Size and Distribution of Home Ranges of the Japanese Shrew-Mole Urotrichus Talpoides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mammal Species Native to the USA and Canada for Which the MIL Has an Image (296) 31 July 2021
Mammal species native to the USA and Canada for which the MIL has an image (296) 31 July 2021 ARTIODACTYLA (includes CETACEA) (38) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei - Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Eschrichtius robustus - Gray Whale 7. Megaptera novaeangliae - Humpback Whale BOVIDAE - cattle, sheep, goats, and antelopes 1. Bos bison - American Bison 2. Oreamnos americanus - Mountain Goat 3. Ovibos moschatus - Muskox 4. Ovis canadensis - Bighorn Sheep 5. Ovis dalli - Thinhorn Sheep CERVIDAE - deer 1. Alces alces - Moose 2. Cervus canadensis - Wapiti (Elk) 3. Odocoileus hemionus - Mule Deer 4. Odocoileus virginianus - White-tailed Deer 5. Rangifer tarandus -Caribou DELPHINIDAE - ocean dolphins 1. Delphinus delphis - Common Dolphin 2. Globicephala macrorhynchus - Short-finned Pilot Whale 3. Grampus griseus - Risso's Dolphin 4. Lagenorhynchus albirostris - White-beaked Dolphin 5. Lissodelphis borealis - Northern Right-whale Dolphin 6. Orcinus orca - Killer Whale 7. Peponocephala electra - Melon-headed Whale 8. Pseudorca crassidens - False Killer Whale 9. Sagmatias obliquidens - Pacific White-sided Dolphin 10. Stenella coeruleoalba - Striped Dolphin 11. Stenella frontalis – Atlantic Spotted Dolphin 12. Steno bredanensis - Rough-toothed Dolphin 13. Tursiops truncatus - Common Bottlenose Dolphin MONODONTIDAE - narwhals, belugas 1. Delphinapterus leucas - Beluga 2. Monodon monoceros - Narwhal PHOCOENIDAE - porpoises 1. Phocoena phocoena - Harbor Porpoise 2. Phocoenoides dalli - Dall’s Porpoise PHYSETERIDAE - sperm whales Physeter macrocephalus – Sperm Whale TAYASSUIDAE - peccaries Dicotyles tajacu - Collared Peccary CARNIVORA (48) CANIDAE - dogs 1. Canis latrans - Coyote 2. -
Ewa Żurawska-Seta
Tom 59 2010 Numer 1–2 (286–287) Strony 111–123 Ewa Żurawska-sEta Katedra Zoologii Uniwersytet Technologiczno-Przyrodniczy A. Kordeckiego 20, 85-225 Bydgoszcz E-mail: [email protected] kretowate talpidae — ROZMieSZCZeNie oraZ klaSyfikaCja w świetle badań geNetycznyCh i MorfologicznyCh wStęp podział systematyczny ssaków podlega zaproponowanej przez wilson’a i rEEdEr’a ciągłym zmianom, głównie za sprawą dyna- (2005) wyodrębnione zostały nowe rzędy: micznie rozwijających się w ostatnich latach erinaceomorpha, do którego zaliczono je- badań genetycznych. w klasyfikacji owado- żowate erinaceidae oraz Soricomorpha, w żernych insectivora zaszły istotne zmiany. którym znalazły się kretowate talpidae i ry- według tradycyjnej klasyfikacji fenetycznej jówkowate Soricidae. do ostatniego z wymie- kret Talpa europaea linnaeus, 1758, zali- nionych rzędów zaliczono ponadto almiko- czany był do rodziny kretowatych talpidae wate Solenodontidae oraz wymarłą rodzinę i rzędu owadożernych insectivora. do tego Nesophontidae (wcześniej obie te rodziny samego rzędu należały również występujące również zaliczano do insectivora), z zastrze- w polsce jeże i ryjówki. według klasyfikacji żeniem, że oczekiwane są dalsze zmiany. klaSyfikaCja kretowatyCh talpidae rodzina talpidae obejmuje 3 podrodziny: świetnym pływakiem, ponieważ większość Scalopinae, talpinae i Uropsilinae. podrodzi- pożywienia zdobywa na powierzchni wody na Scalopinae podzielona jest na 2 plemiona, oraz w toni wodnej. jest do tego doskona- 5 rodzajów i 7 gatunków (tabela 1). krety z le przystosowany, ponieważ posiada błony tej podrodziny często nazywane są „kretami z pławne między palcami kończyn tylnych. Nowego świata”, ponieważ większość gatun- Ma również długi ogon, stanowiący 75–81% ków występuje w Stanach Zjednoczonych, długości całego ciała, który spełnia rolę ma- północnym Meksyku i w południowej części gazynu tłuszczu, wykorzystywanego głównie kanady. -
An Evolutionary View on the Japanese Talpids Based on Nucleotide Sequences
Mammal Study 30: S19–S24 (2005) © the Mammalogical Society of Japan An evolutionary view on the Japanese talpids based on nucleotide sequences Akio Shinohara1,*, Kevin L. Campbell2 and Hitoshi Suzuki3 1 Department of Bio-resources, Division of Biotechnology, Frontier Science Research Center, University of Miyazaki, Miyazaki 889-1692, Japan 2 Department of Zoology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada 3 Graduate School of Environmental Earth Science, Hokkaido University, Hokkaido 060-0810, Japan Abstract. Japanese talpid moles exhibit a remarkable degree of species richness and geographic complexity, and as such, have attracted much research interest by morphologists, cytogeneticists, and molecular phylogeneticists. However, a consensus hypothesis pertaining to the evolutionary history and biogeography of this group remains elusive. Recent phylogenetic studies utilizing nucleotide sequences have provided reasonably consistent branching patterns for Japanese talpids, but have generally suffered from a lack of closely related South-East Asian species for sound biogeographic interpretations. As an initial step in achieving this goal, we constructed phylogenetic trees using publicly accessible mitochondrial and nuclear sequences from seven Japanese taxa, and those of related insular and continental species for which nucleotide data is available. The resultant trees support the view that four lineages (Euroscaptor mizura, Mogera tokuade species group [M. tokudae and M. etigo], M. imaizumii, and M. wogura) migrated separately, and in this order, from the continental Asian mainland to Japan. The close relationship of M. tokudae and M. etigo suggests these lineages diverged recently through a vicariant event between Sado Island and Echigo plain. The origin of the two endemic lineages of Japanese shrew-moles, Urotrichus talpoides and Dymecodon pilirostris, remains ambiguous. -
Townsend's Mole
COSEWIC Assessment and Update Status Report on the Townsend’s Mole Scapanus townsendii in Canada ENDANGERED 2003 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION DES ENDANGERED WILDLIFE ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2003. COSEWIC assessment and update status report on Townsend’s mole Scapanus townsendi in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 24 pp. Previous reports: Sheehan, S.T. and C. Galindo-Leal. 1996. COSEWIC status report on Townsend’s mole Scapanus townsendii in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 50 pp. Production note: COSEWIC would like to acknowledge Valentin Shaefer for writing the status report on the Townsend’s mole Scapanus townsendii, prepared under contract with Environment Canada. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Évaluation et Rapport de situation du COSEPAC sur la situation de la taupe de Townsend (Scapanus townsendii) au Canada – Mise à jour Cover illustration: Townsend’s Mole — Judie Shore, Richmond Hill, Ontario Her Majesty the Queen in Right of Canada, 2003 Catalogue No. CW69-14/15-2003E-IN ISBN 0-662-33588-0 Recycled paper COSEWIC Assessment Summary Assessment Summary – May 2003 Common name Townsend’s mole Scientific name Scapanus townsendii Status Endangered Reason for designation There are only about 450 mature individuals in a single Canadian population with a range of 13 km2, adjacent to a small area of occupied habitat in the USA. -
Natural History of Oregon Coast Mammals Chris Maser Bruce R
Forest Servile United States Depa~ment of the interior Bureau of Land Management General Technical Report PNW-133 September 1981 ser is a ~ildiife biologist, U.S. ~epa~rn e Interior, Bureau of La gement (stationed at Sciences Laboratory, Corvallis, Oregon. Science Center, ~ewpo Sciences Laborato~, Corvallis, Oregon. T. se is a soil scientist, U.S. wa t of culture, Forest Service, Pacific rthwest Forest and ange ~xperim Station, lnst~tute of orthern Forestry, Fairbanks, Alaska. Natural History of Oregon Coast Mammals Chris Maser Bruce R. Mate Jerry F. Franklin C. T. Dyrness Pacific Northwest Forest and Range Experiment Station U.S. Department of Agriculture Forest Service General Technical Report PNW-133 September 1981 Published in cooperation with the Bureau of Land Management U.S. Department of the Interior Abstract Maser, Chris, Bruce R. Mate, Jerry F. Franklin, and C. T. Dyrness. 1981. Natural history of Oregon coast mammals. USDA For. Serv. Gen. Tech. Rep. PNW-133, 496 p. Pac. Northwest For. and Range Exp. Stn., Portland, Oreg. The book presents detailed information on the biology, habitats, and life histories of the 96 species of mammals of the Oregon coast. Soils, geology, and vegetation are described and related to wildlife habitats for the 65 terrestrial and 31 marine species. The book is not simply an identification guide to the Oregon coast mammals but is a dynamic portrayal of their habits and habitats. Life histories are based on fieldwork and available literature. An extensive bibliography is included. Personal anecdotes of the authors provide entertaining reading. The book should be of use to students, educators, land-use planners, resource managers, wildlife biologists, and naturalists. -
Condylura (Mammalia, Talpidae) Reloaded: New Insights About the Fossil Representatives of the Genus
Palaeontologia Electronica palaeo-electronica.org Condylura (Mammalia, Talpidae) reloaded: New insights about the fossil representatives of the genus Gabriele Sansalone, Tassos Kotsakis, and Paolo Piras ABSTRACT The star nosed mole, Condylura cristata, due to its morphological and behavioural peculiarities, has been deeply investigated by different authors. By contrast, very little is known about the phylogenetic relationships, evolution and diversity of the fossil members of this genus. In the present study we provide new insights about the fossil specimens ascribed to Condylura taking into account systematic, palaeobiogeographi- cal and palaeoecological aspects. Further, we provide a re-description of a fossil Con- dylura from the middle Miocene of Kazakhstan. We confirm that the Kazakh fossil belongs to the genus Condylura, based on humeral morphological features, and we discuss its implications and impact on the phylogenetic scenario and ecology of this peculiar talpid genus. This specimen represents the earliest record of the genus, thus suggesting an Eurasiatic origin instead of the most commonly accepted scenario of a North American one. The presence of both plesiomorphic and apomorphic characters in Condylura strongly supports the hypothesis that this genus could be considered as sister clade of Talpinae. Gabriele Sansalone. Roma Tre University of Rome, Dept. of Sciences, L.S. Murialdo, 1 – 00146 Rome, Italy/Center for evolutionary ecology, C.da Fonte Lappone, Pesche, Italy/Form, Evolution and Anatomy Research Laboratory, Zoology, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, Australia [email protected] Tassos Kotsakis. Roma Tre University of Rome, Dept. of Sciences, L.S. Murialdo, 1 – 00146 Rome, Italy/ Center for evolutionary ecology, C.da Fonte Lappone, Pesche, Italy [email protected] Paolo Piras. -
Oxygen Stores and Diving Behaviour of the Star-Nosed Mole 47
The Journal of Experimental Biology 205, 45–54 (2002) 45 Printed in Great Britain © The Company of Biologists Limited 2002 JEB3646 Body oxygen stores, aerobic dive limits and diving behaviour of the star-nosed mole (Condylura cristata) and comparisons with non-aquatic talpids Ian W. McIntyre, Kevin L. Campbell and Robert A. MacArthur* Department of Zoology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2 *Author for correspondence (e-mail: [email protected]) Accepted 18 October 2001 Summary The dive performance, oxygen storage capacity and moles Neurotrichus gibbsii (8.8 mg g–1 wet tissue; N=2). The partitioning of body oxygen reserves of one of the world’s mean skeletal muscle Mb content of adult star-nosed moles smallest mammalian divers, the star-nosed mole Condylura was 91.1 % higher than for juveniles of this species cristata, were investigated. On the basis of 722 voluntary (P<0.0001). On the basis of an average diving metabolic –1 –1 dives recorded from 18 captive star-nosed moles, the mean rate of 5.38±0.35 ml O2 g h (N=11), the calculated aerobic dive duration (9.2±0.2 s; mean ± S.E.M.) and maximum dive limit (ADL) of star-nosed moles was 22.8 s for adults recorded dive time (47 s) of this insectivore were and 20.7 s for juveniles. Only 2.9 % of voluntary dives comparable with those of several substantially larger semi- by adult and juvenile star-nosed moles exceeded their aquatic endotherms. Total body O2 stores of adult star- respective calculated ADLs, suggesting that star-nosed nosed moles (34.0 ml kg–1) were 16.4 % higher than for moles rarely exploit anaerobic metabolism while diving, a similarly sized, strictly fossorial coast moles Scapanus conclusion supported by the low buffering capacity of their –1 orarius (29.2 ml kg ), with the greatest differences observed skeletal muscles. -
2014 Annual Reports of the Trustees, Standing Committees, Affiliates, and Ombudspersons
American Society of Mammalogists Annual Reports of the Trustees, Standing Committees, Affiliates, and Ombudspersons 94th Annual Meeting Renaissance Convention Center Hotel Oklahoma City, Oklahoma 6-10 June 2014 1 Table of Contents I. Secretary-Treasurers Report ....................................................................................................... 3 II. ASM Board of Trustees ............................................................................................................ 10 III. Standing Committees .............................................................................................................. 12 Animal Care and Use Committee .......................................................................... 12 Archives Committee ............................................................................................... 14 Checklist Committee .............................................................................................. 15 Conservation Committee ....................................................................................... 17 Conservation Awards Committee .......................................................................... 18 Coordination Committee ....................................................................................... 19 Development Committee ........................................................................................ 20 Education and Graduate Students Committee ....................................................... 22 Grants-in-Aid Committee -
Urotrichus Talpoides)
Molecular phylogeny of a newfound hantavirus in the Japanese shrew mole (Urotrichus talpoides) Satoru Arai*, Satoshi D. Ohdachi†, Mitsuhiko Asakawa‡, Hae Ji Kang§, Gabor Mocz¶, Jiro Arikawaʈ, Nobuhiko Okabe*, and Richard Yanagihara§** *Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; †Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan; ‡School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; §John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813; ¶Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822; and ʈInstitute for Animal Experimentation, Hokkaido University, Sapporo 060-8638, Japan Communicated by Ralph M. Garruto, Binghamton University, Binghamton, NY, September 10, 2008 (received for review August 8, 2008) Recent molecular evidence of genetically distinct hantaviruses in primers based on the TPMV genome, we have targeted the shrews, captured in widely separated geographical regions, cor- discovery of hantaviruses in shrew species from widely separated roborates decades-old reports of hantavirus antigens in shrew geographical regions, including the Chinese mole shrew (Anouro- tissues. Apart from challenging the conventional view that rodents sorex squamipes) from Vietnam (21), Eurasian common shrew are the principal reservoir hosts, the recently identified soricid- (Sorex araneus) from Switzerland (22), northern short-tailed shrew borne hantaviruses raise the possibility that other soricomorphs, (Blarina brevicauda), masked shrew (Sorex cinereus), and dusky notably talpids, similarly harbor hantaviruses. In analyzing RNA shrew (Sorex monticolus) from the United States (23, 24) and Ussuri extracts from lung tissues of the Japanese shrew mole (Urotrichus white-toothed shrew (Crocidura lasiura) from Korea (J.-W. -
Karyotype Evolution of Shrew Moles (Soricomorpha: Talpidae)
Journal of Mammalogy, 89(6):1428–1434, 2008 KARYOTYPE EVOLUTION OF SHREW MOLES (SORICOMORPHA: TALPIDAE) SHIN-ICHIRO KAWADA,* SONG LI,YING-XIANG WANG,ORIN B. MOCK,SEN-ICHI ODA, AND KEVIN L. CAMPBELL Department of Zoology, National Museum of Nature and Science, 3-23-1, Hyakunin-cho, Shinjuku, Tokyo 169-0073, Japan (SK) Mammalogy Division, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China (SL, Y-XW) Department of Anatomy, Kirksville College of Osteopathic Medicine, A. T. University of Health Sciences, Kirksville, MO 63501, USA (OBM) Laboratory of Animal Management and Resources, Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan (SO) Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada (KLC) The Chinese long-tailed mole (Scaptonyx fusicaudus) closely resembles American (Neurotrichus gibbsii) and Japanese (Dymecodon pilirostris and Urotrichus talpoides) shrew moles in size, appearance, and ecological habits, yet it has traditionally been classified either together with (viz subfamily Urotrichinae) or separately (tribe Scaptonychini) from the latter genera (tribe Urotrichini sensu lato). We explored the merit of these competing hypotheses by comparing the differentially stained karyotypes of S. fusicaudus and N. gibbsii with those previously reported for both Japanese taxa. With few exceptions, diploid chromosome number (2n ¼ 34), fundamental autosomal number (FNa ¼ 64), relative size, and G-banding pattern of S. fusicaudus were indistinguishable from those of D. pilirostris and U. talpoides. In fact, only chromosome 15 differed significantly between these species, being acrocentric in D. pilirostris, subtelocentric in U. talpoides, and metacentric in S. fusicaudus. This striking similarity is difficult to envisage except in light of a shared common ancestry, and is indicative of an exceptionally low rate of chromosomal evolution among these genera. -
List of Taxa for Which MIL Has Images
LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12. -
Lanphere National Natural Landmark Evaluation
Evaluation of Lanphere / Ma-le’l Dunes Humboldt County, California For its Merit in Meeting National Significance Criteria as a National Natural Landmark to Represent Siskiyou – Klamath Coastal Sand Dunes in the North Pacific Border Biophysiographic Province Peter Alpert and James S. Kagan May 2019 Contact Information: Peter Alpert, Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003 James S. Kagan, Oregon Biodiversity Information Center. Institute for Natural Resources – Portland, Portland State University. Mailstop: INR. P.O. Box 751, Portland, Oregon 97207. Citation: Alpert, P. and J.S. Kagan, 2019. Evaluation of Lanphere / Ma-le’l Dunes, Humboldt County, California for its Merit in Meeting National Significance Criteria as a National Natural Landmark to Represent Siskiyou – Klamath Coastal Sand Dunes in the North Pacific Border Biophysiographic Province. National Park Service Technical Report, National Natural Landmarks Program, Fort Collins, CO. Acknowledgements The authors would like to acknowledge the work of the many people who participated in the evaluation of the North Pacific Border province coastal dunes theme studies. The authors would also like to acknowledge the help, support and patience of our partners at the National Park Service, in particular Laurette Jenkins, who took this on as her first project, and has done a wonderful job, helping us with formatting, questions, and direction on the project. We also especially thank Steve Gibbons, who recently left the Pacific West Region’s NNL program job after 22 years to become the superintendent of Mount Lassen National Park and who inspired us to take on this report. Both authors would like to recognize Andrea Pickart, for her help, great photos, guidance, and advice.