D'orbigny: a Non-Igneous Angritic Achondrite?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineralogy and Petrology of the Angrite Northwest Africa 1296 Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D
Mineralogy and petrology of the angrite Northwest Africa 1296 Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D. Badia, C. Göpel, Marcel Bohn To cite this version: Albert Jambon, Jean-Alix Barrat, Omar Boudouma, Michel Fonteilles, D. Badia, et al.. Mineralogy and petrology of the angrite Northwest Africa 1296. Meteoritics and Planetary Science, Wiley, 2005, 40 (3), pp.361-375. hal-00113853 HAL Id: hal-00113853 https://hal.archives-ouvertes.fr/hal-00113853 Submitted on 2 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Meteoritics & Planetary Science 40, Nr 3, 361–375 (2005) Abstract available online at http://meteoritics.org Mineralogy and petrology of the angrite Northwest Africa 1296 A. JAMBON,1 J. A. BARRAT,2 O. BOUDOUMA,3 M. FONTEILLES,4 D. BADIA,1 C. GÖPEL,5 and M. BOHN6 1Laboratoire Magie, Université Pierre et Marie Curie, CNRS UMR 7047, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 2UBO-IUEM, CNRS UMR 6538, Place Nicolas Copernic, F29280 Plouzané, France 3Service du MEB, UFR des Sciences de la Terre, Université Pierre et Marie Curie, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 4Pétrologie, Modélisation des Matériaux et Processus, Université Pierre et Marie Curie, case 110, 4 place Jussieu, 75252 Paris cedex 05, France 5Laboratoire de Géochimie et Cosmochimie, Institut de Physique du Globe, CNRS UMR 7579, 4 place Jussieu, 75252 Paris cedex 05, France 6Ifremer-Centre de Brest, CNRS-UMR 6538, BP70, 29280 Plouzané Cedex, France *Corresponding author. -
Indiana Geological and Water Survey Meteorites in Indiana
OGICAL L SU EO R G V E A Y N 1 A 8 I 3 D 7 N Meteorites in Indiana I I N Y D IT IA S N R A UNI VE By Nelson R. Shaffer Meteorites — rocks that fall to Earth from outer Stone meteorites are mineralogically the most complex space, have fascinated mankind since the beginning and are the most abundant. They are dominantly of time. These scientifically valuable objects help made of silicates. Two main types—chondrites and geologists understand the origins of planets and the achondrites—are recognized. processes that shape the Earth. Meteorites are rare and exhibit special features that differentiate them from Chondrites, the most common (84 percent of falls), Earth rocks. Among the characteristics that identify contain small (less than 1/8 inch) structured spheres meteorites are a high specific gravity (especially true called chondrules. Chondrules are found only in for irons), a dark color, and a dark glassy or dull crust meteorites and contain some of the oldest material if fresh or a rind of iron oxide (rust) if weathered. known to Man. Their origin is still uncertain, despite Most meteorites attract a magnet, although some only many theories proposed to explain them. slightly. Many have an aerodynamic shape, and their Achondrites—the second type of stone meteorites— crusts may be marked with flow structures (see photo contain silicates but do not contain chondrules. They of Lafayette meteorite) or shallow depressions called resemble basalt from the Earth and represent about 8 “thumbprints” (see the South Bend meteorite). percent of falls. -
Thursday, August 11, 2016 EARLY SOLAR SYSTEM CHRONOLOGY I 8:30 A.M
79th Annual Meeting of the Meteoritical Society (2016) sess701.pdf Thursday, August 11, 2016 EARLY SOLAR SYSTEM CHRONOLOGY I 8:30 a.m. Room B Chairs: Gregory Brennecka Audrey Bouvier 8:30 a.m. Kruijer T. S. * Kleine T. Tungsten Isotope Dichotomy Among Iron Meteorite Parent Bodies: Implications for the Timescales of Accretion and Core Formation [#6449] We report new combined Pt and W isotope data for IC, IIC, IIF, IIIE, and IIIF iron meteorites, with the ultimate aim of better understanding the variable pre-exposure 182W/184W signatures observed among different iron meteorite groups. 8:45 a.m. Tissot F. L. H. * Dauphas N. Grove T. L. Heterogeneity in the 238U/235U Ratios of Angrites [#6104] We report the 238U/235U ratios of six angrites. We find that the angrite-parent body was heterogeneous with regards to U isotopes. We correct the Pb-Pb ages of angrites and test their concordance with ages derived from short-lived chronometers. 9:00 a.m. Brennecka G. A. * Amelin Y. Kleine T. Combined 238U/235U and Pb Isotopics of Planetary Core Material: The Absolute Age of the IVA Iron Muonionalusta [#6296] We report a measured 238U/235U for the IVA iron Muonionalusta. This measured value requires an age correction of ~7 Myr to the previously published Pb-Pb age. This has major implications for our understanding of planetary core formation and cooling. 9:15 a.m. Cartwright J. A. * Amelin Y. Koefoed P. Wadhwa M. U-Pb Age of the Ungrouped Achondrite NWA 8486 [#6231] We report the U-Pb age for ungrouped achondrite NWA 8486 (paired with NWA 7325). -
Forschungsbericht 2013-2014
Forschungsbericht 2013-2014 Fachbereich 14 - Geowissenschaften Impressum Herausgeber Westfälische Wilhelms-Universität Münster Prorektor für Forschung Schlossplatz 2 48149 Münster E-Mail: [email protected] http://www.uni-muenster.de Bearbeitung und Layout Dr. Sebastian Herwig Westfälische Wilhelms-Universität Münster Abteilung 6.4: Forschungsinformationen und Forschungsberichterstattung Röntgenstraße 19 48149 Münster Telefon: +49 251 83-30347 E-Mail: [email protected] http://www.uni-muenster.de/CRIS Abruf der Forschungsberichte http://www.uni-muenster.de/wwu/dokumentationen/forschungsberichte Münster, den 17.03.2015 Verehrte Leserin, verehrter Leser, Wie wurde mit Religion über die Jahrtausende Staat gemacht? Wie können neue Batteriesysteme zu einer nachhaltigen Energieversorgung von morgen beitragen? Wie visualisieren wir molekulare Vorgänge in Zellen? An diesen und vielen weiteren Fragen forschen die Wissenschaftlerinnen und Wissenschaftler der Westfälischen Wilhelms-Universität Münster in zahlreichen multidisziplinären Verbünden, um hierauf Antworten zu finden. Mit diesem Forschungsbericht erhalten Sie einen zusammenhängenden Überblick über die in den Jahren 2013 und 2014 an der WWU durchgeführten Forschungsprojekte, die daraus hervorgegangenen Veröffentlichungen, die an unsere Wissenschaftlerinnen und Wissenschaftler verliehenen Preise und Auszeichnungen sowie über die an der WWU abgeschlossenen Promotionen und Habilitationen. Die in den Forschungsberichten zusammengefassten Forschungsaktivitäten und -ergebnisse -
Exploring the Geology of a New Differentiated Basaltic Asteroid
BUNBURRA ROCKHOLE: EXPLORING THE GEOLOGY OF A NEW DIFFERENTIATED BASALTIC ASTEROID. G.K. Benedix1,7, P.A. Bland1,7, J. M. Friedrich2,3, D.W. Mittlefehldt4, M.E. Sanborn5, Q.-Z. Yin5, R.C. Greenwood6, I.A. Franchi6, A.W.R. Bevan7, M.C. Towner1 and Grace C. Perotta2. 1Dept. Applied Geology, Curtin University, GPO Box U1987, Perth, WA, 6845 Australia ([email protected]), 2Dept. Chem., Fordham University, 441 East Fordham Road, Bronx, NY 10458 USA, 3Dept. Earth & Planetary Sciences, American Museum of Natural History, New York, NY 10024, USA, 4NASA/Johnson Space Center, Houston, TX, USA, 5Dept. of Earth and Planetary Sciences, University of California at Davis, Davis, CA 95616, USA, 6Planetary & Space Sci., The Open University, Milton Keynes, MK7 6AA, UK, 7Western Australia Museum, Locked Bag 49, Welshpool, WA, 6986, Australia. Introduction: Bunburra Rockhole (BR) is the first versity for chemical analysis. Four of these were ana- recovered meteorite of the Desert Fireball Network [1]. lysed for major and trace elements and two for trace It was initially classified as a basaltic eucrite, based on elements only. Two of these subsamples (A/1 and texture, mineralogy, and mineral chemistry [2] but C/A/2) were analysed at UC Davis to investigate the Cr subsequent O isotopic analyses showed that BR’s isotopic systematics. Homogenized powders from the composition lies significantly far away from the HED two chips were dissolved in Parr bombs for a 96 hour group of meteorites (fig. 1) [1]. This suggested that period at 200°C to insure complete dissolution of re- BR was not a piece of the HED parent body (4 Vesta), fractory minerals such as spinel. -
Radar-Enabled Recovery of the Sutter's Mill Meteorite, A
RESEARCH ARTICLES the area (2). One meteorite fell at Sutter’sMill (SM), the gold discovery site that initiated the California Gold Rush. Two months after the fall, Radar-Enabled Recovery of the Sutter’s SM find numbers were assigned to the 77 me- teorites listed in table S3 (3), with a total mass of 943 g. The biggest meteorite is 205 g. Mill Meteorite, a Carbonaceous This is a tiny fraction of the pre-atmospheric mass, based on the kinetic energy derived from Chondrite Regolith Breccia infrasound records. Eyewitnesses reported hearing aloudboomfollowedbyadeeprumble.Infra- Peter Jenniskens,1,2* Marc D. Fries,3 Qing-Zhu Yin,4 Michael Zolensky,5 Alexander N. Krot,6 sound signals (table S2A) at stations I57US and 2 2 7 8 8,9 Scott A. Sandford, Derek Sears, Robert Beauford, Denton S. Ebel, Jon M. Friedrich, I56US of the International Monitoring System 6 4 4 10 Kazuhide Nagashima, Josh Wimpenny, Akane Yamakawa, Kunihiko Nishiizumi, (4), located ~770 and ~1080 km from the source, 11 12 10 13 Yasunori Hamajima, Marc W. Caffee, Kees C. Welten, Matthias Laubenstein, are consistent with stratospherically ducted ar- 14,15 14 14,15 16 Andrew M. Davis, Steven B. Simon, Philipp R. Heck, Edward D. Young, rivals (5). The combined average periods of all 17 18 18 19 20 Issaku E. Kohl, Mark H. Thiemens, Morgan H. Nunn, Takashi Mikouchi, Kenji Hagiya, phase-aligned stacked waveforms at each station 21 22 22 22 23 Kazumasa Ohsumi, Thomas A. Cahill, Jonathan A. Lawton, David Barnes, Andrew Steele, of 7.6 s correspond to a mean source energy of 24 4 24 2 25 Pierre Rochette, Kenneth L. -
Finegrained Precursors Dominate the Micrometeorite Flux
Meteoritics & Planetary Science 47, Nr 4, 550–564 (2012) doi: 10.1111/j.1945-5100.2011.01292.x Fine-grained precursors dominate the micrometeorite flux Susan TAYLOR1*, Graciela MATRAJT2, and Yunbin GUAN3 1Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire 03755–1290, USA 2University of Washington, Seattle, Washington 98105, USA 3Geological & Planetary Sciences MC 170-25, Caltech, Pasadena, California 91125, USA *Corresponding author. E-mail: [email protected] (Received 15 May 2011; revision accepted 22 September 2011) Abstract–We optically classified 5682 micrometeorites (MMs) from the 2000 South Pole collection into textural classes, imaged 2458 of these MMs with a scanning electron microscope, and made 200 elemental and eight isotopic measurements on those with unusual textures or relict phases. As textures provide information on both degree of heating and composition of MMs, we developed textural sequences that illustrate how fine-grained, coarse-grained, and single mineral MMs change with increased heating. We used this information to determine the percentage of matrix dominated to mineral dominated precursor materials (precursors) that produced the MMs. We find that at least 75% of the MMs in the collection derived from fine-grained precursors with compositions similar to CI and CM meteorites and consistent with dynamical models that indicate 85% of the mass influx of small particles to Earth comes from Jupiter family comets. A lower limit for ordinary chondrites is estimated at 2–8% based on MMs that contain Na-bearing plagioclase relicts. Less than 1% of the MMs have achondritic compositions, CAI components, or recognizable chondrules. Single mineral MMs often have magnetite zones around their peripheries. -
A New Primitive Achondrite from Northwest Africa
A New Primitive Achondrite from Northwest Africa Kseniya K. Androsova* University of Calgary, Calgary, AB, Canada [email protected] and Alan R. Hildebrand University of Calgary, Calgary, AB, Canada Summary The winonaite and acapulcoite/lodranite meteorites constitute small groups of primitive achondrites that have experienced thermal metamorphism sometimes accompanied by varying degrees of partial melting. Petrographic and elemental abundance studies [optical microscope observations and electron microprobe analysis] have been conducted on several meteorites recovered in Northwest Africa (NWA). One meteorite has fine-grained, granulitic texture, abundant, evenly distributed metal and troilite grains, and highly reduced mineral compositions [Olivine (Fa6.0±0.4), low-Ca pyroxene (Fs7.5±0.4, Wo1.3±0.2), high-Ca pyroxene (Fs3.2±0.2, Wo45.8±0.7)]. Based on these criteria it appears that the data are consistent with the sample being a winonaite. The overall textural resemblance of this meteorite to NWA 1463 and /or NWA 725 (somewhat anomalous) winonaites (both having multiple relict chondrules) may suggest that this meteorite is paired with one or both. Although, until its oxygen isotope composition is obtained the classification of this meteorite as a winonaite (vs. as an acapulcoite) remains uncertain, its primitive achondritic nature is quite evident. Introduction The winonaite meteorites represent a class of rare primitive achondrites (together with the acapulcoite/lodranite association) that have sometimes undergone partial melting but generally have chondritic mineralogy and composition. Winonaites can be characterized by fine- to medium-grained, mostly granulitic textures, highly reduced mineral compositions, and unique oxygen isotope signatures (Benedix et al., 1998). Although most of the winonaites lack chondrules, several have been reported to have regions containing relict chondrules. -
The Nakhlite Meteorites: Augite-Rich Igneous Rocks from Mars ARTICLE
ARTICLE IN PRESS Chemie der Erde 65 (2005) 203–270 www.elsevier.de/chemer INVITED REVIEW The nakhlite meteorites: Augite-rich igneous rocks from Mars Allan H. Treiman Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058-1113, USA Received 22 October 2004; accepted 18 January 2005 Abstract The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg0 ¼ 63% and rims that are normally zoned to iron enrichment. The core–rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning – sharp rim zoning goes with the most magnesian cores (Mg0 ¼ 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis. -
The Tissint Martian Meteorite As Evidence for the Largest Impact Excavation
ARTICLE Received 17 Jul 2012 | Accepted 20 Dec 2012 | Published 29 Jan 2013 DOI: 10.1038/ncomms2414 The Tissint Martian meteorite as evidence for the largest impact excavation Ioannis P. Baziotis1, Yang Liu1,2, Paul S. DeCarli3, H. Jay Melosh4, Harry Y. McSween1, Robert J. Bodnar5 & Lawrence A. Taylor1 High-pressure minerals in meteorites provide clues for the impact processes that excavated, launched and delivered these samples to Earth. Most Martian meteorites are suggested to have been excavated from 3 to 7 km diameter impact craters. Here we show that the Tissint meteorite, a 2011 meteorite fall, contains virtually all the high-pressure phases (seven minerals and two mineral glasses) that have been reported in isolated occurrences in other Martian meteorites. Particularly, one ringwoodite (75 Â 140 mm2) represents the largest grain observed in all Martian samples. Collectively, the ubiquitous high-pressure minerals of unusually large sizes in Tissint indicate that shock metamorphism was widely dispersed in this sample (B25 GPa and B2,000 1C). Using the size and growth kinetics of the ring- woodite grains, we infer an initial impact crater with B90 km diameter, with a factor of 2 uncertainty. These energetic conditions imply alteration of any possible low-T minerals in Tissint. 1 Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA. 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA. 3 Poulter Laboratory, SRI International, Menlo Park, California 94025, USA. 4 Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA. 5 Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA. -
Uranium Isotope Compositions of the Basaltic Angrite Meteorites and the Chronological Implications for the Early Solar System
Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System Gregory A. Brennecka1 and Meenakshi Wadhwa School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287-1404 Edited by Frank M. Richter, The University of Chicago, Chicago, IL, and approved April 26, 2012 (received for review August 26, 2011) Events occurring within the first 10 million years of the Solar Sys- assumption that the parent isotope was homogenously distributed tem’s approximately 4.5 billion-year history, such as formation of in the solar nebula. The application of an extinct chronometer the first solids, accretion, and differentiation of protoplanetary then requires that the abundances of the short-lived parent iso- bodies, have determined the evolutionary course of our Solar Sys- tope at the formation times of two different objects be deter- tem and the planetary bodies within it. The application of high-re- mined. With the knowledge of the half-life of the parent isotope, solution chronometers based on short-lived radionuclides is critical it is then possible to obtain relative time constraints between to our understanding of the temporal sequence of these critical these two objects with high precision [uncertainties as low as a events. However, to map the relative ages from such chronometers few tens of thousands of years have been reported for samples onto the absolute time scale, they must be “anchored” to absolute older than approximately 4.5 billion years (2)]. These relative ages of appropriate meteoritic materials using the high-precision ages can be mapped to an absolute time scale only if they can be lead–lead (Pb–Pb) chronometer. -
Reviewing Martian Atmospheric Noble Gas Measurements: from Martian Meteorites to Mars Missions
geosciences Review Reviewing Martian Atmospheric Noble Gas Measurements: From Martian Meteorites to Mars Missions Thomas Smith 1,* , P. M. Ranjith 1, Huaiyu He 1,2,3,* and Rixiang Zhu 1,2,3 1 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beitucheng Western Road, Box 9825, Beijing 100029, China; [email protected] (P.M.R.); [email protected] (R.Z.) 2 Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China 3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] (T.S.); [email protected] (H.H.) Received: 10 September 2020; Accepted: 4 November 2020; Published: 6 November 2020 Abstract: Martian meteorites are the only samples from Mars available for extensive studies in laboratories on Earth. Among the various unresolved science questions, the question of the Martian atmospheric composition, distribution, and evolution over geological time still is of high concern for the scientific community. Recent successful space missions to Mars have particularly strengthened our understanding of the loss of the primary Martian atmosphere. Noble gases are commonly used in geochemistry and cosmochemistry as tools to better unravel the properties or exchange mechanisms associated with different isotopic reservoirs in the Earth or in different planetary bodies. The relatively low abundance and chemical inertness of noble gases enable their distributions and, consequently, transfer mechanisms to be determined. In this review, we first summarize the various in situ and laboratory techniques on Mars and in Martian meteorites, respectively, for measuring noble gas abundances and isotopic ratios.