Medicinal Chemistry of Coronavirus Infections - I

Total Page:16

File Type:pdf, Size:1020Kb

Medicinal Chemistry of Coronavirus Infections - I Medicinal Chemistry of Coronavirus Infections - I Pál Perjési, PhD University of Pécs Institute of Pharmaceutical Chemistry May 05, 2020 The Coronavirus pandemic (May 5, 2020) https://coronavirus.jhu.edu/map.html The Coronavirus pandemic https://www.worldometers.info/coronavirus/?utm_campaign=h omeAdvegas1? The structure of the viruses • Viruses are the smallest parasites, typically ranging from 0.02 to 0.4 micrometer, although several very large viruses up to 1 micrometer long (megavirus, pandoravirus) have recently been discovered. • Viruses depend completely on cells (bacterial, plant, or animal) to reproduce. • Viruses (virions) have an outer cover of protein (capsid) and sometimes lipid (envelope), an RNA or DNA core, and sometimes enzymes needed for the first steps of viral replication. The size of the viruses SIB Swiss Institute of Bioinformatics (www.sib.swiss) Classification of Viruses RNA Viruses DNA viruses • Contain an RNA genome. • Contain an DNA genome • Virus replication: • Virus replication: • RNA-dependent RNA polymerase • DNA-depndent DNA • Reverse transcriptase (Retroviruses) polymerase • Examples: • Examples: • Rubella virus • Herpes Virus • Dengue fever virus • Hepatitis B virus • Hepatitis A virus • Epstein-Barr virus • Hepatitis C virus • HIV • Influenza virus • Coronavirus Classification of Viruses The Baltimore Scheme https://open.oregonstate.education/generalmicrobiology/chapter/the-viruses/ Replication of the double stranded DNA viruses – Replication of the genom DNA base pairing: Key enzymes involved: 1. Helicase https://open.oregonstate.education/generalmicrobiology/ch 2. DNA dependent DNA polymerase apter/the-viruses/ Double-stranded DNA viruses usually must enter the host nucleus before they are able to replicate. Some of these viruses require host cell polymerases to replicate their genome, while others, such as adenoviruses or herpes viruses, encode their own replication factors. Most prominently, DNA-dependent DNA-polymerase synthesizes the new strands by adding nucleotides that complement each (template) strand. Polyomaviruses, adenoviruses, and herpesviruses are all nuclear-replicating DNA viruses. Replication of the double stranded DNA viruses - Transcription DNA-RNA base pairing: Transcription is the first step in gene expression.It involves copying a gene's DNA sequence to make an RNA molecule. https://open.oregonstate.education/generalmicrobiology/ chapter/the-viruses// Transcription is performed by enzymes called DNA-dependent RNA polymerases, which link nucleotides to form an RNA strand (using a DNA strand as a template). In viruses and bacteria, the RNA transcripts act as messenger RNAs (mRNAs) right away. Replication of the dsRNA viruses • Double-stranded RNA viruses, such as the rotavirus, cause diarrheal illness in humans. • Cells have systems to destroy any dsRNA found in the cell. Thus the viral genome, in its dsRNA form, must be hidden or protected from the cell enzymes. • Cells lack RNA-dependent RNA-polymerases, necessary for replication of the viral genome so the virus must have this enzyme itself. The viral RNA-dependent RNA polymerase acts as both a transcriptase to transcribe mRNA, as well as a replicase to replicate the RNA genome. Replication of the (+) sense ssRNA viruses • Viruses with plus-strand RNA, such as coronaviruses (CoVs), can use their genome directly as mRNA with translation by the host ribosome occurring as soon as the unsegmented viral genome gains entry into the cell. • One of the viral genes expressed yields an RNA-dependent RNA-polymerase (or RNA replicase), which creates minus- strand RNA from the plus-strand genome. • The minus-strand RNA can be used as a template for more plus-strand RNA, which can be used as mRNA or as genomes for the newly forming viruses. Negative-sense single-stranded RNA viruses ((-)ssRNA viruses) • Negative sense ssRNA viruses, such as the Ebola virus and the influenza virus, need an RNA dependent RNA polymerase (RNA replicase) within its capside to form a positive sense RNA. • The positive-sense RNA acts as a viral mRNA, which is translated into proteins for the production of new virion materials. • When viral genomes are needed the plus-strand RNAs are used as templates to make minus-strand RNA. Replication of the (+) sense ssRNA viruses – Retroviruses -I • Despite the fact that the retroviral genome is composed of +ssRNA, it is not used as mRNA. • Instead, the virus uses its RNA dependent DNA polymerase (reverse transcriptase) to synthesize a piece of ssDNA complementary to the viral genome. • Because RNA transcription does not involve the same error-checking mechanisms as DNA transcription, RNA viruses, particularly retroviruses, are particularly prone to mutation. Replication of the (+) sense ssRNA viruses – Retroviruses-II • Lastly, the reverse transcriptase is used as a DNA polymerase to make a complementary copy to the ssDNA, yielding a dsDNA molecule. • This allows the virus to insert its genome, in a dsDNA form, into the host chromosome, forming a provirus. • A provirus can remain latent indefinitely or cause the expression of viral genes, leading to the production of new viruses. Excision of the provirus does not occur for gene expression. (e.g. HIV; human T-lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2)) Coronaviridae • Coronaviruses are involved in human and vertebrate's diseases. Coronaviruses are members of the subfamily Orthocoronavirinae in the family Coronaviridae and the order Nidovirales The particles are typically decorated with large (appr. 20 nm), club- or petal-shaped surface projections (the "peplomers" or "spikes"), which in electron micrographs of spherical particles create an image reminiscent of the solar corona. Taxonomy of Coronaviridae (according to the International Committee on Taxonomy of Viruses) https://www.mdpi.com/2076-0817/9/3/186/htm Origin of evolution of human-pathogen Coronaviruses 2002 2012 2019 SARS: Severe Acute Respiratory Syndrome MARS: Middle East Respiratory Syndrome https://www.mdpi.com/2076-0817/9/3/186/htm COVID-19 (SARS-CoV-2) • COVID-19 is a spherical or pleomorphic enveloped particles containing single-stranded (positive-sense) RNA associated with a nucleoprotein (N) within a capsid comprised of matrix protein. The envelope bears club-shaped glycoprotein (S) projections. Some coronaviruses also contain a hem agglutinin- esterase protein (HE)4. https://doi.org/10.1016/j.jmii.2020.03.022 REPLICATION OF COVID19 1. Attachment of the virus to receptors on the host cell surface; 2. Entry of the virus through the host cell membrane; 3. Uncoating of viral nucleic acid; 4. Replication Synthesis of early regulatory proteins, eg, nucleic acid polymerases; Synthesis of new viral RNA or DNA; Synthesis of late, structural proteins 5. Assembly (maturation) of viral particles; 6. Release from the cell Potential anti-viral therapeutics used in patients with SARS and MERS infections The role of replication process in pathogenicity • SARS-CoV-2 (COVID-19) binds to ACE2 (the angiotensin- converting enzyme 2) by its S (Spike) protein and allows COVID-19 to enter and infect cells. • In order to attach the virus receptor (spike protein) to its cellular ligand (ACE2), activation by the serine protease TMPRSS2 is needed. https://doi.org/10.1016/j.jmii.2020.03.022 Inhibition of TMPRSS2 by Camostat Mesylate (NI-03) Thank you for your attention!.
Recommended publications
  • Diversity and Evolution of the Emerging Pandoraviridae Family
    bioRxiv preprint doi: https://doi.org/10.1101/230904; this version posted December 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. PNAS formated 30/08/17 Pandoraviridae Title: Diversity and evolution of the emerging Pandoraviridae family Authors: Matthieu Legendre1, Elisabeth Fabre1, Olivier Poirot1, Sandra Jeudy1, Audrey Lartigue1, Jean- Marie Alempic1, Laure Beucher2, Nadège Philippe1, Lionel Bertaux1, Karine Labadie3, Yohann Couté2, Chantal Abergel1, Jean-Michel Claverie1 Adresses: 1Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) CNRS Aix- Marseille Université, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France. 2CEA-Institut de Génomique, GENOSCOPE, Centre National de Séquençage, 2 rue Gaston Crémieux, CP5706, 91057 Evry Cedex, France. 3 Univ. Grenoble Alpes, CEA, Inserm, BIG-BGE, 38000 Grenoble, France. Corresponding author: Jean-Michel Claverie Structural and Genomic Information Laboratory, UMR 7256, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France. Tel: +33 491825447 , Email: [email protected] Co-corresponding author: Chantal Abergel Structural and Genomic Information Laboratory, UMR 7256, 163 Avenue de Luminy, Case 934, 13288 Marseille cedex 9, France. Tel: +33 491825420 , Email: [email protected] Keywords: Nucleocytoplasmic large DNA virus; environmental isolates; comparative genomics; de novo gene creation. 1 bioRxiv preprint doi:
    [Show full text]
  • DNA Recombination Is Sufficient for Retroviral Transduction JODY R
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 2460-2464, March 1995 Biochemistry DNA recombination is sufficient for retroviral transduction JODY R. SCHWARTZ, Susi DUESBERG, AND PETER H. DUESBERG Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3206 Contributed by Peter H. Duesberg, November 28, 1994 ABSTRACT Oncogenic retroviruses carry coding se- quences that are transduced from cellular protooncogenes. Nat- env pOl X ural transduction involves two nonhomologous recombinations and is thus extremely rare. Since transduction has never been reproduced experimentall, its mechanism has been studied in terms oftwoehypotheses: (i) the DNAmodel,which postulates two ___ _-I ____ DNA recombinations, and (ii) the RNA model, which postulates a 5' DNA recombination and a 3' RNA recombination occurring during reverse transcription of viral and protooncogene RNA. proto-onc gene Here we use two viral DNA constructs to test the prediction ofthe DNA model that the 3' DNA recombination is achieved by conventional integration of a retroviral DNA 3' of the chromo- somal protooncogene coding region. For the DNA model to be ga-onc - gag viable, such recombinant viruses must be infectious without the w5 essential tract that precedes the 3' purportedly polypurine (ppt) FIG. 1. The DNA model of retroviral transduction. The model long terminal repeat (LTR) of all retroviruses. Our constructs proposes that the 5' retrovirus/protooncogene junction is achieved by consist ofa ras coding region from Harvey sarcoma virus which nonhomologous recombination between a circular provirus with a is naturally linked at the 5' end to a retroviral LTR and single LTR. Such proviruses are common in virus-infected cells (1).
    [Show full text]
  • The LUCA and Its Complex Virome in Another Recent Synthesis, We Examined the Origins of the Replication and Structural Mart Krupovic , Valerian V
    PERSPECTIVES archaea that form several distinct, seemingly unrelated groups16–18. The LUCA and its complex virome In another recent synthesis, we examined the origins of the replication and structural Mart Krupovic , Valerian V. Dolja and Eugene V. Koonin modules of viruses and posited a ‘chimeric’ scenario of virus evolution19. Under this Abstract | The last universal cellular ancestor (LUCA) is the most recent population model, the replication machineries of each of of organisms from which all cellular life on Earth descends. The reconstruction of the four realms derive from the primordial the genome and phenotype of the LUCA is a major challenge in evolutionary pool of genetic elements, whereas the major biology. Given that all life forms are associated with viruses and/or other mobile virion structural proteins were acquired genetic elements, there is no doubt that the LUCA was a host to viruses. Here, by from cellular hosts at different stages of evolution giving rise to bona fide viruses. projecting back in time using the extant distribution of viruses across the two In this Perspective article, we combine primary domains of life, bacteria and archaea, and tracing the evolutionary this recent work with observations on the histories of some key virus genes, we attempt a reconstruction of the LUCA virome. host ranges of viruses in each of the four Even a conservative version of this reconstruction suggests a remarkably complex realms, along with deeper reconstructions virome that already included the main groups of extant viruses of bacteria and of virus evolution, to tentatively infer archaea. We further present evidence of extensive virus evolution antedating the the composition of the virome of the last universal cellular ancestor (LUCA; also LUCA.
    [Show full text]
  • Effects of Retroviruses on Host Genome Function
    ANRV361-GE42-20 ARI 1 August 2008 18:2 V I E E W R S I E N C N A D V A Effects of Retroviruses on Host Genome Function Patric Jern and John M. Coffin Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111; email: [email protected], John.Coffi[email protected] Annu. Rev. Genet. 2008. 42:20.1–20.23 Key Words The Annual Review of Genetics is online at Human Endogenous Retrovirus, LTR, transcription, recombination, genet.annualreviews.org methylation This article’s doi: 10.1146/annurev.genet.42.110807.091501 Abstract Copyright c 2008 by Annual Reviews. For millions of years, retroviral infections have challenged vertebrates, All rights reserved occasionally leading to germline integration and inheritance as ERVs, 0066-4197/08/1201-0001$20.00 genetic parasites whose remnants today constitute some 7% to 8% of the human genome. Although they have had significant evolutionary side effects, it is useful to view ERVs as fossil representatives of retro- viruses extant at the time of their insertion into the germline, not as direct players in the evolutionary process itself. Expression of particu- lar ERVs is associated with several positive physiological functions as well as certain diseases, although their roles in human disease as etio- logical agents, possible contributing factors, or disease markers—well demonstrated in animal models—remain to be established. Here we discuss ERV contributions to host genome structure and function, in- cluding their ability to mediate recombination, and physiological effects on the host transcriptome resulting from their integration, expression, and other events.
    [Show full text]
  • Proviruses with Long-Term Stable Expression Accumulate In
    viruses Article Proviruses with Long-Term Stable Expression Accumulate in Transcriptionally Active Chromatin Close to the Gene Regulatory Elements: Comparison of ASLV-, HIV- and MLV-Derived Vectors Dalibor Miklík 1,2, Filip Šenigl 1 and Jiˇrí Hejnar 1,* 1 Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, CZ-14220 Prague 4, Czech Republic; [email protected] (D.M.); [email protected] (F.S.) 2 Faculty of Science, Charles University, Albertov 6, CZ-12843 Prague 2, Czech Republic * Correspondence: [email protected] Received: 29 January 2018; Accepted: 6 March 2018; Published: 8 March 2018 Abstract: Individual groups of retroviruses and retroviral vectors differ in their integration site preference and interaction with the host genome. Hence, immediately after infection genome-wide distribution of integrated proviruses is non-random. During long-term in vitro or persistent in vivo infection, the genomic position and chromatin environment of the provirus affects its transcriptional activity. Thus, a selection of long-term stably expressed proviruses and elimination of proviruses, which have been gradually silenced by epigenetic mechanisms, helps in the identification of genomic compartments permissive for proviral transcription. We compare here the extent and time course of provirus silencing in single cell clones of the K562 human myeloid lymphoblastoma cell line that have been infected with retroviral reporter vectors derived from avian sarcoma/leukosis virus (ASLV), human immunodeficiency virus type 1 (HIV) and murine leukaemia virus (MLV). While MLV proviruses remain transcriptionally active, ASLV proviruses are prone to rapid silencing. The HIV provirus displays gradual silencing only after an extended time period in culture.
    [Show full text]
  • Frequent Provirus Insertional Mutagenesis of Notchl in Thymomas of MMTVD/Myc Transgenic Mice Suggests a Collaboration of C-Myc and Notctil for Oncogenesis
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Frequent provirus insertional mutagenesis of Notchl in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notctil for oncogenesis Luc Girard, l Zaher Hanna, 1,2 Normand Beaulieu, 1 Caroline D. Hoemann, 1 Carole Simard, 1 Christine A. Kozak, 3 and Paul Jolicoeur 1'4'5"6 1Laboratory of Molecular Biology, Clinical Research Institute of Montr4al, Montr4al, Qu~bec, Canada H2W 1R7; 2D4partement de Mddecine et de 4 Microbiologie et d'Immunologie, Universit~ de Montr4al, Montreal, Quebec, Canada H3J 3J7; 3National Institute of Allergy and Infectious Diseases (NIAIDI, National Institutes of Health, Bethesda, Maryland 20892, USA; SDepartment of Experimental Medicine, McGill University, Montr4al, Quebec, Canada, H3G-1A4 The MMTVD/myc transgenic mice spontaneously develop oligoclonal CD4+CD8 + T-ceU tumors. We used provirus insertional mutagenesis in these mice to identify putative collaborators of c-myc. We found that Notchl was mutated in a high proportion (52%) of these tumors. Proviruses were inserted upstream of the exon coding for the transmembrane domain and in both transcriptional orientations. These mutations led to high expression of truncated Notchl RNAs and proteins (86-110 kD). In addition, many Notchl-rearranged tumors showed elevated levels of full-length Notchl transcripts, whereas nearly all showed increased levels of full-length (330-kD) or close to full-length (280-kD) Notchl proteins. The 5' end of the truncated RNAs were determined for some tumors by use of RT-PCR and 5' RACE techniques. Depending on the orientation of the proviruses, viral LTR or cryptic promoters appeared to be utilized, and coding potential began in most cases in the transmembrane domain.
    [Show full text]
  • Lentivirus and Lentiviral Vectors Fact Sheet
    Lentivirus and Lentiviral Vectors Family: Retroviridae Genus: Lentivirus Enveloped Size: ~ 80 - 120 nm in diameter Genome: Two copies of positive-sense ssRNA inside a conical capsid Risk Group: 2 Lentivirus Characteristics Lentivirus (lente-, latin for “slow”) is a group of retroviruses characterized for a long incubation period. They are classified into five serogroups according to the vertebrate hosts they infect: bovine, equine, feline, ovine/caprine and primate. Some examples of lentiviruses are Human (HIV), Simian (SIV) and Feline (FIV) Immunodeficiency Viruses. Lentiviruses can deliver large amounts of genetic information into the DNA of host cells and can integrate in both dividing and non- dividing cells. The viral genome is passed onto daughter cells during division, making it one of the most efficient gene delivery vectors. Most lentiviral vectors are based on the Human Immunodeficiency Virus (HIV), which will be used as a model of lentiviral vector in this fact sheet. Structure of the HIV Virus The structure of HIV is different from that of other retroviruses. HIV is roughly spherical with a diameter of ~120 nm. HIV is composed of two copies of positive ssRNA that code for nine genes enclosed by a conical capsid containing 2,000 copies of the p24 protein. The ssRNA is tightly bound to nucleocapsid proteins, p7, and enzymes needed for the development of the virion: reverse transcriptase (RT), proteases (PR), ribonuclease and integrase (IN). A matrix composed of p17 surrounds the capsid ensuring the integrity of the virion. This, in turn, is surrounded by an envelope composed of two layers of phospholipids taken from the membrane of a human cell when a newly formed virus particle buds from the cell.
    [Show full text]
  • Structural Variability and Complexity of the Giant Pithovirus Sibericum
    Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy Kenta Okamoto, Naoyuki Miyazaki, Chihong Song, Filipe Maia, Hemanth Reddy, Chantal Abergel, Jean-Michel Claverie, Janos Hajdu, Martin Svenda, Kazuyoshi Murata To cite this version: Kenta Okamoto, Naoyuki Miyazaki, Chihong Song, Filipe Maia, Hemanth Reddy, et al.. Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy. Scientific Reports, Nature Publishing Group, 2017, 7 (1), pp.13291. 10.1038/s41598-017-13390-4. hal-01785112 HAL Id: hal-01785112 https://hal-amu.archives-ouvertes.fr/hal-01785112 Submitted on 4 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high- Received: 29 March 2017 Accepted: 22 September 2017 voltage electron cryo-tomography Published: xx xx xxxx and energy-fltered electron cryo- microscopy Kenta Okamoto1, Naoyuki Miyazaki2, Chihong Song2, Filipe R. N. C. Maia1, Hemanth K. N. Reddy1, Chantal Abergel 3, Jean-Michel Claverie3,4, Janos Hajdu1,5, Martin Svenda1 & Kazuyoshi Murata2 The Pithoviridae giant virus family exhibits the largest viral particle known so far, a prolate spheroid up to 2.5 μm in length and 0.9 μm in diameter.
    [Show full text]
  • The Origins of Giant Viruses, Virophages and Their Relatives in Host Genomes Aris Katzourakis* and Amr Aswad
    Katzourakis A and Aswad A BMC Biology 2014, 12:51 http://www.biomedcentral.com/1741-7007/12/51 COMMENTARY The origins of giant viruses, virophages and their relatives in host genomes Aris Katzourakis* and Amr Aswad Abstract including the discovery last month of Samba virus, a wild mimivirus from the Amazonian Rio Negro [4]. Al- Giant viruses have revealed a number of surprises that though slightly larger, Samba virus shares identity across challenge conventions on what constitutes a virus. the majority of its genome to the original Bradford The Samba virus newly isolated in Brazil expands the mimivirus, further expanding the widespread distribu- known distribution of giant mimiviruses to a near- tion of these giant viruses. The defining feature of giant global scale. These viruses, together with the viruses is that they are an extreme outlier in terms of transposon-related virophages that infect them, pose a genome size: Acanthamoeba polyphaga mimivirus has a number of questions about their evolutionary origins 1.2 Mb genome [1], which was double the size of the lar- that need to be considered in the light of the gest virus known at the time, and pandoravirus genomes complex entanglement between host, virus and reach up to 2.5 Mb [2]. Giant viruses are also extreme virophage genomes. outliers in terms of their physical size, being too large to pass through porcelain filters, a criterion historically See research article: used to define a virus. As a further challenge to the trad- http://www.virologyj.com/content/11/1/95. itional definition of viruses, giant viruses have several es- sential protein synthesis genes that have thus far been The discovery of giant viruses thought to be exclusive to cellular life [1].
    [Show full text]
  • HIV-1 Virus Cycle Replication: a Review of RNA Polymerase II Transcription, Alternative Splicing and Protein Synthesis Corresponding Autor
    HIV-1 virus cycle replication: a review of RNA polymerase II transcription, alternative splicing and protein synthesis Correspondingautor: MiguelRamos-Pascual Abstract HIV virus replication is a time-related process that includes attachment to host cell and fusion, reverse transcription, integration on host cell DNA, transcription and splicing, multiple mRNA transport, protein synthesis, budding and maturation. Focusing on the core steps, RNA polymerase II transcripts in an early stage pre-mRNA containing regulator proteins (i.e nef,tat,rev,vif,vpr,vpu), which are completely spliced by the spliceosome complex (0.9kb and 1.8kb) and exported to the ribosome for protein synthesis. These splicing and export processes are regulated by tat protein, which binds on Trans-activation response (TAR) element, and by rev protein, which binds to the Rev-responsive Element (RRE). As long as these regulators are synthesized, splicing is progressively inhibited (from 4.0kb to 9.0kb) and mRNAs are translated into structural and enzymatic proteins (env, gag-pol). During this RNAPII scanning and splicing, around 40 different multi-cystronic mRNA have been produced. Long-read sequencing has been applied to the HIV-1 virus genome (type HXB2CG) with the HIV.pro software, a fortran 90 code for simulating the virus replication cycle, specially RNAPII transcription, exon/intron splicing and ribosome protein synthesis, including the frameshift at gag/pol gene and the ribosome pause at env gene. All HIV-1 virus proteins have been identified as far as other ORFs. As observed, tat/rev protein regulators have different length depending on the splicing cleavage site: tat protein varies from 224aa to a final state of 72aa, whereas rev protein from 25aa to 27aa, with a maximum of 119aa.
    [Show full text]
  • Pandoraviruses: Amoeba Viruses with Genomes up to 2.5 Mb Reaching
    Pandoraviruses: Amoeba Viruses with Genomes Up to 2.5 Mb Reaching That of Parasitic Eukaryotes Nadège Philippe, Matthieu Legendre, Gabriel Doutre, Yohann Couté, Olivier Poirot, Magali Lescot, Defne Arslan, Virginie Seltzer, Lionel Bertaux, Christophe Bruley, et al. To cite this version: Nadège Philippe, Matthieu Legendre, Gabriel Doutre, Yohann Couté, Olivier Poirot, et al.. Pan- doraviruses: Amoeba Viruses with Genomes Up to 2.5 Mb Reaching That of Parasitic Eukary- otes. Science, American Association for the Advancement of Science, 2013, 341 (6143), pp.281-286. 10.1126/science.1239181. cea-00862677 HAL Id: cea-00862677 https://hal-cea.archives-ouvertes.fr/cea-00862677 Submitted on 17 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REPORTS sensitizes the receptor to agonist. In this manner, switch is aided by MRAP2b, which forms a com- 7. J. A. Sebag, P. M. Hinkle, Proc. Natl. Acad. Sci. U.S.A. MRAP2b would convert the adult zebrafish MC4R plex with MC4R and renders it highly sensitive to 104, 20244–20249 (2007). a 8. J. A. Sebag, P. M. Hinkle, J. Biol. Chem. 284, from a constitutively active to a ligand-dependent -MSH.
    [Show full text]
  • Identification of Small Endogenous Viral Elements Within Host
    IDENTIFICATION OF SMALL ENDOGENOUS VIRAL ELEMENTS WITHIN HOST GENOMES by Edward C. Davis, Jr. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science Boise State University May 2016 c 2016 Edward C. Davis, Jr. ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Edward C. Davis, Jr. Thesis Title: Identification of Small Endogenous Viral Elements within Host Genomes Date of Final Oral Examination: 04 March 2016 The following individuals read and discussed the thesis submitted by student Edward C. Davis, Jr., and they evaluated his presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Timothy Andersen, Ph.D. Chair, Supervisory Committee Amit Jain, Ph.D. Member, Supervisory Committee Gregory Hampikian, Ph.D. Member, Supervisory Committee The final reading approval of the thesis was granted by Timothy Andersen, Ph.D., Chair, Supervisory Committee. The thesis was approved for the Graduate College by John R. Pelton, Ph.D., Dean of the Graduate College. Dedicated to Elaina, Arianna, and Zora. iv ACKNOWLEDGMENTS The author wishes to express gratitude to the members of the supervisory com- mittee for providing guidance and patience. v ABSTRACT A parallel string matching software architecture has been developed (incorpo- rating several algorithms) to identify small genetic sequences in large genomes. En- dogenous viral elements (EVEs) are sequences originating in the genomes of viruses that have become integrated into the chromosomes of sperm or egg cells of infected hosts, and passed to subsequent generations.
    [Show full text]