(IEE) Installation of Wind Turbines, Crater Hill, Mcmu

Total Page:16

File Type:pdf, Size:1020Kb

(IEE) Installation of Wind Turbines, Crater Hill, Mcmu Antarctica New Zealand Initial Environmental Evaluation (IEE) Installation of Wind Turbines, Crater Hill, McMurdo Sound Computer generated image of wind turbines at Crater Hill from sea ice in front of Scott Base. (Meridian Energy) April 2008 2 Contents 1. NON‐TECHNICAL SUMMARY 8 2. INTRODUCTION 11 2.1 PROJECT JUSTIFICATION 11 2.2 THE IEE PROCESS 13 3. DESCRIPTION OF PROPOSED ACTIVITIES 14 3.1 PURPOSE AND NEED 14 3.2 LOCATION 16 3.3 DURATION 17 3.4 NATURE AND INTENSITY OF PROPOSED ACTIVITY 19 3.5 ALTERNATIVES 29 4. DESCRIPTION OF INITIAL ENVIRONMENTAL STATE 32 4.1 METEOROLOGY 32 4.2 TEMPERATURES 34 4.3 TERRESTRIAL ENVIRONMENT 34 4.4 BIOTA 38 4.5 HISTORY OF HUMAN ACTIVITIES 39 4.6 ASPA OR OTHER VALUES 39 5. ASSESSMENT OF ENVIRONMENTAL IMPACTS 41 5.1 METHODOLOGY AND DATA SOURCES 41 5.2 ASSESSMENT OF THE DIRECT IMPACTS OF THE PROPOSED ACTIVITY ON THE ENVIRONMENT 45 5.3 INDIRECT IMPACTS OF THE PROPOSED ACTIVITY 55 5.4 CUMULATIVE IMPACTS 58 6. MITIGATION OF IMPACTS AND MONITORING 62 6.1 CONTROL MEASURES TO MINIMISE IMPACTS 62 6.2 IMPACT MONITORING, AUDITING AND REPORTING 64 7. GAPS IN KNOWLEDGE AND UNCERTAINTIES 66 3 8. REMEDIATION 67 9. CONCLUSIONS 68 10. REFERENCES 69 11. APPENDICES 71 4 List of Tables Table 1. Wind Energy Targets for combined McMurdo Station/Scott Base System. Table 2. Proposed Turbine Locations Table 3. Proposed Crater Hill Project Timeline Table 4. Enercon E33 Technical Data Table 5. Other wind turbines considered and reasons for not being chosen. Table 6. Definitions of impact significance Table 7. Impact assessment criteria (Source: Oerter, 2000) Table 8. Nature, extent, duration and intensity of impacts from physical disturbance to the terrestrial environment including probability and mitigation measures. Table 9. Nature, extent, duration and intensity of impacts of activity on the air environment, including probability and mitigation measures. Table 10. Nature, extent, duration and intensity of impacts of the activity causing disturbance to flora and fauna. Also shows probability and mitigation measures. Table 11. Nature, extent, duration and intensity of impacts of activity on aesthetic and wilderness values, including probability and mitigation measures. Table 12. Nature, extent, duration and intensity of indirect impacts, including probability and mitigation measures. Table 13. Nature, extent, duration and intensity of cumulative impacts, including probability and mitigation measures. 5 List of Figures Figure 1. Graph showing reduction in energy consumption relative to the size of the base. 06/07 data shows that energy consumption was similar to the year before indicating that new initiatives are needed to further reduce energy consumption on base. Figure 2. Map of Crater Hill location. Figure 3. Enercon E33 Turbine to be installed at Crater Hill. Figure 4. Site layout for Crater Hill wind farm. Figure 5. Proposed cable route between Crater Hill and Scott Base (red). Figure 6. Foundation design: Blue components are steel. Base of turbine tower bolts to the circular ring on top. Grey components are precast concrete, secured to ground by anchor rods. Figure 7. Wind Rose for proposed Crater Hill wind turbine site (2005‐07) Figure 8. Mean and maximum wind speeds at Crater Hill (2006) Figure 9. Mean Air Temperatures for Scott Base (1957‐2007) and Arrival Heights (1999‐2000) (NIWA). Figure 10. Last date in which sand‐wedge polygons could be identified. Figure 11. Areas that can be identified as heavily disturbed in 1993 (Texas A&M University and the University of Texas at Austin) Figure 12. Windrows from scraping of the ground at the proposed site. Patterned ground in the distance. (Photo: Jana Newman, 2007). Figure 13. Clear ground disturbance at proposed wind turbine site on Carter Hill (Huston, 2007). Figure 14. Track marks on disused road around the side of the turbine site. Warratah to mark the site of the second turbine visible in the background (Huston, 2007). Figure 15. Map showing the Arrival Heights ASPA 122, and Hut Point which is the location of Scott’s historic hut ASPA 158. The wind turbine site is located just south of the top of Crater Hill (see Figure 2 for location). Figure 16. Computer generated image of the wind turbines from the sea ice in front of Scott Base (Meridian Energy). 6 List of Acronyms ATCM Antarctic Treaty Consultative Meeting ATCPs Antarctic Treaty Consultative Parties AWS Automatic Weather Station CEE Comprehensive Environmental Evaluation CEP Committee for Environmental Protection COMNAP Council of Managers of National Antarctic Programmes EIA Environmental Impact Assessment EMI Electro‐Magnetic Interference IEE Initial Environmental Evaluation NASA National Aeronautics and Space Administration NSF National Science Foundation TAE Trans‐ Antarctic Expedition 7 1. Non­Technical Summary This Antarctica New Zealand Initial Environmental Evaluation (IEE) assesses the environmental impact of the proposed installation of three wind turbines at Crater Hill, Ross Island, Antarctica. This IEE will be made publically available on the Ministry of Foreign Affairs and Trade (MFAT) and the Antarctic Treaty websites. DESCRIPTION OF THE PROPOSED ACTIVITY Antarctica New Zealand in partnership with the National Science Foundation (NSF) propose to establish a three‐turbine wind farm on Crater Hill, Ross Island. The wind farm will run year round. The energy produced by the wind farm will be reticulated back to Scott Base and McMurdo Station. Wind energy on Ross Island is a feasible, environmentally friendly proposition and the proposed activity as descried in this IEE is expected to reduce power plant fuel usage at Scott Base and McMurdo Station by approximately 11%. PURPOSE AND NEED Antarctica New Zealand is committed to improving protection of intrinsic environmental values through active and responsible environmental stewardship. A reduction in greenhouse gases is in line with the New Zealand Government’s drive on sustainability and reductions in greenhouse emissions. Antarctica New Zealand is committed to the New Zealand Government’s (Ministry for the Environment) “Sustainable Government programme (Govt3)”. Specifically, the outcomes Antarctica New Zealand seeks to contribute in the medium term are: • Promoting a culture of environmental awareness and environmental best practice in all our activities; • Aiming to run Scott Base as a leading environmentally sustainable small research base in Antarctica; and • Using more renewable energy, reducing the amount of energy and materials we use and reducing or recycling more waste. The proposed wind turbine activity will contribute to achieving the outcomes listed above as well as contributing to the joint New Zealand/United States’ logistics pool. The installation and use of wind turbines at Crater Hill will reduce fuel consumption and therefore greenhouse gas emissions, reduce environmental risk of spills through less handling of fuel, and reduce the cost of power generation in the long term. 8 ENVIRONMENTAL ASSESSMENT Initial investigations into the feasibility of the proposed Crater Hill wind turbine activity were conducted under preliminary evaluations. These included the installation of a wind monitoring tower at Crater Hill in March 2005 (still operational), geotechnical investigations and anchor system testing. Internal discussions held about the appropriate level of Environmental Impact Assessment (EIA) for the wind turbine project revealed a number of factors which have determined an IEE as the appropriate level of assessment: 1. Close proximity to both stations, and only 450m from existing T‐site facility; 2. Already existing road for most of the route to Crater Hill site; 3. Cables will largely follow existing cable route from Scott Base to Crater Hill site; 4. Existing McMurdo electrical distribution system; 5. Extensively altered site; 6. Low ecological value at site; and 7. Maximum separation from nearby sites of scientific interest. When considered together it appears likely that the impacts of the proposed activity will be no more than minor or transitory. It was therefore decided that the IEE level was the appropriate level of EIA for this project. There is potential that the wind farm project may expand to nearby areas at a later date dependent upon success of this first project. It is possible that any expansion would necessitate a Comprehensive Environmental Evaluation (CEE) for submission to the Committee for Environmental Protection/Antarctic Treaty Consultative Meeting (CEP/ATCM). 9 IMPACT MITIGATION AND MONITORING Careful planning of operating procedures, including a number of mitigation measures will be put in place to minimise potential impacts. Storage and handling of equipment and supplies ‐ especially fuel, ground disturbance, and waste management, will be carried out in ways that minimise impacts. Mitigation and control measures as described in Sections 5 and 6 will be implemented prior to the start of the project. CONCLUSION Overall the IEE predicts that probable environmental impacts of the proposed activity will be no more than minor or transitory. This level of impact is considered acceptable given the significant environmental advantages the development of this wind farm will have both globally and also locally to Antarctica. 10 2. Introduction 2.1 Project justification BACKGROUND Antarctica New Zealand has been researching the feasibility of wind energy on Ross Island for the past two years in order to reduce fuel consumption and therefore greenhouse gas emissions. In 2005, Antarctica New Zealand signed
Recommended publications
  • NITROGEN on MARS: INSIGHTS from CURIOSITY. J. C. Stern1 , B. Sutter2, W. A. Jackson3, Rafael Na- Varro-González4, Christopher P
    Lunar and Planetary Science XLVIII (2017) 2726.pdf 1 2 3 NITROGEN ON MARS: INSIGHTS FROM CURIOSITY. J. C. Stern , B. Sutter , W. A. Jackson , Rafael Na- varro-González4, Christopher P. McKay5, Douglas W. Ming6, P. Douglas Archer2, D. P. Glavin1, A. G. Fairen7,8 and Paul R. Mahaffy1. 1NASA GSFC, Code 699, Greenbelt, MD 20771, [email protected], 2Jacobs, NASA Johnson Space Center, Houston, TX 77058, 3Texas Tech University, Lubbock, TX 79409, 4Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico, 5NASA Ames Research Center, Moffett Field, CA 94035, 6NASA Johnson Space Center, Houston TX 77058, 7Centro de Astrobiologia, Madrid, Spain, 8Cornell University, Ithaca, NY 14853 Introduction: Recent detection of nitrate on Mars [1] indicates that nitrogen fixation processes occurred in early martian history. Data collected by the Sample Analysis at Mars (SAM) instrument on the Curiosity Rover can be integrated with Mars analog work in order to better understand the fixation and mobility of nitrogen on Mars, and thus its availability to putative biology. In particular, the relationship between nitrate and other soluble salts may help reveal the timing of nitrogen fixation and post-depositional behavior of nitrate on Mars. In addition, in situ measurements of nitrogen abundance and isotopic composition may be used to model atmospheric conditions on early Mars. Methods: The data presented are from analyses of solid Martian drilled and scooped samples by the Sam- ple Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover. SAM performs evolved gas analysis (EGA), in which a 3 Figure 1.
    [Show full text]
  • Non-Collider Searches for Stable Massive Particles
    Non-collider searches for stable massive particles S. Burdina, M. Fairbairnb, P. Mermodc,, D. Milsteadd, J. Pinfolde, T. Sloanf, W. Taylorg aDepartment of Physics, University of Liverpool, Liverpool L69 7ZE, UK bDepartment of Physics, King's College London, London WC2R 2LS, UK cParticle Physics department, University of Geneva, 1211 Geneva 4, Switzerland dDepartment of Physics, Stockholm University, 106 91 Stockholm, Sweden ePhysics Department, University of Alberta, Edmonton, Alberta, Canada T6G 0V1 fDepartment of Physics, Lancaster University, Lancaster LA1 4YB, UK gDepartment of Physics and Astronomy, York University, Toronto, ON, Canada M3J 1P3 Abstract The theoretical motivation for exotic stable massive particles (SMPs) and the results of SMP searches at non-collider facilities are reviewed. SMPs are defined such that they would be suffi- ciently long-lived so as to still exist in the cosmos either as Big Bang relics or secondary collision products, and sufficiently massive such that they are typically beyond the reach of any conceiv- able accelerator-based experiment. The discovery of SMPs would address a number of important questions in modern physics, such as the origin and composition of dark matter and the unifi- cation of the fundamental forces. This review outlines the scenarios predicting SMPs and the techniques used at non-collider experiments to look for SMPs in cosmic rays and bound in mat- ter. The limits so far obtained on the fluxes and matter densities of SMPs which possess various detection-relevant properties such as electric and magnetic charge are given. Contents 1 Introduction 4 2 Theory and cosmology of various kinds of SMPs 4 2.1 New particle states (elementary or composite) .
    [Show full text]
  • Perchlorate and Chlorate Biogeochemistry in Ice-Covered Lakes of the Mcmurdo Dry Valleys, Antarctica
    Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 98 (2012) 19–30 www.elsevier.com/locate/gca Perchlorate and chlorate biogeochemistry in ice-covered lakes of the McMurdo Dry Valleys, Antarctica W. Andrew Jackson a,⇑, Alfonso F. Davila b,c, Nubia Estrada a, W. Berry Lyons d, John D. Coates e, John C. Priscu f a Department of Civil and Environmental Engineering, Texas Tech University, Lubbock, TX 79409, USA b NASA Ames Research Center, Moffett Field, CA 95136, USA c SETI Institute, 189 Bernardo Ave., Suite 100, Mountain View, CA 94043-5203, USA d Byrd Polar Research Center, The Ohio State University, Columbus, OH 43210, USA e Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA f Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA Received 15 February 2012; accepted in revised form 5 September 2012; available online 19 September 2012 Abstract À À We measured chlorate (ClO3 ) and perchlorate (ClO4 ) concentrations in ice covered lakes of the McMurdo Dry Valleys À À (MDVs) of Antarctica, to evaluate their role in the ecology and geochemical evolution of the lakes. ClO3 and ClO4 are À À present throughout the MDV Lakes, streams, and other surface water bodies. ClO3 and ClO4 originate in the atmosphere and are transported to the lakes by surface inflow of glacier melt that has been differentially impacted by interaction with soils À À and aeolian matter. Concentrations of ClO3 and ClO4 in the lakes and between lakes vary based on both total evaporative concentration, as well as biological activity within each lake.
    [Show full text]
  • NO ONE KNOWS ABOUT US by Bridget Canning. a Creative Writing
    NO ONE KNOWS ABOUT US By Bridget Canning. A Creative Writing Thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Masters of Arts in English (Creative Writing) Department of English, Memorial University of Newfoundland Abstract: No One Knows about Us is a collection of twelve contemporary short stories. As the title suggests, the characters in each story deal with secrets: relationships, longings, grudges, addictions, and trickery. For them, these secrets are simultaneously overwhelming and futile; their importance within their small worlds reflect a deeper feeling of insignificance in the greater scheme of life in a small city in a northern province hemmed on to the side of a continent. Here are a range of characters and situations set in St. John’s, Newfoundland and Labrador. The stories are mapped out in different areas of the city and move chronologically over a year, starting in fall and ending in late summer. They work together to create a small sample of life in modern-day St. John’s – one that is informed by the influences of history, economy, and weather. i Acknowledgements: This thesis would not have been accomplished without the help of the English department faculty at Memorial such as Robert Finley, Robert Chafe, and especially my thesis advisor, Lisa Moore. Thanks to the Graduate Society for their financial support. Thanks to Jonathan Weir, Deirdre Snook, and the members of the Naked Parade Writing Collective for their guidance and encouragement. ii Contents: 1. Seen, p. 1 2. With Glowing Hearts, p. 19 3.
    [Show full text]
  • Geology of Hut Point Peninsula, Ross Island
    significantly below their Curie temperatures (approxi- Wilson, R. L., and N. D. Watkins. 1967. Correlation of mately 550°C.). petrology and natural magnetic polarity in Columbia Plateau basalts. Geophysical Journal of the Royal Astro- Previous work (Pucher, 1969; Stacey and Banerjee, nomical Society, 12(4): 405-424. 1974) indicates that the CRM intensity acquired in a low field is significantly less than the TRM intensity. It thus would appear that if a CRM induced at temperatures considerably below the Curie tempera- Geology of Hut Point Peninsula, ture, contributes a significant proportion to the ob- Ross Island served NRM intensity, too low an intensity value will be assigned to the ancient field. Although it is too early to report a firm value for PHILIP R. KYLE the intensity of the ancient field during the imprint- Department of Geology ing of unit 13 and related flows, we think that the Victoria University strength of the ambient field was more likely to Wellington, New Zealand have been about 0.5 oe (based on samples at about 141 meters) than about 0.1 oe (based on samples SAMUEL B. TREVES 122.18 and 126.06 meters). The virtual dipole Department of Geology moment (Smith, 1967b) calculated for an estimated University of Nebraska field intensity of 0.5 oe at the site is 7 X 10 25 gauss Lincoln, Nebraska 68508 cubic centimeters. This is larger than the value of 5.5 X 1025 gauss cubic centimeters (Smith, 1967b) Hut Point Peninsula is about 20 kilometers long calculated on the basis of paleointensity experiments and 2 to 4 kilometers wide.
    [Show full text]
  • Clean Tech Handbook for Asia Pacific May 2010
    Clean Tech Handbook for Asia Pacific May 2010 Asia Pacific Clean Tech Handbook 26-Apr-10 Table of Contents FOREWORD .................................................................................................................................................. 16 1 INTRODUCTION.................................................................................................................................... 19 1.1 WHAT IS CLEAN TECHNOLOGY? ........................................................................................................................ 19 1.2 WHY CLEAN TECHNOLOGY IN ASIA PACIFIC? .......................................................................................................19 1.3 FACTORS DRIVING THE CLEAN TECH MARKET IN ASIA PACIFIC .................................................................................20 1.4 KEY CHALLENGES FOR THE CLEAN TECH MARKET IN ASIA PACIFIC ............................................................................20 1.5 WHO WOULD BE INTERESTED IN THIS REPORT? ....................................................................................................21 1.6 STRUCTURE OF THE HANDBOOK ........................................................................................................................ 21 PART A – COUNTRY REVIEW.......................................................................................................................... 22 2 COUNTRY OVERVIEW..........................................................................................................................
    [Show full text]
  • Living and Working at USAP Facilities
    Chapter 6: Living and Working at USAP Facilities CHAPTER 6: Living and Working at USAP Facilities McMurdo Station is the largest station in Antarctica and the southermost point to which a ship can sail. This photo faces south, with sea ice in front of the station, Observation Hill to the left (with White Island behind it), Minna Bluff and Black Island in the distance to the right, and the McMurdo Ice Shelf in between. Photo by Elaine Hood. USAP participants are required to put safety and environmental protection first while living and working in Antarctica. Extra individual responsibility for personal behavior is also expected. This chapter contains general information that applies to all Antarctic locations, as well as information specific to each station and research vessel. WORK REQUIREMENT At Antarctic stations and field camps, the work week is 54 hours (nine hours per day, Monday through Saturday). Aboard the research vessels, the work week is 84 hours (12 hours per day, Monday through Sunday). At times, everyone may be expected to work more hours, assist others in the performance of their duties, and/or assume community-related job responsibilities, such as washing dishes or cleaning the bathrooms. Due to the challenges of working in Antarctica, no guarantee can be made regarding the duties, location, or duration of work. The objective is to support science, maintain the station, and ensure the well-being of all station personnel. SAFETY The USAP is committed to safe work practices and safe work environments. There is no operation, activity, or research worth the loss of life or limb, no matter how important the future discovery may be, and all proactive safety measures shall be taken to ensure the protection of participants.
    [Show full text]
  • In Pdf Format
    lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te .
    [Show full text]
  • The Antarctic Sun, December 19, 1999
    On the Web at http://www.asa.org December 19, 1999 Published during the austral summer at McMurdo Station, Antarctica, for the United States Antarctic Program Ski-plane crashes at AGO-6 By Aaron Spitzer The Antarctic Sun Two pilots escaped injury Sunday when their Twin Otter aircraft crashed during takeoff from an isolated landing site in East Antarctica. The plane, a deHavilland Twin Otter turboprop owned by Kenn Borek Air Ltd. and chartered to the U.S. Antarc- tic Program, was taking off around 3:15 p.m. Sunday when it caught a ski in the snow and tipped sideways. A wing hit the ground and the plane suffered Congratulations, it’s a helicopter! extensive damage. A New Zealand C-130 delivers a Bell 212 helicopter to the ice runway last week. The new The accident occurred on a tempo- arrival took the place of the Royal New Zealand Air Force helo used in the first part of the rary skiway at Automated Geophysical season. Photo by Ed Bowen. Observatory 6, located in Wilkes Land, about 800 miles northwest of McMurdo. The pilots had flown to the site earlier in the day from McMurdo Station to drop Testing tainted waters off two runway groomers, who were preparing the strip for the arrival of an By Josh Landis LC-130 Hercules ski-plane. The Antarctic Sun On Monday afternoon, another Kenn Borek Twin Otter, chartered to the Most scientists come to Antarctica because it gives them a chance to do their Italian Antarctic Program at Terra Nova work in the most pristine conditions on Earth.
    [Show full text]
  • A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars
    minerals Review A Review of Sample Analysis at Mars-Evolved Gas Analysis Laboratory Analog Work Supporting the Presence of Perchlorates and Chlorates in Gale Crater, Mars Joanna Clark 1,* , Brad Sutter 2, P. Douglas Archer Jr. 2, Douglas Ming 3, Elizabeth Rampe 3, Amy McAdam 4, Rafael Navarro-González 5,† , Jennifer Eigenbrode 4 , Daniel Glavin 4 , Maria-Paz Zorzano 6,7 , Javier Martin-Torres 7,8, Richard Morris 3, Valerie Tu 2, S. J. Ralston 2 and Paul Mahaffy 4 1 GeoControls Systems Inc—Jacobs JETS Contract at NASA Johnson Space Center, Houston, TX 77058, USA 2 Jacobs JETS Contract at NASA Johnson Space Center, Houston, TX 77058, USA; [email protected] (B.S.); [email protected] (P.D.A.J.); [email protected] (V.T.); [email protected] (S.J.R.) 3 NASA Johnson Space Center, Houston, TX 77058, USA; [email protected] (D.M.); [email protected] (E.R.); [email protected] (R.M.) 4 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; [email protected] (A.M.); [email protected] (J.E.); [email protected] (D.G.); [email protected] (P.M.) 5 Institito de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico City 04510, Mexico; [email protected] 6 Centro de Astrobiología (INTA-CSIC), Torrejon de Ardoz, 28850 Madrid, Spain; [email protected] 7 Department of Planetary Sciences, School of Geosciences, University of Aberdeen, Aberdeen AB24 3FX, UK; [email protected] 8 Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Armilla, 18100 Granada, Spain Citation: Clark, J.; Sutter, B.; Archer, * Correspondence: [email protected] P.D., Jr.; Ming, D.; Rampe, E.; † Deceased 28 January 2021.
    [Show full text]
  • The Mcmurdo Dry Valleys of Antarctica As an Analog for Past and Present Martian Surface Processes
    51st Lunar and Planetary Science Conference (2020) 1777.pdf THE MCMURDO DRY VALLEYS OF ANTARCTICA AS AN ANALOG FOR PAST AND PRESENT MARTIAN SURFACE PROCESSES. M. R. Salvatore1, J. S. Levy2, J. W. Head3, and J. L. Dickson4, 1Department of Astronomy and Planetary Science, Northern Arizona University, [email protected], 2Dept. of Geology, Colgate University, 3Dept. of Earth, Environmental, and Planetary Sciences, Brown University, 4Division of Geological and Planetary Sciences, Caltech. Introduction: The McMurdo Dry Valleys (MDV) of observed on Mars. We also highlight where additional Antarctica have been considered a valuable martian work in the MDV is necessary to address outstanding analog since the Viking era of Mars exploration [1]. Over questions in martian science. the past two decades, our understanding of martian Cold and Icy Early Mars?: The apparent environmental and geologic evolution has significantly disagreement between observed fluvial and lacustrine improved thanks to the plethora of orbital and landed landforms and the inability for global climate models to missions. New observations have raised many new produce mean annual temperatures greater than 0º C enigmatic questions about how cold and dry geological suggest that the martian surface was possibly never systems evolve, which has revitalized the MDV as an clement from a terrestrial perspective. Instead of a long- important terrestrial analog for Mars, from its earliest lived and continuously active hydrological system on recorded geologic history [2] to the present [3]. early Mars, is it possible that hydrological activity was Global martian climate models struggle to produce more episodic through punctuated climatic excursions on consistently warm and wet conditions at the martian an otherwise cold and icy early Mars? The fluvial and surface early in its history, even with the aid of additional lacustrine systems of the MDV are one possible analog greenhouse gases to offset the distance between Mars and where localized climatic optima drive local hydrological the faint young Sun [4].
    [Show full text]
  • Economic Benefits of Wind Farms in New Zealand
    Report to: New Zealand Wind Energy Association ECONOMIC BENEFITS OF WIND FARMS IN NEW ZEALAND Final report Prepared by Jason Leung-Wai Amapola Generosa June 2012 Copyright© BERL BERL ref #5157 JEL Classification: Final report Economic benefits of wind farms in New Zealand 1 Summary .......................................................................................... 4 2 Introduction .................................................................................... 10 2.1 Methodology .......................................................................................... 10 2.1 Format of the report ............................................................................... 12 3 Electricity supply and forecasts ................................................... 13 3.1 New Zealand Energy Outlook, 2011 ..................................................... 13 3.2 Wind Energy Association growth target ................................................ 14 4 Analysis .......................................................................................... 15 4.1 Local and overseas studies ................................................................... 15 4.2 Survey ................................................................................................... 18 4.3 Case studies .......................................................................................... 18 4.4 Summary ............................................................................................... 18 5 The wind energy industry in New Zealand
    [Show full text]