Size and Distribution of Home Ranges of the Japanese Shrew-Mole Urotrichus Talpoides

Total Page:16

File Type:pdf, Size:1020Kb

Size and Distribution of Home Ranges of the Japanese Shrew-Mole Urotrichus Talpoides J. Mamm. Soc. Japan 18(2) : 87-98 December 1993 Size and Distribution of Home Ranges of the Japanese Shrew-mole Urotrichus talpoides Nobuo ISHII Japan Wildlife Research Center, Bunkyo - ku, Tokyo 113, Japan (Accepted 23 September 1993) Abstract. Size and spatial distribution of home ranges of the Japanese shrew- mole Urotrichus talpoides were studied by live-trapping in a mature mixed (broadleaved and coniferous) forest in Chiba Prefecture, Honshu. During the non-breeding season, no significant differences in home range size were found between sexes. The home ranges of breeding males were significantly larger than those of non-breeding males, while no significant differences were found in range size between non-breeding and breeding females. During the non- breeding season, home ranges were mutually exclusive among individuals of the same sex, but overlapped extensively with those of the opposite sex. In the breeding season, male ranges largely overlapped each other. Female ranges also overlapped each other, but to a lesser extent. The tolerance between the sexes during the non-breeding season is unusual in comparison with other mole and shrew species, whose individual ranges are exclusive to each other irre- spective of sex. Key words : Japanese shrew-mole ; Urotrichus talpoides ; home range size ; spatial organization. The shrew-moles Urotrichus, Neurotrichus and Uropsilus, though talpids (Fam- ily Talpidae), are less well adapted to the fossorial way of life than are the typical moles. The life-style of the shrew-moles is, therefore, of interest from the view point of comparative ecology, however, detailed information on the population ecology of shrew-moles has not previously been available. In this paper seasonal changes in the size and distribution pattern of the home ranges of the Japanese shrew-mole Urotrichus talpoides are described. Study Area and Methods Study area The study was carried out in Compartment 24 of the Tokyo University Forest located on the Boso Peninsula, Chiba Prefecture, Honshu. A live-trap- ping plot, consisting of 88 trapping stations set ten meters apart in an 8 x 11 array encompassing 0.7 ha, was established in a mature mixed forest of 51.6 ha surrounded by young broadleaved forests and conifer plantations. The domi- nant trees were Abies firma, Quercus acuta, Q. glauca, Q. salicina, and Castanop- sis cuspidata var. sieboldii. The understory was composed mainly of Eurya 88 Ishii japonica, Camellia japonica, Cinnamomum japonicum, Dendropanax trifdus, and Illicium religiosum. The undergrowth consisted mainly of Trachelospermum asiaticum, Maesa japonica, Arachniodes sporadosora and Gleichenia japonica. Trapping procedure One Sherman live-trap (SFA type) baited with a mixture of chopped cheese and oatmeal was placed at one opening of a burrow system near each station. Live-trapping was conducted once a month from June 1977 until December 1978, and then biweekly between January and July 1979. Trapping was operat- ed for five consecutive nights monthly until December 1978, and then for three to five nights in each trapping session thereafter. The traps were set in the evening and checked at midnight and again in the morning, until October 1978. To avoid trap mortality, from November 1978 onwards, I checked the traps three times each night at four-hourly intervals. The traps had to be closed during the day otherwise jungle crows Corvus macrorhynchos disturbed them. Shrew-moles were individually marked by toe-clipping ; their sex, repro- ductive condition, weight, age, and the point of capture were recorded before their release. Sexing of live shrew-moles was difficult (except in the breeding season), but could be done by physically checking for the presence of a penis, using the finger tips. Further details of methods for estimating reproductive condition are given by Ishii (1982). The current year's young were identifiable because they had milk teeth or only slightly worn teeth and they could be easily distinguished from adults that had overwintered and had more worn teeth. Methods of analysis Home range size was estimated using two methods : (1) the minimum range area (Stickel, 1954), and (2) the probability ellipse (Jennrich & Turner, 1969 ; Mazurkiewicz, 1969). The minimum range area was obtained by connecting the outermost capture sites of an individual and measuring the area inside. Using the probability ellipse, the area was calculated to contain 95 percent of expected captures. To examine the distribution pattern of home ranges, I mapped the capture sites of each individual as a minimum range area. Only those individuals captured at more than three different sites were included. In addition, the degree of range overlap (DRO) was calculated among the individuals of the same sex and between the sexes using the following equation : DRO=100 x CAoICAh where Ah is the range area of an individual (holder) concerned, and Ao the area occupied by other individuals (invaders) within the holder's range. Also, social interactions were considered when two individuals were captured simultaneous- ly with one trap (double captures). Home Range of Shrew-mole Results Trapping success Shrew-moles were easily captured using Sherman live-traps. During the course of the study, 85 shrew-moles (49 males and 36 females) were captured and marked individually. Between June 1977 and October 1978, however, 15 individuals died of starvation in the traps. After November 1978, when traps were checked every four-hours, trap mortality was reduced to just one case. Home range size To determine the number of captures needed to calculate home range size, I plotted range size, calculated by the minimum area method, as a function of the number of consecutive captures for several individuals having high fre- quencies of recapture within a constant reproductive condition. Some of the results are shown in Fig. 1. On the basis of those results, about 20 captures was established as the necessary minimum for calculating actual home range size for observing comparison with other species, and set 10 captures was regarded as the minimum for observing the size differences between the sexes and between the seasons of this study. This compromise was unavoidable due to data limitation. The calculation was only made for those individuals whose ranges were entirely within the trapping area. CONSECUTIVE CAPTURES Fig. 1. Change in home range size plotted against consecutive captures for five individuals. The range size was calculated as the minimum range area. Breeding condition is given in parentheses after each individual's number ; N = non-breeding, B = breeding. Home range sizes were calculated separately for the breeding and non- breeding periods. Males in the study area became sexually mature in early February, and active males decreased rapidly during May. Mature females were observed in February and March, pregnant females in March and April, and lactating females in April and May (Ishii, 1982). During the non-breeding season, no significant difference was found between the range sizes of males and females (Mann-Whitney U-test: the minimum range area, U = 11 ; the probability ellipse, U = 13). The home range of breeding males was, however, significantly larger than that of non-breeding males (the minimum range area, U = 9, p < 0.05 ; the probability ellipse, U = 1, p <0.01). Six males were captured 10 or more times both as non-breeders and as breeders, and in five cases the breeding home range size was the larger of the two. In contrast, no significant difference was found in range size between non-breeding and breeding females (the minimum range area, U = 5 ; the probability ellipse, U =2), though female #69 enlarged her home range during the breeding season. There was no significant difference between male and female range sizes during the breeding season (the minimum range area, U= 4 ; the probability ellipse, U = 3). Home range sizes of individuals that were captured 10 or more times within a constant reproductive condition (non-breeding or breeding) are listed in Table 1, and home range size statistics are given in Table 2. Table 1. Home range sizes (m2) calculated using two different methods for individuals captured 10 or more times. The number of captures= n. Non-breeding Breeding Individual No. Min. range 95%.prob. Min. range 95% .prob. n area ellipse area ellipse Male # 59 74 77 83 96 99 101 105 105* 116 Female # 43 55 69 72 80 81 - * different period Home Range of Shrew-mole Table 2. Mean home range sizes (m2)with standard deviations (SD) as estimated for individuals captured 10 or more times and those captured 19 or more times. The sample size = n. Min. range area Prob. ellipse n Mean SD Mean SD Individuals captured 10 or more times Non-breeding Males 10 1160 560 3537 1128 Females 4 1563 539 4700 2056 Total 14 1275 566 3869 1468 Breeding Males 6 2825 1396 8729 2670 Females 3 1450 540 6304 2197 Individuals captured 19 or more times Non-breeding Males 5 1510 607 3899 1513 Females 4 1563 539 4700 2056 Total 9 1533 542 4255 1705 Breeding Males 3 3933 520 10120 2403 Distribution pattern of home ranges During the non-breeding season, male ranges more or less overlapped each other, but were exclusive at least between resident individuals which remained until the beginning of the breeding season. During the breeding season, male ranges overlapped extensively as they expanded their ranges. Female ranges showed little overlap during the non-breeding season, especially among resi- dents, with this tendency being more distinct than that shown among males. During the breeding season female ranges tended to overlap to a lesser extent than male ranges. Male and female ranges overlapped throughout the year, and during the non-breeding season there were some cases in which one male and one female occupied almost identical areas. For example, in the non- breeding season of 1977-78 male #77 and female #55, and in 1978-79 male #96 and female #72, and male #I05 and female #69 were such pairs.
Recommended publications
  • Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
    Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2.
    [Show full text]
  • Ewa Żurawska-Seta
    Tom 59 2010 Numer 1–2 (286–287) Strony 111–123 Ewa Żurawska-sEta Katedra Zoologii Uniwersytet Technologiczno-Przyrodniczy A. Kordeckiego 20, 85-225 Bydgoszcz E-mail: [email protected] kretowate talpidae — ROZMieSZCZeNie oraZ klaSyfikaCja w świetle badań geNetycznyCh i MorfologicznyCh wStęp podział systematyczny ssaków podlega zaproponowanej przez wilson’a i rEEdEr’a ciągłym zmianom, głównie za sprawą dyna- (2005) wyodrębnione zostały nowe rzędy: micznie rozwijających się w ostatnich latach erinaceomorpha, do którego zaliczono je- badań genetycznych. w klasyfikacji owado- żowate erinaceidae oraz Soricomorpha, w żernych insectivora zaszły istotne zmiany. którym znalazły się kretowate talpidae i ry- według tradycyjnej klasyfikacji fenetycznej jówkowate Soricidae. do ostatniego z wymie- kret Talpa europaea linnaeus, 1758, zali- nionych rzędów zaliczono ponadto almiko- czany był do rodziny kretowatych talpidae wate Solenodontidae oraz wymarłą rodzinę i rzędu owadożernych insectivora. do tego Nesophontidae (wcześniej obie te rodziny samego rzędu należały również występujące również zaliczano do insectivora), z zastrze- w polsce jeże i ryjówki. według klasyfikacji żeniem, że oczekiwane są dalsze zmiany. klaSyfikaCja kretowatyCh talpidae rodzina talpidae obejmuje 3 podrodziny: świetnym pływakiem, ponieważ większość Scalopinae, talpinae i Uropsilinae. podrodzi- pożywienia zdobywa na powierzchni wody na Scalopinae podzielona jest na 2 plemiona, oraz w toni wodnej. jest do tego doskona- 5 rodzajów i 7 gatunków (tabela 1). krety z le przystosowany, ponieważ posiada błony tej podrodziny często nazywane są „kretami z pławne między palcami kończyn tylnych. Nowego świata”, ponieważ większość gatun- Ma również długi ogon, stanowiący 75–81% ków występuje w Stanach Zjednoczonych, długości całego ciała, który spełnia rolę ma- północnym Meksyku i w południowej części gazynu tłuszczu, wykorzystywanego głównie kanady.
    [Show full text]
  • An Evolutionary View on the Japanese Talpids Based on Nucleotide Sequences
    Mammal Study 30: S19–S24 (2005) © the Mammalogical Society of Japan An evolutionary view on the Japanese talpids based on nucleotide sequences Akio Shinohara1,*, Kevin L. Campbell2 and Hitoshi Suzuki3 1 Department of Bio-resources, Division of Biotechnology, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan 2 Department of Zoology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada 3 Graduate School of Environmental Earth Science, Hokkaido University, Hokkaido 060-0810, Japan Abstract. Japanese talpid moles exhibit a remarkable degree of species richness and geographic complexity, and as such, have attracted much research interest by morphologists, cytogeneticists, and molecular phylogeneticists. However, a consensus hypothesis pertaining to the evolutionary history and biogeography of this group remains elusive. Recent phylogenetic studies utilizing nucleotide sequences have provided reasonably consistent branching patterns for Japanese talpids, but have generally suffered from a lack of closely related South-East Asian species for sound biogeographic interpretations. As an initial step in achieving this goal, we constructed phylogenetic trees using publicly accessible mitochondrial and nuclear sequences from seven Japanese taxa, and those of related insular and continental species for which nucleotide data is available. The resultant trees support the view that four lineages (Euroscaptor mizura, Mogera tokuade species group [M. tokudae and M. etigo], M. imaizumii, and M. wogura) migrated separately, and in this order, from the continental Asian mainland to Japan. The close relationship of M. tokudae and M. etigo suggests these lineages diverged recently through a vicariant event between Sado Island and Echigo plain. The origin of the two endemic lineages of Japanese shrew-moles, Urotrichus talpoides and Dymecodon pilirostris, remains ambiguous.
    [Show full text]
  • Townsend's Mole
    COSEWIC Assessment and Update Status Report on the Townsend’s Mole Scapanus townsendii in Canada ENDANGERED 2003 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION DES ENDANGERED WILDLIFE ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2003. COSEWIC assessment and update status report on Townsend’s mole Scapanus townsendi in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 24 pp. Previous reports: Sheehan, S.T. and C. Galindo-Leal. 1996. COSEWIC status report on Townsend’s mole Scapanus townsendii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 50 pp. Production note: COSEWIC would like to acknowledge Valentin Shaefer for writing the status report on the Townsend’s mole Scapanus townsendii, prepared under contract with Environment Canada. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Évaluation et Rapport de situation du COSEPAC sur la situation de la taupe de Townsend (Scapanus townsendii) au Canada – Mise à jour Cover illustration: Townsend’s Mole — Judie Shore, Richmond Hill, Ontario Her Majesty the Queen in Right of Canada, 2003 Catalogue No. CW69-14/15-2003E-IN ISBN 0-662-33588-0 Recycled paper COSEWIC Assessment Summary Assessment Summary – May 2003 Common name Townsend’s mole Scientific name Scapanus townsendii Status Endangered Reason for designation There are only about 450 mature individuals in a single Canadian population with a range of 13 km2, adjacent to a small area of occupied habitat in the USA.
    [Show full text]
  • Natural History of Oregon Coast Mammals Chris Maser Bruce R
    Forest Servile United States Depa~ment of the interior Bureau of Land Management General Technical Report PNW-133 September 1981 ser is a ~ildiife biologist, U.S. ~epa~rn e Interior, Bureau of La gement (stationed at Sciences Laboratory, Corvallis, Oregon. Science Center, ~ewpo Sciences Laborato~, Corvallis, Oregon. T. se is a soil scientist, U.S. wa t of culture, Forest Service, Pacific rthwest Forest and ange ~xperim Station, lnst~tute of orthern Forestry, Fairbanks, Alaska. Natural History of Oregon Coast Mammals Chris Maser Bruce R. Mate Jerry F. Franklin C. T. Dyrness Pacific Northwest Forest and Range Experiment Station U.S. Department of Agriculture Forest Service General Technical Report PNW-133 September 1981 Published in cooperation with the Bureau of Land Management U.S. Department of the Interior Abstract Maser, Chris, Bruce R. Mate, Jerry F. Franklin, and C. T. Dyrness. 1981. Natural history of Oregon coast mammals. USDA For. Serv. Gen. Tech. Rep. PNW-133, 496 p. Pac. Northwest For. and Range Exp. Stn., Portland, Oreg. The book presents detailed information on the biology, habitats, and life histories of the 96 species of mammals of the Oregon coast. Soils, geology, and vegetation are described and related to wildlife habitats for the 65 terrestrial and 31 marine species. The book is not simply an identification guide to the Oregon coast mammals but is a dynamic portrayal of their habits and habitats. Life histories are based on fieldwork and available literature. An extensive bibliography is included. Personal anecdotes of the authors provide entertaining reading. The book should be of use to students, educators, land-use planners, resource managers, wildlife biologists, and naturalists.
    [Show full text]
  • Condylura (Mammalia, Talpidae) Reloaded: New Insights About the Fossil Representatives of the Genus
    Palaeontologia Electronica palaeo-electronica.org Condylura (Mammalia, Talpidae) reloaded: New insights about the fossil representatives of the genus Gabriele Sansalone, Tassos Kotsakis, and Paolo Piras ABSTRACT The star nosed mole, Condylura cristata, due to its morphological and behavioural peculiarities, has been deeply investigated by different authors. By contrast, very little is known about the phylogenetic relationships, evolution and diversity of the fossil members of this genus. In the present study we provide new insights about the fossil specimens ascribed to Condylura taking into account systematic, palaeobiogeographi- cal and palaeoecological aspects. Further, we provide a re-description of a fossil Con- dylura from the middle Miocene of Kazakhstan. We confirm that the Kazakh fossil belongs to the genus Condylura, based on humeral morphological features, and we discuss its implications and impact on the phylogenetic scenario and ecology of this peculiar talpid genus. This specimen represents the earliest record of the genus, thus suggesting an Eurasiatic origin instead of the most commonly accepted scenario of a North American one. The presence of both plesiomorphic and apomorphic characters in Condylura strongly supports the hypothesis that this genus could be considered as sister clade of Talpinae. Gabriele Sansalone. Roma Tre University of Rome, Dept. of Sciences, L.S. Murialdo, 1 – 00146 Rome, Italy/Center for evolutionary ecology, C.da Fonte Lappone, Pesche, Italy/Form, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia [email protected] Tassos Kotsakis. Roma Tre University of Rome, Dept. of Sciences, L.S. Murialdo, 1 – 00146 Rome, Italy/ Center for evolutionary ecology, C.da Fonte Lappone, Pesche, Italy [email protected] Paolo Piras.
    [Show full text]
  • Oxygen Stores and Diving Behaviour of the Star-Nosed Mole 47
    The Journal of Experimental Biology 205, 45–54 (2002) 45 Printed in Great Britain © The Company of Biologists Limited 2002 JEB3646 Body oxygen stores, aerobic dive limits and diving behaviour of the star-nosed mole (Condylura cristata) and comparisons with non-aquatic talpids Ian W. McIntyre, Kevin L. Campbell and Robert A. MacArthur* Department of Zoology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 *Author for correspondence (e-mail: [email protected]) Accepted 18 October 2001 Summary The dive performance, oxygen storage capacity and moles Neurotrichus gibbsii (8.8 mg g–1 wet tissue; N=2). The partitioning of body oxygen reserves of one of the world’s mean skeletal muscle Mb content of adult star-nosed moles smallest mammalian divers, the star-nosed mole Condylura was 91.1 % higher than for juveniles of this species cristata, were investigated. On the basis of 722 voluntary (P<0.0001). On the basis of an average diving metabolic –1 –1 dives recorded from 18 captive star-nosed moles, the mean rate of 5.38±0.35 ml O2 g h (N=11), the calculated aerobic dive duration (9.2±0.2 s; mean ± S.E.M.) and maximum dive limit (ADL) of star-nosed moles was 22.8 s for adults recorded dive time (47 s) of this insectivore were and 20.7 s for juveniles. Only 2.9 % of voluntary dives comparable with those of several substantially larger semi- by adult and juvenile star-nosed moles exceeded their aquatic endotherms. Total body O2 stores of adult star- respective calculated ADLs, suggesting that star-nosed nosed moles (34.0 ml kg–1) were 16.4 % higher than for moles rarely exploit anaerobic metabolism while diving, a similarly sized, strictly fossorial coast moles Scapanus conclusion supported by the low buffering capacity of their –1 orarius (29.2 ml kg ), with the greatest differences observed skeletal muscles.
    [Show full text]
  • 2014 Annual Reports of the Trustees, Standing Committees, Affiliates, and Ombudspersons
    American Society of Mammalogists Annual Reports of the Trustees, Standing Committees, Affiliates, and Ombudspersons 94th Annual Meeting Renaissance Convention Center Hotel Oklahoma City, Oklahoma 6-10 June 2014 1 Table of Contents I. Secretary-Treasurers Report ....................................................................................................... 3 II. ASM Board of Trustees ............................................................................................................ 10 III. Standing Committees .............................................................................................................. 12 Animal Care and Use Committee .......................................................................... 12 Archives Committee ............................................................................................... 14 Checklist Committee .............................................................................................. 15 Conservation Committee ....................................................................................... 17 Conservation Awards Committee .......................................................................... 18 Coordination Committee ....................................................................................... 19 Development Committee ........................................................................................ 20 Education and Graduate Students Committee ....................................................... 22 Grants-in-Aid Committee
    [Show full text]
  • Urotrichus Talpoides)
    Molecular phylogeny of a newfound hantavirus in the Japanese shrew mole (Urotrichus talpoides) Satoru Arai*, Satoshi D. Ohdachi†, Mitsuhiko Asakawa‡, Hae Ji Kang§, Gabor Mocz¶, Jiro Arikawaʈ, Nobuhiko Okabe*, and Richard Yanagihara§** *Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; †Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan; ‡School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; §John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813; ¶Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822; and ʈInstitute for Animal Experimentation, Hokkaido University, Sapporo 060-8638, Japan Communicated by Ralph M. Garruto, Binghamton University, Binghamton, NY, September 10, 2008 (received for review August 8, 2008) Recent molecular evidence of genetically distinct hantaviruses in primers based on the TPMV genome, we have targeted the shrews, captured in widely separated geographical regions, cor- discovery of hantaviruses in shrew species from widely separated roborates decades-old reports of hantavirus antigens in shrew geographical regions, including the Chinese mole shrew (Anouro- tissues. Apart from challenging the conventional view that rodents sorex squamipes) from Vietnam (21), Eurasian common shrew are the principal reservoir hosts, the recently identified soricid- (Sorex araneus) from Switzerland (22), northern short-tailed shrew borne hantaviruses raise the possibility that other soricomorphs, (Blarina brevicauda), masked shrew (Sorex cinereus), and dusky notably talpids, similarly harbor hantaviruses. In analyzing RNA shrew (Sorex monticolus) from the United States (23, 24) and Ussuri extracts from lung tissues of the Japanese shrew mole (Urotrichus white-toothed shrew (Crocidura lasiura) from Korea (J.-W.
    [Show full text]
  • Karyotype Evolution of Shrew Moles (Soricomorpha: Talpidae)
    Journal of Mammalogy, 89(6):1428–1434, 2008 KARYOTYPE EVOLUTION OF SHREW MOLES (SORICOMORPHA: TALPIDAE) SHIN-ICHIRO KAWADA,* SONG LI,YING-XIANG WANG,ORIN B. MOCK,SEN-ICHI ODA, AND KEVIN L. CAMPBELL Department of Zoology, National Museum of Nature and Science, 3-23-1, Hyakunin-cho, Shinjuku, Tokyo 169-0073, Japan (SK) Mammalogy Division, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (SL, Y-XW) Department of Anatomy, Kirksville College of Osteopathic Medicine, A. T. University of Health Sciences, Kirksville, MO 63501, USA (OBM) Laboratory of Animal Management and Resources, Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan (SO) Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada (KLC) The Chinese long-tailed mole (Scaptonyx fusicaudus) closely resembles American (Neurotrichus gibbsii) and Japanese (Dymecodon pilirostris and Urotrichus talpoides) shrew moles in size, appearance, and ecological habits, yet it has traditionally been classified either together with (viz subfamily Urotrichinae) or separately (tribe Scaptonychini) from the latter genera (tribe Urotrichini sensu lato). We explored the merit of these competing hypotheses by comparing the differentially stained karyotypes of S. fusicaudus and N. gibbsii with those previously reported for both Japanese taxa. With few exceptions, diploid chromosome number (2n ¼ 34), fundamental autosomal number (FNa ¼ 64), relative size, and G-banding pattern of S. fusicaudus were indistinguishable from those of D. pilirostris and U. talpoides. In fact, only chromosome 15 differed significantly between these species, being acrocentric in D. pilirostris, subtelocentric in U. talpoides, and metacentric in S. fusicaudus. This striking similarity is difficult to envisage except in light of a shared common ancestry, and is indicative of an exceptionally low rate of chromosomal evolution among these genera.
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]
  • Lanphere National Natural Landmark Evaluation
    Evaluation of Lanphere / Ma-le’l Dunes Humboldt County, California For its Merit in Meeting National Significance Criteria as a National Natural Landmark to Represent Siskiyou – Klamath Coastal Sand Dunes in the North Pacific Border Biophysiographic Province Peter Alpert and James S. Kagan May 2019 Contact Information: Peter Alpert, Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003 James S. Kagan, Oregon Biodiversity Information Center. Institute for Natural Resources – Portland, Portland State University. Mailstop: INR. P.O. Box 751, Portland, Oregon 97207. Citation: Alpert, P. and J.S. Kagan, 2019. Evaluation of Lanphere / Ma-le’l Dunes, Humboldt County, California for its Merit in Meeting National Significance Criteria as a National Natural Landmark to Represent Siskiyou – Klamath Coastal Sand Dunes in the North Pacific Border Biophysiographic Province. National Park Service Technical Report, National Natural Landmarks Program, Fort Collins, CO. Acknowledgements The authors would like to acknowledge the work of the many people who participated in the evaluation of the North Pacific Border province coastal dunes theme studies. The authors would also like to acknowledge the help, support and patience of our partners at the National Park Service, in particular Laurette Jenkins, who took this on as her first project, and has done a wonderful job, helping us with formatting, questions, and direction on the project. We also especially thank Steve Gibbons, who recently left the Pacific West Region’s NNL program job after 22 years to become the superintendent of Mount Lassen National Park and who inspired us to take on this report. Both authors would like to recognize Andrea Pickart, for her help, great photos, guidance, and advice.
    [Show full text]