bioRxiv preprint doi: https://doi.org/10.1101/611848; this version posted March 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Reference plasmid pHXB2_D is an HIV-1 molecular clone that exhibits identical LTRs and a single integration site indicative of an HIV provirus Alejandro R. Gener1,2,3,4§, Wei Zou5, Brian T. Foley6, Deborah P. Hyink*2, Paul E. Klotman*1,2 1Integrative Molecular and Biomedical Sciences Program, Baylor College of Medicine, Houston, Texas, USA 2Margaret M. and Albert B. Alkek Department of Medicine, Nephrology, Baylor College of Medicine, Houston, Texas, USA 3Department of Genetics, MD Anderson Cancer Center, Houston, Texas, USA 4School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico, USA 5Division of Infectious Diseases, the 1st Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China 6Theoretical Biology and Biophysics Group T-6, Los Alamos National Laboratory, Los Alamos, New Mexico, USA *Equal contributions. §Corresponding author: Alejandro R. Gener One Baylor Plaza Mail Stop 710 Houston, Texas, 77030, USA 9045715562
[email protected] ;
[email protected] Keywords: HIV-1, reagent verification, nanopore DNA sequencing, provirus, plasmid, sequence variability, resequencing, LTR phasing bioRxiv preprint doi: https://doi.org/10.1101/611848; this version posted March 29, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 1 Abstract 2 Objective: To compare long-read nanopore DNA sequencing (DNA-seq) with short-read 3 sequencing-by-synthesis for sequencing a full-length (e.g., non-deletion, nor reporter) HIV-1 4 model provirus in plasmid pHXB2_D.