Insects: Taking a Closer Look at the World of Bugs, EM 8896-E

Total Page:16

File Type:pdf, Size:1020Kb

Insects: Taking a Closer Look at the World of Bugs, EM 8896-E EM 8896-E • August 2005 INSECTS TAKING A DEEPER LOOK AT THE WORLD OF BUGS ■ Build Your Own Insect Trap (Grades 3–6, one 50-minute period) ■ Ant Lions (Grades 3–8, two 50-minute periods) ■ Insect Pitfall Traps (Grades 3–8, four 50-minute periods) Rural Science Education Program A partnership between Oregon State University and rural K-12 schools Designers, editors, and contributors Sujaya Rao, director, Rural Science Education Program (associate professor of entomology) Lynn Royce, outreach coordinator, Rural Science Education Program (insect identifi cation specialist) Rebecca Currin, graduate fellow, Rural Science Education Program (graduate student in botany and plant pathology) Triffi d Fry, undergraduate fellow, Rural Science Education Program (undergraduate student in environmental sciences) Brittaney Bearson, undergraduate fellow, Rural Science Education Program (undergraduate student in biology, marine oceanography) Devora Shamah, project coordinator, Rural Science Education Program Rural Science Education Program The Rural Science Education Program is a partnership between Oregon State University and local rural K–12 schools for enrichment of the science curriculum with hands- on science activities. The curricula include simple, innovative inquiry- and site-based experiments that encourage critical thinking in K–12 students about the impacts of agriculture on the environment and the implications of advanced scientifi c research on human lives. For more information For more information about the Rural Science Education Program, to order copies of Insects: Taking a Deeper Look at the World of Bugs, or to request a loaner kit that includes limited supplies for each activity, contact Sujaya Rao (phone: 541-737-9038; e-mail: [email protected]; fax: 541-737-5725). © 2005 Oregon State University This material is based upon work supported by the National Science Foundation under Grant No. 0139372. Any opinions, fi ndings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily refl ect the views of the National Science Foundation. This publication was produced and distributed in furtherance of the Acts of Congress of May 8 and June 30, 1914. Extension work is a cooperative program of Oregon State University, the U.S. Department of Agriculture, and Oregon counties. Oregon State University Extension Service offers educational programs, activities, and materials—without regard to race, color, religion, sex, sexual orienta- tion, national origin, age, marital status, disability, and disabled veteran or Vietnam-era veteran status—as required by Title VI of the Civil Rights Act of 1964, Title IX of the Education Amendments of 1972, and Section 504 of the Rehabilitation Act of 1973. Oregon State University Extension Service is an Equal Opportunity Employer. Published August 2005. CONTENTS Build Your Own Insect Trap Introduction Day 1 Lesson Plan Ant Lions Introduction Day 1 Lesson Plan—Form Hypotheses Student Worksheet—Mystery Container Day 2 Lesson Plan—Observe Ant Lion Behavior Student Worksheet—Mystery Container Insect Pitfall Traps Introduction Day 1 Lesson Plan—Develop Hypothesis/Procedures Student Worksheet—Pitfall Trap Design and Hypothesis Day 2 Lesson Plan—Pitfall Trap Setup Day 3 Lesson Plan—Collect Pitfall Traps Day 4 Lesson Plan—Classifi cation of Insects Student Worksheet—Insect Orders Student Worksheet—Insect Classifi cation (2) Student Worksheet—Experiment Followup Student Worksheet—Final Report Guidelines Look for these symbols Lesson plan Student worksheet Build Your Own Insect Trap Introduction Day 1 Lesson Plan BUILD YOUR OWN INSECT TRAP DESCRIPTION This lesson can be used as an introduction to insects or as an assessment about insects at the end of the unit. Students will design their own insect traps to collect an unknown insect, in the same way that entomologists col- lect the insects they study. STUDENT OUTCOMES/OBJECTIVES • Students will be able to ask a testable question. • Students will be able to explain the relationship between insect behavior and insect trapping techniques. STANDARDS Benchmark 2 • Explain the relationship between animal behavior and species survival. • Describe the living and nonliving resources in a specifi c habitat and the adaptations of organisms to that habitat. T IME ESTIMATE One 50-minute class period MATERIALS (FOR 30 STUDENTS) • White paper (40 sheets) • Yellow paper (1 ream) • Construction paper (1 pack, a variety of colors) • Plastic cups (15 clear, 15 yellow, and 15 white) • String (1 ball) • Plastic plates (15 yellow and 15 white) • Popsicle sticks (1 large box) • Masking tape (2 rolls) • Straws (75) • Scissors—sharp but inexpensive (3 pairs) • Q-tips (1 box) • Cotton balls (1 bag) • Soda pop • Dry beans (a few ounces) • Markers (4 packs) Build Your Own Insect Trap Introduction—page 1 WORKSHEETS None Y VOCABULARY AR N Entomologist—A scientist who studies insects ICTIO D THESAURUS Insect trap—An object used to catch insects Visual cues that attract insects—Colors or shapes of objects that attract insects Odor cues that attract insects—Smells or scents that attract insects BACKGROUND INFORMATION Students should have an understanding of insects if the lesson is being used as an assessment. If the lesson is used as an introduction, a little background knowledge about insects is necessary. LESSON PLAN Build Your Own Insect Trap (50-minute period) EXTENSIONS/RESOURCES None Build Your Own Insect Trap Introduction—page 2 LESSON PLAN BUILD YOUR OWN INSECT TRAP Note: Italicized words Preparation are potential script for Place supplies on a table at the front or back of the classroom. the teacher. Introduction (2 minutes) • A new insect has been sighted in the neighborhood. • Farmers and homeowners are concerned that the insect might be damag- ing their crops or garden plants. • Very little is known about the biology of this insect, and entomologists would like to catch as many as possible so that they can study them. • Entomologists prefer to have the insect captured alive. • They need your help in catching as many insects as possible. • You will be designing and building a trap to catch this insect alive. Questions for brainstorming about insects (3 minutes) What would you like to know about the insect before you design your trap? The following questions are likely to be asked by students. The answer fol- lows each question. Write the answers on the board as questions are asked. If a student asks a question for which the answer is not provided, let him/her know that the answer is not known, and that this would be a good research question. If students do not ask the questions below, prompt them to make sure these facts are covered. Does the insect walk or fl y? It fl ies. Does the insect fl y during the day or night? It fl ies during the day. Is it attracted to any color? It is attracted to yellow. (This is a visual cue.) Is it attracted to any scent (odor)? It is attracted to the scent of beans (protein) and soda pop. (These are odor cues.) How big is the insect? It is similar in size to a yellow jacket. Build Your Own Insect Trap Lesson Plan—page 1 Go over procedures (3 minutes) A variety of supplies are available for building the trap. (Hold up each item as you go over it.) • Plastic cups (yellow, white, clear) • Paper (yellow, white, construction) • Tape • String • Plastic plates (yellow and white) • Beans (protein) • Soda pop • Markers, scissors • Cotton balls, Q-tips • Popsicle sticks • Straws Steps (write on the board) 1. Plan/Design your trap. 2. Gather supplies. 3. Build the trap. 4. Present the trap to the class and explain features that will help trap the insects. Divide the class into groups of two or three students (2 minutes) Plan/Design your trap (5 minutes) Gather supplies and build the trap (20 minutes) • Send one person from your group to collect supplies for the team. • Get only the supplies you need. Present the trap (10 minutes) Ask for volunteers (as many as time permits). Cleanup (5 minutes) Followup lesson If students are interested, the traps can be placed outdoors to see what insects are trapped. Build Your Own Insect Trap Lesson Plan—page 2 Ant Lions Introduction Day 1 Lesson Plan—Form Hypotheses Student Worksheet— Mystery Container Day 2 Lesson Plan—Observe Ant Lion Behavior Student Worksheet— Mystery Container ANT LIONS DESCRIPTION This lesson uses ant lions to engage students in developing observation skills. Students will be involved in an inquiry exercise and will discover how ant lions trap their prey. STUDENT OUTCOMES/OBJECTIVES • Students will make observations. • Students will practice asking research questions. • Students will practice forming a hypothesis. • Students will learn to test a hypothesis. • Students will be able to describe how ant lions catch their prey. STANDARDS Benchmark 2 Make observations. Ask questions or form hypotheses based on those obser- vations, which can be explored through scientifi c investigations. Benchmark 3 Based on observations and scientifi c concepts, ask questions or form hypoth- eses that can be explored through scientifi c investigations. TIME ESTIMATE Two 50-minute class periods MATERIALS • Ant lions, ideally one per group of three students. If ant lions are not avail- able, collect them. (Bring fi ne mesh, trays, trowels, and small containers with lids.) In Oregon, look for ant lions in central Oregon, around Black Butte, on Highway 20. See “Extensions/Resources” for other sources. • Fine dirt (enough to fi ll each ant lion container one-third to one-half full)
Recommended publications
  • Electronic Trapping and Monitoring of Insect Pests Troubling Agricultural Fields
    International Journal of Emerging Engineering Research and Technology Volume 3, Issue 8, August 2015, PP 206-213 ISSN 2349-4395 (Print) & ISSN 2349-4409 (Online) Electronic Trapping and Monitoring of Insect Pests troubling Agricultural Fields Dr. S. Thangalakshmi1, R. Ramanujan2 1Associate Professor and Head, Department of Electrical and Electronics Engineering, GKM College of Engineering and Technology, Chennai, India 2Scholar, Department of Electrical and Electronics Engineering, GKM College of Engineering and Technology, Chennai, India ABSTRACT The impulsively fluctuating climatic conditions and the supplementary effects demand the protection of forestry and cultivation. Pests, bugs and insects are the vital issues that distress the development of crop. Eventually, monitoring and trapping of bugs becomes a more challenging task. The traditional human operators execute surveys of the traps dispersed over the field at regular intervals. This encompasses more work, requires considerable time and is not consistent. It is not effective on economic grounds too. These limitations in the existing systems call for automation with affordable cost. Effective pest trapping will be highly favourable to the farmers while capturing and sending the images of pests will be helpful for further analysis in agricultural fields. Moreover, this will be definitely helpful in reducing the usage of pesticides since automatic trapping is efficient and effective. An electronic trap for pest insects by an autonomous monitoring system using black lights (Ultra Violet) and LED lights is suggested in this paper. A statistical analysis is made on the probable time of high pest population and a trap with three layers of different thickness is designed to capture various sizes of prominent pests.
    [Show full text]
  • The Composite Insect Trap: an Innovative Combination Trap for Biologically Diverse Sampling
    The Composite Insect Trap: An Innovative Combination Trap for Biologically Diverse Sampling Laura Russo1*, Rachel Stehouwer2, Jacob Mason Heberling3, Katriona Shea1 1 Biology Department, Pennsylvania State University, University Park, Pennsylvania, United States of America, 2 Department of Landscape Architecture, University of Michigan, Ann Arbor, Michigan, United States of America, 3 Department of Biology, Syracuse University, Syracuse, New York, United States of America Abstract Documentation of insect diversity is an important component of the study of biodiversity, community dynamics, and global change. Accurate identification of insects usually requires catching individuals for close inspection. However, because insects are so diverse, most trapping methods are specifically tailored to a particular taxonomic group. For scientists interested in the broadest possible spectrum of insect taxa, whether for long term monitoring of an ecosystem or for a species inventory, the use of several different trapping methods is usually necessary. We describe a novel composite method for capturing a diverse spectrum of insect taxa. The Composite Insect Trap incorporates elements from four different existing trapping methods: the cone trap, malaise trap, pan trap, and flight intercept trap. It is affordable, resistant, easy to assemble and disassemble, and collects a wide variety of insect taxa. Here we describe the design, construction, and effectiveness of the Composite Insect Trap tested during a study of insect diversity. The trap catches a broad array of insects and can eliminate the need to use multiple trap types in biodiversity studies. We propose that the Composite Insect Trap is a useful addition to the trapping methods currently available to ecologists and will be extremely effective for monitoring community level dynamics, biodiversity assessment, and conservation and restoration work.
    [Show full text]
  • A Review of Sampling and Monitoring Methods for Beneficial Arthropods
    insects Review A Review of Sampling and Monitoring Methods for Beneficial Arthropods in Agroecosystems Kenneth W. McCravy Department of Biological Sciences, Western Illinois University, 1 University Circle, Macomb, IL 61455, USA; [email protected]; Tel.: +1-309-298-2160 Received: 12 September 2018; Accepted: 19 November 2018; Published: 23 November 2018 Abstract: Beneficial arthropods provide many important ecosystem services. In agroecosystems, pollination and control of crop pests provide benefits worth billions of dollars annually. Effective sampling and monitoring of these beneficial arthropods is essential for ensuring their short- and long-term viability and effectiveness. There are numerous methods available for sampling beneficial arthropods in a variety of habitats, and these methods can vary in efficiency and effectiveness. In this paper I review active and passive sampling methods for non-Apis bees and arthropod natural enemies of agricultural pests, including methods for sampling flying insects, arthropods on vegetation and in soil and litter environments, and estimation of predation and parasitism rates. Sample sizes, lethal sampling, and the potential usefulness of bycatch are also discussed. Keywords: sampling methodology; bee monitoring; beneficial arthropods; natural enemy monitoring; vane traps; Malaise traps; bowl traps; pitfall traps; insect netting; epigeic arthropod sampling 1. Introduction To sustainably use the Earth’s resources for our benefit, it is essential that we understand the ecology of human-altered systems and the organisms that inhabit them. Agroecosystems include agricultural activities plus living and nonliving components that interact with these activities in a variety of ways. Beneficial arthropods, such as pollinators of crops and natural enemies of arthropod pests and weeds, play important roles in the economic and ecological success of agroecosystems.
    [Show full text]
  • Automated Flight Interception Traps for Interval Sampling of Insects
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941740; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Automated flight interception traps for 2 interval sampling of insects 3 Janine Bolliger 1*, Marco Collet 1,2, Michael Hohl 1, 2, Beat Wermelinger 1, Martin K. Obrist 1 4 5 1 WSL Swiss Federal Research Institute, Zürcherstrasse 111, CH-8903 Birmensdorf 6 2 WSL Institute for Snow and Avalanche Research SLF, Flüelastrasse 11, CH-7260 Davos 7 * corresponding author, [email protected], phone: +41 44 739 23 93, fax: +41 00 739 22 15 8 9 Short title: Automated interval sampling of insects 10 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.10.941740; this version posted February 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Recent debates on insect decline require sound assessments on the relative drivers that may negatively 13 impact insect populations. Often, baseline data rely on insect monitorings that integrates catches over 14 long time periods. If, however, effects of time-critical environmental factors (e.g., light pollution) are 15 of interest, higher temporal resolution of insect observations during specific time intervals are required 16 (e.g., between dusk and dawn).
    [Show full text]
  • DEPARTMENTAL MANUAL Museum Property Handbook (411 DM, Volume I)
    DEPARTMENT OF THE INTERIOR DEPARTMENTAL MANUAL Museum Property Handbook (411 DM, Volume I) Chapter 6 Biological Infestations A. INTRODUCTION 1. The Problem a. Pests Museum property is vulnerable to damage and deterioration caused by a variety of biological organisms. The damage can range from surface soiling and spotting to complete destruction of the object. Organic materials (e.g., silk, skin, wool, hair, hide, paper, and wood) are most vulnerable to damage by biological agents. The mechanism that causes damage to inorganic materials is complex, is rarely seen in museums, and is beyond the scope of this Handbook. Pests that damage museum property can be divided into three categories: ! Microorganisms (e.g., molds and other fungi) ! Insects ! Vertebrates (e.g., birds and mammals, such as rats, mice, and bats). The three categories can be interrelated. They can support each other's survival and can contribute to the damage caused by each other. Unfortunately, the optimum conditions for the care, storage and exhibition of museum property are also good for the survival of pests. Improper storage and exhibition conditions such as high temperatures, high relative humidity levels, dust, overcrowding, and clutter enhance pest survival. b. Traditional Control Measures The traditional method for controlling pests in museums has been either the routine prophylactic treatment of collections with pesticides such as arsenic, thymol, mercury, DDT, ethylene oxide, Vapona (DDVP), naphthalene, and paradichlorobenzene (PDB), Release Date: 6:1 New DEPARTMENT OF THE INTERIOR DEPARTMENTAL MANUAL Museum Property Handbook (411 DM, Volume I) Chapter 6 Biological Infestations or treatment with these chemicals once an infestation has been discovered.
    [Show full text]
  • Catchmaster Brand Adhesive Devices 2018 SDS.Pdf
    FILE NO.001 SAFETY DATA SHEET NAME OF PRODUCT SDS DATE: 01/01/2018 CATCHMASTER™ Brand Adhesive Devices SECTION 1: PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME: CATCHMASTER™ Brand Products (Insect and Rodent glue traps and monitors) SYNONYMS: N/A PRODUCT CODES: Model No. Description 72CRM Replacement Mouse & Insect Glue Boards/Monitors 72MBCO Chocolate Super Mouse Size Glue Boards 72MBCH Cherry Super Mouse Size Glue Boards 72MBPB Peanut Butter Super Mouse Size Glue Boards 72MB Peanut Butter Regular Mouse Size Glue Boards 72MB4.5 Peanut Butter Mouse Size Glue Boards 72MAX Mouse Size Glue Boards 72MAX-DIG1 Mouse Size Glue Boards for Digital Private Labeling 72TC Mouse & Insect Glue Board 72TCUS Mouse & Insect Glue Board 72TC3 Mouse & Insect Glue Board for Slim 72TCFFUS Replacement Mouse Board - use with EZ Force Rodent Bait Stations 72TB Tasty Banana Mouse Size Glue Board 72TBPB Tasty Banana Mouse Size Glue Boards –Peanut Butter 72XL Extra Long Mouse & Insect Glue Boards 150MBGL Mouse & Insect Size Glue Boards 60RBGL Econo Rat Glue Boards 24GRB Rat Size Glue Boards 24XL Jumbo Rat Size Glue Tray Bulk (W/O Hercules Putty™) 48R Rat Size Glue Tray (With Hercules Putty™) 48RNHP Rat Size Glue Tray (W/O Hercules Putty™) 48RB Rat Size Tray (Bulk) 48ROOF Roof Rat and Large Mouse Trap with Hercules Putty 48WRG Cold Temperature Glue Tray 1448B Econo Rate Glue Tray 96M Mouse Size Glue Trays 100FF Fruit Fly Trap 100I Insect Trap & Monitor 100i-DIG Insect Trap & Monitor for Digital Private Labeling 100MINI MAX-Catch Mini Mouse & Insect 150RI Roach
    [Show full text]
  • Combination Trap Design to Control the Insect Pest of Various Agricultural Crops at Telangana and Kerala
    Gupta et al. AvailableInd. J. Pure online App. Biosci. at www.ijpab.com (2019) 7(4), 178 -183 ISSN: 2582 – 2845 DOI: http://dx.doi.org/10.18782/2320-7051.7710 ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2019) 7(4), 178-183 Research Article Combination Trap Design to Control the Insect Pest of Various Agricultural Crops at Telangana and Kerala Seema Gupta1*, Krishna Chaitanya2, Bhramacharini Sheela3, Jishnu V.4 and Pranav P.5 1*, 3, 4,5Amrita Vidyalayam, Thalassery, Kannur, Kerala 2Paramita group of school, Karimnagar, Telangana *Corresponding Author E-mail: [email protected] Received: 22.07.2019 | Revised: 25.08.2019 | Accepted: 29.08.2019 ABSTRACT The resistance created for synthetic chemical pesticides by the insects and introduction of new synthetic pesticides have affected the nature and non-targeted organisms. These issues gave rise to ‘organic farming and bio-control’ a new method of controlling the insect pest which was cost effective and eco-friendly. Bio-control agents and trapping system are the major techniques which enable to facilitate and promote organic farming. In the similar sequence of trapping system, we are introducing a new trap design which is a single solution to variety of insect pest in the agricultural fields. This combination trap has the features of light trap, sticky trap and pheromone trap arranged in a detachable and replaceable form. It has a simple design and materials required can be easily procured. This trap can be used for any type of crops as it have trapping system for almost all type of insect pest. It is cost effective, portable and has less weight which will be useful to the farmers and agriculturist.
    [Show full text]
  • Summary of Investigations of Electric Insect Traps
    ~ 12.8 12.5 ~12! ~112.5 1.0 Ll.2 ~ 1.0 Ll.2 = ~W ~ I~ I.:.: W 36 &.;. 1~ a.:.: W ~ I:j; ~ w :r W ............ ... 1.1 --1.1 ~"" .. -- 111111.8 -- 111111.25 111111.4 111111.6 111111.25 111111.4 111111.6 MICROCOPY RESOLUTION TEST CHART MICROCOPY RESOLUTION TEST CHART NATlON~l BUR[~U or STANDARDS·196l·A NATIONAL BUREAU or STANDARDS-1963-A Summary of Investigations of Electric Insect Traps By Truman E. Hienton (retired) collaborator Agricultural Research Service Technical Bulletin No. 1498 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D.C. Issued October 1974 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Trade or company names are used in this ~ublication solely for the purpose of providing specific informat;011. Mention of a trade name does not constitute a guarantee or warram), of the product by the U.S. Department of Agriculture or an endorsement by the Department over other products or companies not mentioned. This publication reports research involving pesticides. It does not contain recommendations for their use, nor docs it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State andjor Federal agencies before they can be recommended. CAllTION: Pesticides can be injurioHs to humans, domestic animals, desirable plants, and fish or other wildlife .. iI' they are not handled or applied properly. Usc all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pe'.;tiddes and pesticide containers. Ii FOREWORD TIlls bulletin was prepared as a result of the following memorandum, dated Apri130,1969.
    [Show full text]
  • Trapping Guidelines for Area-Wide Fruit Fly Programmes
    Trapping guidelines for area-wide fruit fly programmes Trapping guidelines for area-wide fruit fly programmes Second edition Edited by Walther R. Enkerlin Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture Jesus Reyes Flores Private consultant Food and Agriculture Organization of the United Nations International Atomic Energy Agency Vienna, 2018 Recommended citation FAO/IAEA. 2018. Trapping guidelines for area-wide fruit fly programmes, Second edition, by Enkerlin, W.R. and Reyes- Flores, J. (eds). Rome, Italy. 65 pp. DISCLAIMER Detection of economically important fruit flies is critical to the economics and sustainability of horticulture. Development of trapping systems is an evolving process that results in improved agriculture. Trapping systems require a holistic approach that encompasses endemic and invasive species, human needs, as well as economic pressures. The purpose of this working document is to provide a mechanism for an evolving process that allows providing NPPO’s, RPPO’s, action agencies, industry, and scientists a framework to fully utilize current and future trapping technologies. The dedication of the authors in developing this manual is based on a commitment to provide an updated and coherent use of technologies available for trapping fruit flies. Every effort was made to ensure that this document is accurate, however, the activities associated with the trapping of fruit flies makes this a complex and dynamic process. This document is not an endorsement of products and assumes no liability for actions reported herein. Suggestions and comments to this working document are appreciated. Contents Foreword v 1. Background 1 2. Trapping types and pest situations 2 3.
    [Show full text]
  • Fruit Fly Trapping Guide
    TRAPPING GUIDELINES FOR AREA-WIDE FRUIT FLY PROGRAMMES TRAPPING GUIDELINES FOR AREA-WIDE FRUIT FLY PROGRAMMES INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2003 The originating Section of this publication in the IAEA was: Insect Pest Control Section Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria TRAPPING GUIDELINES FOR AREA-WIDE FRUIT FLY PROGRAMMES IAEA, VIENNA, 2003 TG/FFP-2003 © IAEA, 2003 Printed by the IAEA in Austria November 2003 Preamble Tephritid fruit flies cause devastating di- fruit fly attractants and traps. As a result, improved rect losses to many fresh fruits and vegetables. In fruit fly trapping systems have been developed that addition, few insects have a greater impact on in- are being adopted by operational fruit fly control ternational marketing and world trade in agricul- programmes. tural produce than tephritid fruit flies. With ex- panding international trade, fruit flies as major At the 3rd Western Hemisphere Fruit Fly quarantine pests of fruits and vegetables have taken Workshop on Fruit Flies of Economic Importance, on added importance, triggering the implementa- held July 1999 in Guatemala City, representatives tion of area-wide national or regional (trans- of National Plant Protection Organizations boundary) control programmes. (NPPO’s) of 21 participating FAO and IAEA Member States expressed difficulties as a result As part of globalization, trade in fresh fruits of a lack of uniformity in the application of the and vegetables is gradually being liberalized on a various trapping methodologies to survey fruit flies world-wide basis.
    [Show full text]
  • Kairomones for the Management of Anastrepha Spp. Fruit Flies
    Proceedings of 6th International Fruit Fly Symposium 6–10 May 2002, Stellenbosch, South Africa pp. 335–347 Kairomones for the management of Anastrepha spp. fruit flies H.N. Nigg1*, S.E. Simpson2, R.A. Schumann1, E. Exteberria1 & E.B. Jang3 1Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, U.S.A. 2Division Plant Industry, Florida Department Agricultural and Consumer Services, 3027 Lake Alfred Road, Winter Haven, FL 33881, U.S.A. 3Agricultural Research Service, Pacific Basin Agricultural Research Center, United States Department of Agriculture, PO Box 4459, Hilo, Hawaii, U.S.A. Current worldwide methods for fruit fly management include bait/pesticide combinations. These combinations are not necessarily tested for attractiveness and consumption for any particular fruit fly and, consequently, tend to be generic for fruit flies. On the other hand, kairomones tend to be organism specific. Kairomones are defined as attractants, arrestants, excitants (elicit biting, pierc- ing, oviposition) and phagostimulants. Kairomones hold the promise of fly-specific baits, lower pesticide use,fruit fly management in the urban setting,and environmentally acceptable technolo- gies. The best kairomone example in current science is the Cucurbitaceae Diabrotica spp. beetles, used here to describe the ideal approach to kairomone research. Examples of kairomones used for Anastrepha suspensa (Loew), Caribbean fruit fly, and Anastrepha ludens (Loew), Mexican fruit fly, are detailed.Our current kairomone research with sugars for A.suspensa management indicated that Caribbean fruit fly exhibits preferences for specific sugars.A consumption technique is a critical component for development of kairomone-based baits and a technique for the quantification of food consumption of individual flies is presented.
    [Show full text]
  • Automated Flight-Interception Traps for Interval Sampling of Insects
    PLOS ONE RESEARCH ARTICLE Automated flight-interception traps for interval sampling of insects 1 1,2 1,2 1 Janine BolligerID *, Marco Collet , Michael Hohl , Martin K. Obrist 1 WSL, Swiss Federal Research Institute, Birmensdorf, Switzerland, 2 WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland * [email protected] a1111111111 Abstract a1111111111 a1111111111 Recent debates on insect decline require sound assessments on the relative drivers that a1111111111 may negatively impact insect populations. Often, baseline data rely on insect monitorings a1111111111 that integrate catches over long time periods. If, however, effects of time-critical environ- mental factors (e.g., light pollution) are of interest, higher temporal resolution of insect data is required during very specific time intervals (e.g., between dusk and dawn). Conventional time-critical insect trapping is labour-intensive (manual activation/deactivation) and tempo- OPEN ACCESS rally inaccurate as not all traps can be serviced synchronically at different sites. Also, tempo- Citation: Bolliger J, Collet M, Hohl M, Obrist MK ral shifts of environmental conditions (e.g., sunset/sunrise) are not accounted for. We (2020) Automated flight-interception traps for present a battery-driven automated insect flight-interception trap which samples insects dur- interval sampling of insects. PLoS ONE 15(7): ing seven user-defined time intervals. A commercially available flight-interception trap is fit- e0229476. https://doi.org/10.1371/journal. pone.0229476 ted to a turntable containing eight positions, seven of them holding cups and one consisting of a pass-through hole. While the cups sample insects during period of interest, the pass- Editor: Olena Riabinina, Durham University, UNITED KINGDOM through hole avoids unwanted sampling during time-intervals not of interest.
    [Show full text]