, 11 12 10 13 Yasunori Hamajima, Marc W. Caffee, Kees C. Welten, Matthias Laubenstein, are consistent with stratospherically ducted ar- 14,15 14 14,15 16 Andrew M. Davis, Steven B. Simon, Philipp R. Heck, Edward D. Young, rivals (5). The combined average periods of all 17 18 18 19 20 Issaku E. Kohl, Mark H. Thiemens, Morgan H. Nunn, Takashi Mikouchi, Kenji Hagiya, phase-aligned stacked waveforms at each station 21 22 22 22 23 Kazumasa Ohsumi, Thomas A. Cahill, Jonathan A. Lawton, David Barnes, Andrew Steele, of 7.6 s correspond to a mean source energy of 24 4 24 2 25 Pierre Rochette, Kenneth L. -
Iron Isotope Cosmochemistry Kun Wang Washington University in St
Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) 12-2-2013 Iron Isotope Cosmochemistry Kun Wang Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Part of the Earth Sciences Commons Recommended Citation Wang, Kun, "Iron Isotope Cosmochemistry" (2013). All Theses and Dissertations (ETDs). 1189. https://openscholarship.wustl.edu/etd/1189 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Earth and Planetary Sciences Dissertation Examination Committee: Frédéric Moynier, Chair Thomas J. Bernatowicz Robert E. Criss Bruce Fegley, Jr. Christine Floss Bradley L. Jolliff Iron Isotope Cosmochemistry by Kun Wang A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2013 St. Louis, Missouri Copyright © 2013, Kun Wang All rights reserved. Table of Contents LIST OF FIGURES ....................................................................................................................... vi LIST OF TABLES ........................................................................................................................ -
Proposed Mission to Mars and His Trojan Asteroid Family
Geophysical Research Abstracts Vol. 21, EGU2019-13883, 2019 EGU General Assembly 2019 © Author(s) 2019. CC Attribution 4.0 license. Proposed mission to Mars and his Trojan Asteroid Family Kai Wickhusen (1), Jürgen Oberst (1,2), and Konrad Willner (1) (1) German Aerospace Center (DLR), Berlin, Germany ([email protected]), (2) Institute of Geodesy and Geoinformation Science, Technical University of Berlin, Germany In the context of ESA’s past call for medium class missions, we were investigating missions to Mars in combina- tion with a flyby at a Mars Trojan on the way to the planet. We set up a three-impulse (Earth departure, mid-course correction and Mars orbit insertion) model to determine physically possible trajectories and flyby scenarios op- timized in terms of required propellant and time (i.e. operation costs). We propose several scenarios in the time frame 2020-2050 including trajectories that involve more than one revolution about the sun. With the Earth and Mars ephemerides relatively fixed in space and time, the Trojan candidate has to be “at the right place at the right time” to minimize expensive spacecraft course adjustments. In principle, flybys are possible for any Trojan target – but we cut-off and present models having flyby delta-v < 1 km/s and transit time of < 5 years. We report on several scenarios, each including a flyby at one Trojan. Our results show that flybys of most of the Trojans are well conceivable. One good candidate for such a mission is Trojan 311999 (2007 NS2). With a launch in September 2028, the required additional delta-v will be less than 100 m/s, associated with a total transfer time (from Earth to Mars) of approximately 800 days. -
Uranium Isotope Compositions of the Basaltic Angrite Meteorites and the Chronological Implications for the Early Solar System
Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System Gregory A. Brennecka1 and Meenakshi Wadhwa School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 Edited by Frank M. Richter, The University of Chicago, Chicago, IL, and approved April 26, 2012 (received for review August 26, 2011) Events occurring within the first 10 million years of the Solar Sys- assumption that the parent isotope was homogenously distributed tem’s approximately 4.5 billion-year history, such as formation of in the solar nebula. The application of an extinct chronometer the first solids, accretion, and differentiation of protoplanetary then requires that the abundances of the short-lived parent iso- bodies, have determined the evolutionary course of our Solar Sys- tope at the formation times of two different objects be deter- tem and the planetary bodies within it. The application of high-re- mined. With the knowledge of the half-life of the parent isotope, solution chronometers based on short-lived radionuclides is critical it is then possible to obtain relative time constraints between to our understanding of the temporal sequence of these critical these two objects with high precision [uncertainties as low as a events. However, to map the relative ages from such chronometers few tens of thousands of years have been reported for samples onto the absolute time scale, they must be “anchored” to absolute older than approximately 4.5 billion years (2)]. These relative ages of appropriate meteoritic materials using the high-precision ages can be mapped to an absolute time scale only if they can be lead–lead (Pb–Pb) chronometer. -
Reviewing Martian Atmospheric Noble Gas Measurements: from Martian Meteorites to Mars Missions
geosciences Review Reviewing Martian Atmospheric Noble Gas Measurements: From Martian Meteorites to Mars Missions Thomas Smith 1,* , P. M. Ranjith 1, Huaiyu He 1,2,3,* and Rixiang Zhu 1,2,3 1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beitucheng Western Road, Box 9825, Beijing 100029, China; [email protected] (P.M.R.); [email protected] (R.Z.) 2 Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China 3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] (T.S.); [email protected] (H.H.) Received: 10 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Martian meteorites are the only samples from Mars available for extensive studies in laboratories on Earth. Among the various unresolved science questions, the question of the Martian atmospheric composition, distribution, and evolution over geological time still is of high concern for the scientific community. Recent successful space missions to Mars have particularly strengthened our understanding of the loss of the primary Martian atmosphere. Noble gases are commonly used in geochemistry and cosmochemistry as tools to better unravel the properties or exchange mechanisms associated with different isotopic reservoirs in the Earth or in different planetary bodies. The relatively low abundance and chemical inertness of noble gases enable their distributions and, consequently, transfer mechanisms to be determined. In this review, we first summarize the various in situ and laboratory techniques on Mars and in Martian meteorites, respectively, for measuring noble gas abundances and isotopic ratios. -
Trace Element Chemistry of Cumulus Ridge 04071 Pallasite with Implications for Main Group Pallasites
Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites Item Type Article; text Authors Danielson, L. R.; Righter, K.; Humayun, M. Citation Danielson, L. R., Righter, K., & Humayun, M. (2009). Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites. Meteoritics & Planetary Science, 44(7), 1019-1032. DOI 10.1111/j.1945-5100.2009.tb00785.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 23/09/2021 14:17:54 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/656592 Meteoritics & Planetary Science 44, Nr 7, 1019–1032 (2009) Abstract available online at http://meteoritics.org Trace element chemistry of Cumulus Ridge 04071 pallasite with implications for main group pallasites Lisa R. DANIELSON1*, Kevin RIGHTER2, and Munir HUMAYUN3 1Mailcode JE23, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, USA 2Mailcode KT, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058, USA 3National High Magnetic Field Laboratory and Department of Geological Sciences, Florida State University, Tallahassee, Florida 32310, USA *Corresponding author. E-mail: [email protected] (Received 06 November 2008; revision accepted 11 May 2009) Abstract–Pallasites have long been thought to represent samples from the metallic core–silicate mantle boundary of a small asteroid-sized body, with as many as ten different parent bodies recognized recently. This report focuses on the description, classification, and petrogenetic history of pallasite Cumulus Ridge (CMS) 04071 using electron microscopy and laser ablation ICP-MS.