Introduction We All Know the Ten Digits of the Hindu-Arabic Counting System: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9

Total Page:16

File Type:pdf, Size:1020Kb

Introduction We All Know the Ten Digits of the Hindu-Arabic Counting System: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 History of Numbers 1a. I am familiar with the early evolution of counting. Introduction We all know the ten digits of the Hindu-Arabic counting system: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. And when we read a number like 352, because of place value, we know it stands for three groups of a hundred, Iive groups of ten, and two units. Our numerals are usually arranged according to a positional base 10 (or decimal) system. PRACTICE. Are you familiar with our base 10 or decimal system and place value? In Canvas, work through these 7 practice problems: Identify value of a digit Yet while there are still Hindu-Arabic numerals involved, telling time reQuires a different system. There are 60 seconds in every minute and 60 minutes in every hour. So if your watch displays 12:59:59 right now, then you expect it to read 1:00:00 a second later: We are so used to telling time in groups of 60 that it seems natural. But why there are not 100 seconds in each minute, or 100 minutes in an hour? In the late 1700s, a French attorney suggested a system of decimal time measurement in which each day has 10 hours, each hour 100 minutes, and each minute 1000 seconds. The actual duration of these decimal hours, minutes, and seconds would be different; however, time conversions would be simpler. For example, 6 decimal hours = 600 decimal minutes = 600,000 decimal seconds. So why does our system of telling time not conform to the usual base 10 counting system that governs most other aspects of our life? BCE means "Before Common Era". Also known as BC which means "Before Christ". So these are times before the year 0, or before the Christ supposedly died. CE means "Common Era". Also known as AD which means "After Death". So these are times after the year 0, or after the year Christ supposedly died. Babylonian Numbers The Babylonians were one of the =irst cultures to develop a positional numeral system. Babylonia was an ancient cultural region occupying southeastern Mesopotamia between the Tigris and Euphrates rivers (modern southern IraQ from around Baghdad to the Persian Gulf). Because the city of Babylon was the capital of this area for so many centuries, the term Babylonia has come to refer to the entire culture that developed in the area from the time it was Iirst settled, about 4000 BCE. 1 This positional system originated around 2000 BCE. Symbols for numerals were written in cuneiform, using a wedge-tipped tool to press marks into a soft clay tablet, which would be dried in the sun to create a permanent record. Instead of having only 10 digits and groups in powers of 10, their system was based on groups and powers of 60 (which is called a sexigesimal system). Below are the 59 digits used in this system (the 60th digit, a zero, was at Iirst only represented by an empty space): The Babylonian system spread throughout most of Mesopotamia, but it eventually faded into history, allowing other number systems such as Roman numerals and the Hindu-Arabic system to take its place. There are still remnants of this ancient sexigesimal counting system in the way we keep time, and also in how we measure angles in degrees. There are 360 degrees in a full circle, and 360 = 6 ⋅ 60. Furthermore, there are 60 arc minutes in one degree and 60 arc seconds in one arc minute. This system is used to locate any point on the surface of the Earth by its latitude and longitude. So even though our numerals are Hindu-Arabic, we still rely on the Babylonian base 60 system every second of the day and everywhere on the globe! PRACTICE. Are you familiar with the units of time, which are in base 60 or the sexigesimal system? Work through these 4 practice problems: Convert units of time. The Need for Simple Counting People at Iirst used objects used to track the numbers of separate things that must be counted. With this method, each stick (or pebble, or whatever counting object used) represents one item. One to One Correspondence. This method uses a "one to one correspondence", where each individual item that is being counted is linked with one object (such as a stick or pebble). In the picture below, each individual stick corresponds to one horse. The collection of sticks shows how many animals should be present: 2 Example of one-to-one correspondence: one stick represents one horse. The Tally Stick. Another possible way of using one-to-one correspondence is to make marks or cut notches into pieces of wood or bone. Instead of objects such as sticks or pebbles, each mark or notch corresponds to one of the things being counted. The advantage here is that people now had a more permanent record of the things they were counting. One of the earliest examples in the archeological record is a notched wolf bone, found in the Czech Republic, and thought to be thirty thousand years old: This paleolithic wolf bone tally stick had Iifty-ive notches carved into it. First came 25 in groups of Iive, then a notch of double length, followed by a similar double notch that began a series of 30. This would prove the mammoth hunters ability to count, and groups of ive suggest the ive ingers of a hand. Perhaps the most famous example of this is the Ishango Bone, discovered in 1960 in the Congo, in Central Africa. It is thought to be around twenty thousand years old, and seems to have been much more than a simple counting tool. In fact, it may be the world's oldest evidence of more advanced mathematics. NOTE: The markings on rows (a) and (b) each add up to 60. Row (a) seems consistent with a base 10 number system, because the notches are grouped as 20 + 1, 20 - 1, 10 + 1, and 10 - 1. Row (b) contains the prime numbers between 10 and 20. Row (c) seems to illustrate the method of doubling and multiplication used by the ancient Egyptians. It is believed that this may also represent a lunar phase counter/tracker: In our modern system, we have replaced sticks (or pebbles or whatever is being used), marks or notches with more abstract symbols. For example, one stick is replaced with our symbol “1,” two sticks with a “2”, three with the symbol “3”, and so on. But these modern symbols took many centuries to emerge. 3 Spoken Words As methods for counting developed, and as language progressed, it is perhaps natural that spoken words for numbers would appear. Unfortunately, the developments of these number names (in English) for our modern Hindu-Arabic counting system (especially those for the numbers one through ten), are not easy to trace. Past ten, however, we do see some patterns that reIlect the fact that the number system was base ten: • Eleven comes from “ein lifon,” meaning “one left over.” • Twelve comes from “twe lif,” meaning “two left over.” • Thirteen comes from “Three and ten” as do fourteen through nineteen. • Twenty appears to come from “twe-tig” which means “two tens.” • Hundred probably comes from a term meaning “ten times.” Of course, other languages have their own words for numbers! In Canvas, see: Counting to a thousand in 14 different languages Number names in Africa Even though there are over a thousand languages on the entire continent, the traditional words for 1, 2, 3, and 4 are similar for 50% of the continent, across multiple language groups. Many systems use Iive as their base. When Iive is the base, the number name for six translates to the "sum of Iive and one"; seven to the "sum of Iive and two", and so on. Some use twenty. When twenty is the base (as is the case with the Igbo people), the number word for thirty is ohu na iri which means "twenty and ten", and for ifty is ohu na iri na otu which means "twenty times two and ten". In many traditional African number systems, standardized hand gestures accompany or even replace number names. The Malinke or Mandinka people of Western Africa have some fascinating examples of how certain African people have conceptualized and developed number names. For example the word for nine is kononto, which literally means "to the one of the belly", a reference to the nine months of pregnancy. The number word for Iifteen means "three Iists", and the word for twenty refers to "a complete man", because twenty conceptualizes the ten Iingers AND ten toes. The number name for forty literally means "a mat", where a couple sleeps together, thus referring to the counting of the Iingers and toes of both the man and woman, which eQual forty. Written Numbers When we speak of “written” numbers, we have to be careful because this could mean a variety of things. It is important to keep in mind that modern paper is only a little more than 100 years old, so “writing” in times past often took on forms that might look Quite unfamiliar to us today. Wooden sticks or bones with notches carved in them could be considered writing, as these are ways of recording information onto something that can be “read” by someone else. Other 4 mediums on which “writing” may have taken place include carvings in stone or clay tablets, markings on papyrus (invented by the ancient Egyptians), on actual paper made by hand*, or on parchments from animal skins.
Recommended publications
  • Migracijske Teme 4/1988
    Migracijske teme 15 (1999), 1-2: 63-153 UDK: 809.45-0 Izvorni znanstveni rad Primljeno: 17. 11. 1998. Paolo Agostini University of Padova [email protected] LANGUAGE RECONSTRUCTION – APPLIED TO THE URALIC LANGUAGES* SUMMARY After pointing out the shortcomings and methodological weakness of the general theory of linguistic reconstruction, the author disputes the alleged antiquity of Uralic. Proto-Uralic as recon- structed by the scholars seems to be the sum of a set of features belonging to several distinct language families. The paper examines a number of lexical concordances with historically attested languages and comes to the conclusion that the Proto-Uralic word-stock is the result of a sum of borrowings that took place from the most disparate languages: Balto-Slavic, Old Swedish, several Turkic dialects, Mongolic, Tunguz, Aramaic, Hebrew, Arabic, late Middle Persian dialects, Byzantine Greek and Latin. Yet, other languages may also come into account: Chinese, Caucasian languages as well as lan- guages unknown in present day are possible candidates. A large number of bases of the Uralic word- stock can be easily identified by following a few phonological constraints. The linguistic features of the Uralic daughter-languages seem to show that they originated from a pidgin language spoken along the merchant routes that connected the Silk Road to North- and East-European trade. It is a well-known phenomenon that sometimes, when groups of people speaking different languages come into contact for the first time, a new restricted language system (lingua franca or pidgin) comes into being in order to cater to essential common needs.
    [Show full text]
  • Roman Numerals
    History of Numbers 1c. I can distinguish between an additive and positional system, and convert between Roman and Hindu-Arabic numbers. Roman Numerals The numeric system represented by Roman numerals originated in ancient Rome (753 BC–476 AD) and remained the usual way of writing numbers throughout Europe well into the Late Middle Ages. By the 11th century, the more efJicient Hindu–Arabic numerals had been introduced into Europe by way of Arab traders. Roman numerals, however, remained in commo use well into the 14th and 15th centuries, even in accounting and other business records (where the actual calculations would have been made using an abacus). Roman numerals are still used today, in certain contexts. See: Modern Uses of Roman Numerals Numbers in this system are represented by combinations of letters from the Latin alphabet. Roman numerals, as used today, are based on seven symbols: The numbers 1 to 10 are expressed in Roman numerals as: I, II, III, IV, V, VI, VII, VIII, IX, X. This an additive system. Numbers are formed by combining symbols and adding together their values. For example, III is three (three ones) and XIII is thirteen (a ten plus three ones). Because each symbol (I, V, X ...) has a Jixed value rather than representing multiples of ten, one hundred and so on (according to the numeral's position) there is no need for “place holding” zeros, as in numbers like 207 or 1066. Using Roman numerals, those numbers are written as CCVII (two hundreds, plus a ive and two ones) and MLXVI (a thousand plus a ifty plus a ten, a ive and a one).
    [Show full text]
  • CULTURAL HERITAGE in MIGRATION Published Within the Project Cultural Heritage in Migration
    CULTURAL HERITAGE IN MIGRATION Published within the project Cultural Heritage in Migration. Models of Consolidation and Institutionalization of the Bulgarian Communities Abroad funded by the Bulgarian National Science Fund © Nikolai Vukov, Lina Gergova, Tanya Matanova, Yana Gergova, editors, 2017 © Institute of Ethnology and Folklore Studies with Ethnographic Museum – BAS, 2017 © Paradigma Publishing House, 2017 ISBN 978-954-326-332-5 BULGARIAN ACADEMY OF SCIENCES INSTITUTE OF ETHNOLOGY AND FOLKLORE STUDIES WITH ETHNOGRAPHIC MUSEUM CULTURAL HERITAGE IN MIGRATION Edited by Nikolai Vukov, Lina Gergova Tanya Matanova, Yana Gergova Paradigma Sofia • 2017 CONTENTS EDITORIAL............................................................................................................................9 PART I: CULTURAL HERITAGE AS A PROCESS DISPLACEMENT – REPLACEMENT. REAL AND INTERNALIZED GEOGRAPHY IN THE PSYCHOLOGY OF MIGRATION............................................21 Slobodan Dan Paich THE RUSSIAN-LIPOVANS IN ITALY: PRESERVING CULTURAL AND RELIGIOUS HERITAGE IN MIGRATION.............................................................41 Nina Vlaskina CLASS AND RELIGION IN THE SHAPING OF TRADITION AMONG THE ISTANBUL-BASED ORTHODOX BULGARIANS...............................55 Magdalena Elchinova REPRESENTATIONS OF ‘COMPATRIOTISM’. THE SLOVAK DIASPORA POLITICS AS A TOOL FOR BUILDING AND CULTIVATING DIASPORA.............72 Natália Blahová FOLKLORE AS HERITAGE: THE EXPERIENCE OF BULGARIANS IN HUNGARY.......................................................................................................................88
    [Show full text]
  • Schwa Deletion: Investigating Improved Approach for Text-To-IPA System for Shiri Guru Granth Sahib
    ISSN (Online) 2278-1021 ISSN (Print) 2319-5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 4, April 2015 Schwa Deletion: Investigating Improved Approach for Text-to-IPA System for Shiri Guru Granth Sahib Sandeep Kaur1, Dr. Amitoj Singh2 Pursuing M.E, CSE, Chitkara University, India 1 Associate Director, CSE, Chitkara University , India 2 Abstract: Punjabi (Omniglot) is an interesting language for more than one reasons. This is the only living Indo- Europen language which is a fully tonal language. Punjabi language is an abugida writing system, with each consonant having an inherent vowel, SCHWA sound. This sound is modifiable using vowel symbols attached to consonant bearing the vowel. Shri Guru Granth Sahib is a voluminous text of 1430 pages with 511,874 words, 1,720,345 characters, and 28,534 lines and contains hymns of 36 composers written in twenty-two languages in Gurmukhi script (Lal). In addition to text being in form of hymns and coming from so many composers belonging to different languages, what makes the language of Shri Guru Granth Sahib even more different from contemporary Punjabi. The task of developing an accurate Letter-to-Sound system is made difficult due to two further reasons: 1. Punjabi being the only tonal language 2. Historical and Cultural circumstance/period of writings in terms of historical and religious nature of text and use of words from multiple languages and non-native phonemes. The handling of schwa deletion is of great concern for development of accurate/ near perfect system, the presented work intend to report the state-of-the-art in terms of schwa deletion for Indian languages, in general and for Gurmukhi Punjabi, in particular.
    [Show full text]
  • Bibliography
    Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza­ Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P.
    [Show full text]
  • Shahmukhi to Gurmukhi Transliteration System: a Corpus Based Approach
    Shahmukhi to Gurmukhi Transliteration System: A Corpus based Approach Tejinder Singh Saini1 and Gurpreet Singh Lehal2 1 Advanced Centre for Technical Development of Punjabi Language, Literature & Culture, Punjabi University, Patiala 147 002, Punjab, India [email protected] http://www.advancedcentrepunjabi.org 2 Department of Computer Science, Punjabi University, Patiala 147 002, Punjab, India [email protected] Abstract. This research paper describes a corpus based transliteration system for Punjabi language. The existence of two scripts for Punjabi language has created a script barrier between the Punjabi literature written in India and in Pakistan. This research project has developed a new system for the first time of its kind for Shahmukhi script of Punjabi language. The proposed system for Shahmukhi to Gurmukhi transliteration has been implemented with various research techniques based on language corpus. The corpus analysis program has been run on both Shahmukhi and Gurmukhi corpora for generating statistical data for different types like character, word and n-gram frequencies. This statistical analysis is used in different phases of transliteration. Potentially, all members of the substantial Punjabi community will benefit vastly from this transliteration system. 1 Introduction One of the great challenges before Information Technology is to overcome language barriers dividing the mankind so that everyone can communicate with everyone else on the planet in real time. South Asia is one of those unique parts of the world where a single language is written in different scripts. This is the case, for example, with Punjabi language spoken by tens of millions of people but written in Indian East Punjab (20 million) in Gurmukhi script (a left to right script based on Devanagari) and in Pakistani West Punjab (80 million), written in Shahmukhi script (a right to left script based on Arabic), and by a growing number of Punjabis (2 million) in the EU and the US in the Roman script.
    [Show full text]
  • Beginnings of Counting and Numbers Tallies and Tokens
    Beginnings of Counting and Numbers Tallies and Tokens Picture Link (http://www.flickr.com/photos/quadrofonic/834667550/) Bone Tallies • The Lebombo Bone is a portion of • The radius bone of a wolf, a baboon fibula, discovered in the discovered in Moravia, Border Cave in the Lebombo Czechoslovakia in 1937, and mountains of Swaziland. It dates dated to 30,000 years ago, has to about 35,000 years ago, and fifty‐five deep notches carved has 29 distinct notches. It is into it. Twenty‐five notches of assumed that it tallied the days of similar length, arranged in‐groups a lunar month. of five, followed by a single notch twice as long which appears to • terminate the series. Then Picture Link starting from the next notch, also (http://www.historyforkids.org/learn/africa/science/numbers.htm) twice as long, a new set of notches runs up to thirty. • Picture link (http://books.google.com/books?id=C0Wcb9c6c18C&pg=PA41&lpg=PA41 &dq=wolf+bone+moravia&source=bl&ots=1z5XhaJchP&sig=q_8WROQ1Gz l4‐6PYJ9uaaNHLhOM&hl=en&ei=J8D‐ TZSgIuPTiALxn4CEBQ&sa=X&oi=book_result&ct=result&resnum=4&ved=0 CCsQ6AEwAw) Ishango Bone • Ishango Bone, discovered in 1961 in central Africa. About 20,000 years old. Ishango Bone Patterns • Prime 11 13 17 19 numbers? • Doubling? 11 21 19 9 • Multiplication? • Who knows? 3 6 4 8 10 5 5 7 Lartet Bone • Discovered in Dodogne, France. About 30,000 years old. It has various markings that are neither decorative nor random (different sets are made with different tools, techniques, and stroke directions).
    [Show full text]
  • Wood Identification and Chemistry' Covers the Physicalproperties and Structural Features of Hardwoods and Softwoods
    11 DOCUMENT RESUME ED 031 555 VT 007 853 Woodworking Technology. San Diego State Coll., Calif. Dept. of Industrial Arts. Spons Agency-Office of Education (DHEA Washington, D.C. Pub Date Aug 68 Note-252p.; Materials developed at NDEA Inst. for Advanced Studyin Industrial Arts (San Diego, June 24 -Au9ust 2, 1968). EDRS Price MF -$1.00 He -$13.20 Descriptors-Curriculum Development, *Industrial Arts, Instructional Materials, Learning Activities, Lesson Plans, Lumber Industry, Resource Materials, *Resource Units, Summer Institutes, Teaching Codes, *Units of Study (Sublect Fields), *Woodworking Identifiers-*National Defense Education Act TitleXIInstitute, NDEA TitleXIInstitute, Woodworking Technology SIX teaching units which were developed by the 24 institute participantsare given. "Wood Identification and Chemistry' covers the physicalproperties and structural features of hardwoods and softwoods. "Seasoning" explainsair drying, kiln drying, and seven special lumber seasoning processes. "Researchon Laminates" describes the bending of solid wood and wood laminates, beam lamination, lamination adhesives,. andplasticlaminates."Particleboard:ATeachingUnitexplains particleboard manufacturing and the several classes of particleboard and theiruses. "Lumber Merchandising" outhnes lumber grades andsome wood byproducts. "A Teaching Unitin Physical Testing of Joints, Finishes, Adhesives, and Fasterners" describes tests of four common edge pints, finishes, wood adhesives, and wood screws Each of these units includes a bibhography, glossary, and student exercises (EM) M 55, ...k.",z<ONR; z _: , , . "'zr ss\ ss s:Ts s , s' !, , , , zs "" z' s: - 55 Ts 5. , -5, 5,5 . 5, :5,5, s s``s ss ' ,,, 4 ;.< ,s ssA 11111.116; \ ss s, : , \s, s's \ , , 's's \ sz z, ;.:4 1;y: SS lza'itVs."4,z ...':',\\Z'z.,'I,,\ "t"-...,,, `,.
    [Show full text]
  • Contribution to the UN Secretary-General's 2018 Report
    COMMISSION ON SCIENCE AND TECHNOLOGY FOR DEVELOPMENT (CSTD) Twenty-second session Geneva, 13 to 17 May 2019 Submissions from entities in the United Nations system and elsewhere on their efforts in 2018 to implement the outcome of the WSIS Submission by Internet Corporation for Assigned Names and Numbers This submission was prepared as an input to the report of the UN Secretary-General on "Progress made in the implementation of and follow-up to the outcomes of the World Summit on the Information Society at the regional and international levels" (to the 22nd session of the CSTD), in response to the request by the Economic and Social Council, in its resolution 2006/46, to the UN Secretary-General to inform the Commission on Science and Technology for Development on the implementation of the outcomes of the WSIS as part of his annual reporting to the Commission. DISCLAIMER: The views presented here are the contributors' and do not necessarily reflect the views and position of the United Nations or the United Nations Conference on Trade and Development. 2018 ANNUAL REPORT TO UNCTAD: ICANN CONTRIBUTION Progress made in the implementation of and follow-up to the outcomes of the World Summit on the Information Society at the regional and international levels Executive Summary ICANN is pleased and honoured be invited to contribute to this annual UNCTAD Report. We value our involvement with, and contribution to, the overall WSIS process and to our relationship with the UN Commission on Science and Technology for Development (CSTD). 2018 has been a busy and important year for ICANN and for the Internet Governance Ecosystem in general; with the ITU Plenipotentiary taking place in Dubai and the IGF in Paris.
    [Show full text]
  • Bana Braille Codes Update 2007
    BANA BRAILLE CODES UPDATE 2007 Developed Under the Sponsorship of the BRAILLE AUTHORITY OF NORTH AMERICA Effective Date: January 1, 2008 BANA MEMBERS American Council of the Blind American Foundation for the Blind American Printing House for the Blind Associated Services for the Blind and Visually Impaired Association for Education and Rehabilitation of the Blind and Visually Impaired Braille Institute of America California Transcribers and Educators of the Visually Handicapped Canadian Association of Educational Resource Centres for Alternate Format Materials The Clovernook Center for the Blind and Visually Impaired CNIB (Canadian National Institute for the Blind) National Braille Association National Braille Press National Federation of the Blind National Library Service for the Blind and Physically Handicapped, Library of Congress Royal New Zealand Foundation of the Blind. Associate Member Publications Committee Susan Christensen, Chairperson Judy Dixon, Board Liaison Bob Brasher Warren Figueiredo Sandy Smith Joanna E. Venneri Copyright © by the Braille Authority of North America. This material may be duplicated but not altered. This document is available for download in various formats from www.brailleauthority.org. 2 TABLE OF CONTENTS INTRODUCTION ENGLISH BRAILLE, AMERICAN EDITION, REVISED 2002 ....... L1 Table of Changes.................................................................. L2 Definition of Braille ............................................................... L3 Rule I: Punctuation Signs .....................................................L13
    [Show full text]
  • The Gentics of Civilization: an Empirical Classification of Civilizations Based on Writing Systems
    Comparative Civilizations Review Volume 49 Number 49 Fall 2003 Article 3 10-1-2003 The Gentics of Civilization: An Empirical Classification of Civilizations Based on Writing Systems Bosworth, Andrew Bosworth Universidad Jose Vasconcelos, Oaxaca, Mexico Follow this and additional works at: https://scholarsarchive.byu.edu/ccr Recommended Citation Bosworth, Bosworth, Andrew (2003) "The Gentics of Civilization: An Empirical Classification of Civilizations Based on Writing Systems," Comparative Civilizations Review: Vol. 49 : No. 49 , Article 3. Available at: https://scholarsarchive.byu.edu/ccr/vol49/iss49/3 This Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in Comparative Civilizations Review by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Bosworth: The Gentics of Civilization: An Empirical Classification of Civil 9 THE GENETICS OF CIVILIZATION: AN EMPIRICAL CLASSIFICATION OF CIVILIZATIONS BASED ON WRITING SYSTEMS ANDREW BOSWORTH UNIVERSIDAD JOSE VASCONCELOS OAXACA, MEXICO Part I: Cultural DNA Introduction Writing is the DNA of civilization. Writing permits for the organi- zation of large populations, professional armies, and the passing of complex information across generations. Just as DNA transmits biolog- ical memory, so does writing transmit cultural memory. DNA and writ- ing project information into the future and contain, in their physical structure, imprinted knowledge.
    [Show full text]
  • Tally Sticks, Counting Boards, and Sumerian Proto-Writing John Alan Halloran
    Early Numeration - John Alan Halloran - August 10, 2009 - Page 1 Early Numeration - Tally Sticks, Counting Boards, and Sumerian Proto-Writing John Alan Halloran http://www.sumerian.org/ Work on the published version of my Sumerian Lexicon (Logogram Publishing: 2006) has revealed that: 1) the early Sumerians used wooden tally sticks for counting; 2) tally marks led to proto-writing; 3) the Sumerian pictograms for goats and sheep probably derive from tally stick notch conventions; 4) the Uruk period civilization used counting boards; 5) the authors of the proto-cuneiform tablets drew with animal claws or bird talons; 6) the historical Sumerians used clay split tallies as credit instruments; and 7) the Sumerians may sometimes have counted by placing knots or stones on a string. 1. Counting with Wooden Tally Sticks 1.1. The following text caught my attention. It is from The Debate between Sheep and Grain, ETCSL 5.3.2, lines 130-133: "Every night your count is made and your tally-stick put into the ground, so your herdsman can tell people how many ewes there are and how many young lambs, and how many goats and how many young kids." The Sumerian reads: 130 ud šu2-uš-e niñ2-kas7-zu ba-ni-ak-e ñiš 131 ŠID-ma-zu ki i3-tag-tag-ge - the Unicode version has ñiš-šudum- ma-zu 132 na-gada-zu u8 me-a sila4 tur-tur me-a 133 ud5 me-a maš2 tur-tur me-a lu2 mu-un-na-ab-be2 š is read |sh| and ñ is read |ng|.
    [Show full text]