'Genome to Paddock' Approach to Control Plant Disease

Total Page:16

File Type:pdf, Size:1020Kb

'Genome to Paddock' Approach to Control Plant Disease PLENARY 1 – DANIEL MCALPINE MEMORIAL LECTURE A ‘genome to paddock’ approach to control plant disease 1 Barbara Howlett 1. University of Melbourne, Melbounre, VIC, Australia Pathogenic fungi evolve in concert with their plant hosts to invade and overcome defence responses. A detailed knowledge of these processes is essential for successful disease management strategies. Blackleg caused by the fungus, Leptosphaeria maculans, is the major disease of canola worldwide. In this lecture I describe how field data, such as disease incidence and severity, coupled with information about the biology, molecular genetics and genomics of the blackleg fungus has been exploited to control this important disease. Field populations of Leptosphaeria maculans can evolve and overcome disease resistance bred into canola within three years of commercial release of a cultivar. The risk of breakdown of resistance can be determined by monitoring disease severity of canola cultivars and changes in virulence of fungal populations using high throughput molecular assays that are based on sequences of avirulence genes. Farmers can avoid a predicted epidemic by sowing canola cultivars with different resistance genes in subsequent years. This strategy has been exploited in Australia and has averted substantial yield losses due to disease. NOTES: CONCURRENT SESSION 1 – PEST AND PATHOGEN EVOLUTION AND DIVERSITY Linking molecules to morphology: fruit fly integrative taxonomy Mark K Schutze1, Matthew N Krosch1, Jane Royer2, Nicholas Woods3, Rodney Turner3, Melanie Bottrill3, Bill Woods4, Ian 4 1 1 5 Lacey , Jacinta McMahon , Francesca Strutt , Stephen L Cameron 1. Queensland University of Technology, Brisbane, QUEENSLAND, Australia 2. Queensland Department of Agriculture and Fisheries, Brisbane 3. Plant Health Australia, Canberra 4. Department of Agriculture and Food, Western Australia, Perth 5. Purdue University, West Lafayette, IN, USA Containing over 5,000 species, Tephritidae is a diverse fly family notorious for containing some of the world’s most destructive fruit pests, including the Mediterranean fruit fly, Oriental fruit fly, South American fruit fly, and Queensland fruit fly. As for most insects, traditional taxonomy has relied primarily on morphological characters to discriminate, define, and describe new species. This has failed to fully resolve some of the most important pest groups, especially those belonging to species complexes, leading to significant debates among the tephritid community. We argue that an integrative approach, correlating independent datasets to the same individual voucher specimens, represents the future of tephritid systematics, taxonomy, and diagnostics. This is particularly important for problematic groups of high biosecurity concern at higher risk of diagnostic confusion. The banana wilt fungus Fusarium oxysporum f .sp. cubense is even more diverse than previously anticipated 1 2 2 1 1 Diane Mostert , Wayne O'Neill , Suzy Perry , Lizel Mostert , Altus Viljoen 1. Plant Pathology, Stellenbosch University, Stellenbosch, Western Cape, South Africa 2. Biosecurity Queensland, Department of Agriculture and Fisheries , Brisbane, Queensland, Australia Fusarium oxysporum f. sp. cubense (Foc) is a soil-borne fungus that causes Fusarium wilt of banana, a lethal disease that can result in devastating economic losses to banana production worldwide. The fungus, which originated in Asia, has a complex evolutionary history and taxonomic composition. It consists of three races, which are inadequately defined, and at least 24 vegetative compatibility groups (VCGs) that are separated by single to multiple sequence differences in the loci governing vegetative compatibility. VCG complexes are regularly formed between closely related groups. Extensive surveys of diseased banana plants in Asia resulted in the collection of pathogenic isolates of F. oxysporum that did not fit into any of the known Foc VCGs. These isolates were, therefore, properly characterized and assigned to new Foc VCGs. In the process, five multiple-member and eight single-member VCGs were assigned. Isolates previously assigned as new genotypes of Foc paired with the known VCGs 01221, 01222 and the VCG complex 0128/01220. Phylogenetic analyses indicated that the new Foc VCGs were closely related. The results obtained in this study suggest that more VCGs exist than originally anticipated, but that Foc is probably phylogenetically less diverse than reflected by the number of VCGs. NOTES: Sexual reproduction between Pyrenophora teres f. teres and Pyrenophora teres f. maculata is rare in barley field populations 1 2 3 3 3 1 1 Barsha Poudel , Mark McLean , Greg Platz , Ryan Fowler , Judy Mcilroy , Mark Sutherland , Anke Martin 1. University of Southern Queensland, Darling Heights, QLD, Australia 2. Agriculture Victoria , Horsham , VIC , Australia 3. Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD , Australia Pyrenophora teres f. teres (Ptt) and P. teres f. maculata (Ptm) are foliar fungal pathogens of barley that respectively cause the net and spot forms of net blotch disease. Both pathogens co-exist on crop residue and reproduce sexually, potentially leading to hybridisation between them and the evolution of new virulent pathotypes that could overcome sources of resistance in current commercial barley varieties. To date only few studies have reported Ptt x Ptm hybrids in the field, but reproduction between Ptt and Ptm has been successfully induced under laboratory conditions. To investigate the incidence of sexual recombination between Ptt x Ptm in the field, susceptible barley varieties were infected with Ptt and Ptm isolates of opposite mating types at each of three sites to facilitate hybridisation. To test for Ptt x Ptm hybrids, 723 single conidia were isolated from infected leaf samples. Sequence-specific PCR markers amplified across DNA of each isolate indicated that none of the isolates were hybrids. Furthermore DArT (Diversity Array Technology) marker analysis indicated that recombination had taken place among Ptt and among Ptm isolates. These findings suggest that sexual hybridisation between Ptt x Ptm is rare and that there is preference for sexual recombination among isolates of the same form. Further investigations are needed to determine the conditions under which hybridisation may occur in the field. Host specificity in net form of net blotch of barley and barley grass caused by Pyrenophora teres fsp. teres 1 Celeste Linde 1. Australian National University, Canberra, ACT, Australia The interaction between hosts and pathogens and the severity of epidemics, depends heavily on the interactions between their genetic diversity, population size and transmission ability. Theory predicts that genetically diverse hosts will select for higher virulence and more diverse pathogens than hosts with low genetic diversity. Cultivated hosts typically have lower genetic diversity and thus small effective population sizes, but can potentially harbour large pathogen population sizes. On the other hand, hosts, such as weeds, which are genetically more diverse and thus have larger effective population sizes, usually harbour smaller pathogen population sizes. Large pathogen population sizes may lead to more opportunities for mutation and hence more diverse pathogens. Here we test the predictions that pathogen neutral genetic diversity will increase with large pathogen population sizes and host diversity. We assessed and compared the diversity of a fungal pathogen, Pyrenophora teres fsp. teres, on weedy barley grass (which have a large effective population size) and cultivated barley (low genetic diversity) using microsatellites and pathogenicity to assess the importance of weeds in the evolution of this pathogen. The findings indicated that the large barley acreage and low host diversity maintains higher pathogen neutral genetic diversity and has a higher effective population size. Thus, pathogen census population size is a better predictor for neutral genetic diversity than host diversity. However, the pathogen populations on the two hosts are distinct based on clustering of their microsatellite alleles and most importantly, do not show cross host pathogenicity. Thus, although weeds enhance the evolution of aggressiveness in some other pathosystems, here barley grass poses no threat to increased aggressiveness evolution of Pyrenophora teres fsp. teres on barley. NOTES: Genotyping of potato cyst nematode in Victoria, Australia, and comparison with populations from Europe and the Americas 1 1 1 1 2 2 Jacqueline Edwards , Arati Agarwal , John Wainer , Mark Blacket , Maggie D Tricka , Michael Renton 1. Agriculture Victoria, Bundoora, VIC, Australia 2. The University of Western Australia, Perth, WA, Australia Potato cyst nematodes (PCN) are damaging soil-borne quarantine pests of potatoes in many parts of the world. There are two recognised species, Globodera pallida and G. rostochiensis, of which only G. rostochiensis is present in Australia. PCN was first discovered in Australia in 1986 in a suburb of Perth, Western Australia, was subsequently eradicated and area freedom reinstated. In Victoria, PCN was first detected in February 1991 in Wandin, east of Melbourne. Since then it has been found in small pockets in Gembrook (1991), Emerald, Keysborough and Boneo (1992), Kooweerup/Cora Lynn (2003) and Thorpdale (2008), also east of Melbourne. Strict quarantine controls have been in place since each detection. In 2007, it was speculated that there may have
Recommended publications
  • Native Plants Sixth Edition Sixth Edition AUSTRALIAN Native Plants Cultivation, Use in Landscaping and Propagation
    AUSTRALIAN NATIVE PLANTS SIXTH EDITION SIXTH EDITION AUSTRALIAN NATIVE PLANTS Cultivation, Use in Landscaping and Propagation John W. Wrigley Murray Fagg Sixth Edition published in Australia in 2013 by ACKNOWLEDGEMENTS Reed New Holland an imprint of New Holland Publishers (Australia) Pty Ltd Sydney • Auckland • London • Cape Town Many people have helped us since 1977 when we began writing the first edition of Garfield House 86–88 Edgware Road London W2 2EA United Kingdom Australian Native Plants. Some of these folk have regrettably passed on, others have moved 1/66 Gibbes Street Chatswood NSW 2067 Australia to different areas. We endeavour here to acknowledge their assistance, without which the 218 Lake Road Northcote Auckland New Zealand Wembley Square First Floor Solan Road Gardens Cape Town 8001 South Africa various editions of this book would not have been as useful to so many gardeners and lovers of Australian plants. www.newhollandpublishers.com To the following people, our sincere thanks: Steve Adams, Ralph Bailey, Natalie Barnett, www.newholland.com.au Tony Bean, Lloyd Bird, John Birks, Mr and Mrs Blacklock, Don Blaxell, Jim Bourner, John Copyright © 2013 in text: John Wrigley Briggs, Colin Broadfoot, Dot Brown, the late George Brown, Ray Brown, Leslie Conway, Copyright © 2013 in map: Ian Faulkner Copyright © 2013 in photographs and illustrations: Murray Fagg Russell and Sharon Costin, Kirsten Cowley, Lyn Craven (Petraeomyrtus punicea photograph) Copyright © 2013 New Holland Publishers (Australia) Pty Ltd Richard Cummings, Bert
    [Show full text]
  • Odorous Garden Ants (Iridomyrmex Chasei Spp.) Factsheet
    July 2018 Factsheet Odorous garden ants (Iridomyrmex chasei spp.) Ants to watch out for Red imported fire ants, yellow crazy ants, electric ants and carpenter ants, all pose a serious social, economic and environmental threat to Western Australia. If you suspect you have these ants or any ants you haven’t seen before, please contact us on freecall 1800 084 881. Summary Native ants commonly referred to as odorous garden ants belong to the Iridomyrmex chasei species group. These ants are harmless and do not sting. Where are they found? These ants nest in the ground outside and may be observed excavating sand in gardens and pathways. They may also be seen climbing trees and tending pests such as scale, mealy bugs and aphids. Damage Odorous garden ants (Iridomyrmex chasei spp.), with two winged These ants do not sting and do not damage or nest in reproductives (alates) (bottom) buildings. They can be a nuisance in spring and summer when their numbers are at their highest and winged reproductive ants group together and leave the nest (known as swarming). These ants rarely enter the home. Contact Treatment Pest and Disease Information Service (PaDIS) Liquid sprays offer much better control for these ants than dusts or granules and a number of products are available. Call: (08) 9368 3080 Sprays containing chemicals such as permethrin will be effective when applied to nesting and foraging areas. Email: [email protected] These products can be obtained from garden centres and hardware stores. Exotic threats The following ants could impact on our outdoor lifestyle and Western Australia’s agricultural and food industries.
    [Show full text]
  • 2016 National Plant Biosecurity Status Report
    The National Plant Biosecurity Status Report 2016 © Plant Health Australia 2017 Disclaimer: This publication is published by Plant Health Australia for information purposes only. Information in the document is drawn from a variety of sources outside This work is copyright. Apart from any use as Plant Health Australia. Although reasonable care was taken in its preparation, Plant Health permitted under the Copyright Act 1968, no part Australia does not warrant the accuracy, reliability, completeness or currency of the may be reproduced by any process without prior information, or its usefulness in achieving any purpose. permission from Plant Health Australia. Given that there are continuous changes in trade patterns, pest distributions, control Requests and enquiries concerning reproduction measures and agricultural practices, this report can only provide a snapshot in time. and rights should be addressed to: Therefore, all information contained in this report has been collected for the 12 month period from 1 January 2016 to 31 December 2016, and should be validated and Communications Manager confirmed with the relevant organisations/authorities before being used. A list of Plant Health Australia contact details (including websites) is provided in the Appendices. 1/1 Phipps Close DEAKIN ACT 2600 To the fullest extent permitted by law, Plant Health Australia will not be liable for any loss, damage, cost or expense incurred in or arising by reason of any person relying on the ISSN 1838-8116 information in this publication. Readers should make and rely on their own assessment An electronic version of this report is available for and enquiries to verify the accuracy of the information provided.
    [Show full text]
  • Black House Ants (Ochetellus Glaber), Summary Inset Showing a Queen Ant Black House Ants Are Native to Australia and Are a Common House-Infesting Ant Species
    July 2018 Factsheet Black house ants (Ochetellus glaber) Ants to watch out for Red imported fire ants, yellow crazy ants, electric ants and carpenter ants, all pose a serious social, economic and environmental threat to Western Australia. If you suspect you have these ants or any ants you haven’t seen before, please contact us on freecall 1800 084 881. Black house ants (Ochetellus glaber), Summary inset showing a queen ant Black house ants are native to Australia and are a common house-infesting ant species. These ants do not bite or sting and are active day and night. Where are they found? In the home they are commonly attracted to sweet liquids and foods and are often drawn to the kitchen, laundry and bathroom. They naturally nest and forage in trees, feeding on insects, honeydew and nectar. Damage These ants rarely cause direct damage but are considered household pests as they are one of the few ant species that will nest inside. They can be found nesting in areas such as roof and wall spaces, rolled up awnings, pot plants, and in-between flat packed items. They may also Contact infest electrical items such as kettles, microwave ovens, computers or clock radios. Pest and Disease Information Service (PaDIS) Treatment Call: (08) 9368 3080 Control of these ants when numbers are low is advisable. When numbers are high and multiple nests have been Email: [email protected] established, control can be increasingly difficult. If nests are exposed they can be sprayed with fly spray, otherwise baits containing borates (borax) are effective for this sweet- feeding ant species.
    [Show full text]
  • Genera in Myrtaceae Family
    Genera in Myrtaceae Family Genera in Myrtaceae Ref: http://data.kew.org/vpfg1992/vascplnt.html R. K. Brummitt 1992. Vascular Plant Families and Genera, Royal Botanic Gardens, Kew REF: Australian – APC http://www.anbg.gov.au/chah/apc/index.html & APNI http://www.anbg.gov.au/cgi-bin/apni Some of these genera are not native but naturalised Tasmanian taxa can be found at the Census: http://tmag.tas.gov.au/index.aspx?base=1273 Future reference: http://tmag.tas.gov.au/floratasmania [Myrtaceae is being edited at mo] Acca O.Berg Euryomyrtus Schaur Osbornia F.Muell. Accara Landrum Feijoa O.Berg Paragonis J.R.Wheeler & N.G.Marchant Acmena DC. [= Syzigium] Gomidesia O.Berg Paramyrciaria Kausel Acmenosperma Kausel [= Syzigium] Gossia N.Snow & Guymer Pericalymma (Endl.) Endl. Actinodium Schauer Heteropyxis Harv. Petraeomyrtus Craven Agonis (DC.) Sweet Hexachlamys O.Berg Phymatocarpus F.Muell. Allosyncarpia S.T.Blake Homalocalyx F.Muell. Pileanthus Labill. Amomyrtella Kausel Homalospermum Schauer Pilidiostigma Burret Amomyrtus (Burret) D.Legrand & Kausel [=Leptospermum] Piliocalyx Brongn. & Gris Angasomyrtus Trudgen & Keighery Homoranthus A.Cunn. ex Schauer Pimenta Lindl. Angophora Cav. Hottea Urb. Pleurocalyptus Brongn. & Gris Archirhodomyrtus (Nied.) Burret Hypocalymma (Endl.) Endl. Plinia L. Arillastrum Pancher ex Baill. Kania Schltr. Pseudanamomis Kausel Astartea DC. Kardomia Peter G. Wilson Psidium L. [naturalised] Asteromyrtus Schauer Kjellbergiodendron Burret Psiloxylon Thouars ex Tul. Austromyrtus (Nied.) Burret Kunzea Rchb. Purpureostemon Gugerli Babingtonia Lindl. Lamarchea Gaudich. Regelia Schauer Backhousia Hook. & Harv. Legrandia Kausel Rhodamnia Jack Baeckea L. Lenwebia N.Snow & ZGuymer Rhodomyrtus (DC.) Rchb. Balaustion Hook. Leptospermum J.R.Forst. & G.Forst. Rinzia Schauer Barongia Peter G.Wilson & B.Hyland Lindsayomyrtus B.Hyland & Steenis Ristantia Peter G.Wilson & J.T.Waterh.
    [Show full text]
  • Coffs Harbour No. 140 January 2019 1
    Coffs Harbour Group NEWSLETTER No. 140: January 2019 2019 COMMITTEE President: Gwyn Clarke [email protected] Newsletter Contributions Vice President: Morrie Duggan If you have something of interest to share, [email protected] please contact the Editor, Jan Whittle. Secretary: Rob Watt [email protected] Keep up-to-date with news, Program of Treasurer: Janice Fitzpatrick outings and meetings via our website: [email protected] www.austplants.com.au/Coffs-Harbour 0418350937 Newsletter Editor: Jan Whittle Welcome to New Members [email protected] Lindy Hills and Wayne Hartridge Publicity Officer: Angela Lownie [email protected] Membership Renewals Renew online via APS website: Ordinary members: www.austplants.com.au Lindy Hills and Mary Gibson MONTHLY MEETINGS All meetings are held on Tuesdays in the Display Room, North Coast Regional Botanic Garden. Please bring a plate of food to share. Tea and coffee will be provided. Tuesday, FEBRURARY 12: 7pm – 10pm Guest Speakers: 3 APS Members Topic: My favourite plant Tuesday, MARCH 12: 10am – 1pm Guest Speakers: Members of the Friends, NCRBG Topic: Banks-Solander Area in the Botanic Garden Tuesday, APRIL 9: 7pm – 10pm Guest Speaker: Colin Broadfoot Topic: Top Tips for Garden Plants Note: Our 2019 Programme of Meetings and Field Trips is now available on our website and as a pdf file attached to this Newsletter. APS Coffs Harbour No. 140 January 2019 1 FIELD TRIPS Sunday JANUARY 27: 9.30am – Noon Leader: Rowan McCabe Location: Urunga Wetlands, 1 Hillside Drive, Urunga Directions: Turnoff Pacific Hwy to Bellingen, than take old Pacific Hwy to Urunga. Meet at Newry Island turnoff, Old Pacific Hwy at 9.30am.
    [Show full text]
  • Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
    Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.
    [Show full text]
  • Western Plant Diagnostic Network First Detector News
    Western Plant Diagnostic Network1 First Detector News A Quarterly Pest Update for WPDN First Detectors Spring 2016 edition, volume 9, number 2 In this Issue Dear First Detectors, For most of us, ants all look the same! Page 1: Editor’s comments Our first response is how to kill them. When one Googles Pages 2 – 7: Ants and You “ant”, the first links that appear are pest control companies. Ants have been around for approximately 130 million years and have diversified and evolved a complicated social Pages 7 - 10: Phytophthora behavior. With the help of several ant experts, we have and Nursery Plants assembled a workshop on ants with wonderful links. Check out the websites and enjoy the vast and varied world of ants! Page 11: Pest Update: Red Blotch of Grapes Vector It is nursery season, and many of us are planting home Found gardens and commercial plantings. The second article is on the challenges presented by Phytophthora infestations in nursery stock. Finally, there is a new pest update. A vector has been discovered for a virus disease of grapevines, known as red blotch. Contact us at the WPDN Regional Center at UC Davis: Please find the NPDN family of newsletters at: Phone: 530 754 2255 Email: [email protected] Newsletters Web: https://wpdn.org Editor: Richard W. Hoenisch @Copyright Regents of the University of California All Rights Reserved Brocken Inaglory Brocken Western Plant Diagnostic Network News Ants fossilized in Baltic amber Ants and You 2 Ants are a true social (eusocial) insect, often appearing suddenly and invading in mass.
    [Show full text]
  • National Plant Pest Reference Collections
    NATIONAL PLANT PEST REFERENCE COLLECTIONS STRATEGY 2018 Ensuring biological collections support trade and biosecurity Acknowledgements Subcommittee on Plant Health Diagnostics Plant Health Australia and the Subcommittee on Plant Health The Subcommittee on Plant Health Diagnostics (SPHD) aims Diagnostics (SPHD) would like to acknowledge the contribution of to sustain and improve the quality and reliability of plant pest the Reference Collections Working Group in the development of diagnostics in Australia. SPHD achieves this by: the National Plant Pest Reference Collection Strategy, especially Mike Hodda (CSIRO), Jacky Edwards and Mallik Malipatil • coordinating the development of National Diagnostic (Agriculture Victoria), Peter Gillespie (NSW DPI), Dean Beasley Protocols for priority plant pests and Roger Shivas (QLD DAF) and Ian Naumann (DAWR). • developing and implementing the National Plant Biosecurity Diagnostic Strategy within the framework of the National Copyright Plant Biosecurity Strategy and the Intergovernmental Agreement on Biosecurity © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia • coordinating the National Plant Biosecurity Diagnostic Limited (PHA), except when content has been provided by Network other contributors, in which case copyright may be owned by • assisting the development of diagnostic tools and material another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative • facilitating and coordinating
    [Show full text]
  • (Coleoptera: Chrysomelidae) of Korea, with Comments and New Records
    Number 404: 1-36 ISSN 1026-051X April 2020 https://doi.org/10.25221/fee.404.1 http://zoobank.org/References/C2AC80FF-60B1-48C0-A6D1-9AA4BAE9A927 AN ANNOTATED CHECKLIST OF LEAF BEETLES (COLEOPTERA: CHRYSOMELIDAE) OF KOREA, WITH COMMENTS AND NEW RECORDS H.-W. Cho1, *), S. L. An 2) 1) Animal & Plant Research Team, Nakdonggang National Institute of Biological Resources, 137 Donam 2-gil, Sangju 37242, Republic of Korea. *Corresponding author, E-mail: [email protected] 2) Division of Research, National Science Museum, 481 Daedeok-daero, Yuseong-gu, Daejeon 34143, Republic of Korea. Summary. An updated list of Chrysomelidae of Korea is provided with comments on all taxonomic, nomenclatural, and distributional changes. This paper is the first attempt to divide the distributional records of all Korean Chrysomelidae into records for North and South Korea. In total, 128 genera and 424 species are reported: 293 species in North Korea, 340 in South Korea, and 10 without precise localities in Korea; 22 species are excluded from the Korean fauna; 15 new national records from South Korea are reported, 10 of which are new to Korea. Key words: Chrysomelidae, fauna, new record, taxonomy, North Korea, South Korea. Х. В. Чо, С. Л. Ан. Аннотированный список жуков-листоедов (Coleop- tera: Chrysomelidae) Кореи с замечаниями и новыми указаниями // Дальне- восточный энтомолог. 2020. N 404. С. 1-36. Резюме. Приводится обновленный список жуков-листоедов (Chrysomelidae) Кореи с таксономическим и номенклатурным изменениями и замечаниями по 1 распространению. Предпринята первая попытка разделения фаунистических данных по всем корейским листоедам на указания для северной и южной частей полуострова. Всего приводятся 424 вида из 128 родов, из которых 293 вида отмечены для Северной, 340 видов – для Южной Кореи, а 10 видов – из Кореи без более точного указания; 22 вид искючен из фауны Корейского полу- острова; 15 видов впервые указаны для Республики Корея, из них 10 видов являются новыми для полуострова.
    [Show full text]
  • Newer, Safer Insecticides for Use in the Landscape
    Newer, Safer Insecticides for Use in the Landscape LICH Green Industry Conference October 25, 2012 Arnold H. Hara University of Hawaii at Manoa College of Tropical Agriculture & Human Resources 875 Komohana St. Hilo, Hawaii E-mail: [email protected] Phone: 808 959-5199 Website: http://www.ctahr.hawaii.edu/haraa/index.asp PESTS: What will this presentation cover? Caterpillars (monkeypod, bougainvillea), thrips (anthurium, myoporum & chilli thrips), ants (little fire ant), mealybugs (coconut, papaya), aphids, armored scale, stem gall, lac scale and whitefly (anthurium, spiraling, ficus). *Insecticides: Organophosphate (Acejet = acephate) Pyrethroid (Talstar) Neonicotinoids (Merit, Safari, Optgard, TriStar, Arena) Tetronic Acid (Kontos = spirotetramat) Avermectins (Avid = abamectin) Spinosyns (Conserve = spinosad) Insect Growth Regulator (Distance = pyriproxyfen) *Ant Baits: Talus = buprofezin) Probait (hydramethylnon) Extinguish Professional (methoprene) Extinguish Plus (hydramethylnon plus methoprene) Maxforce Complete (hydramethylnon) Monkeypod Caterpillars Monkeypod- Monkeypod moth Kiawe caterpillar Polydesma Melipotis Black Witch, Ascalapha odorata caterpillar pupae Monkeypod caterpillars *In the 1970’s defoliated monkeypods. *Eggs laid in crevices of the bark. *At dusk, caterpillars migrate up the tree to feed in the canopy at night. *At dawn, caterpillars migrate down the tree and hide during the day in cracks and crevices in the bark or down into the soil. *Caterpillars pupate in the bark. *Egg to adult in 50 to 60 days. *Continued nightly eating of the sprouting leaves caused swellings or “galling” of the monkeypod. (Insects of Hawaii 7: 395, 1958) *Control by spraying tree trunk not canopy with insecticides or treat burlap or carpet attached to tree trunk that provides hiding habitat for caterpillars between bark and carpet/burlap. In Hawaii since 1993 Bt (Dipel) sprayed in late afternoon should be effective.
    [Show full text]
  • Meat Ants (Iridomyrmex Purpureus) Are Native to Australia and Are Most Common in Country Areas
    July 2018 Factsheet Meat ants (Iridomyrmex purpureus) Ants to watch out for Red imported fire ants, yellow crazy ants, electric ants and carpenter ants, all pose a serious social, economic and environmental threat to Western Australia. If you suspect you have these ants or any ants you haven’t seen before, please contact us on freecall 1800 084 881. Summary Meat ants (Iridomyrmex purpureus) are native to Australia and are most common in country areas. These ants do not sting but are very territorial and will bite aggressively when disturbed. Where are they found? Meat ants build large nests which resemble roughly circular low lying mounds, often covered with small pebbles and Meat ant (Iridomyrmex purpureus) and free of any vegetation. The mounds are usually located in meat ant mound (bottom image) open, sunny areas. Damage These ants do not damage or nest in buildings. They can be a nuisance because of their aggressive territorial behaviour and can bite people, pets and livestock. They are also known to transport aphids and scale insects onto Contact trees in orchards which encourage outbreaks of these pests. Pest and Disease Information Service (PaDIS) Treatment Call: (08) 9368 3080 Any insecticide sprays registered for ant control can be used to treat meat ant mounds and greatly reduce or Email: [email protected] eliminate meat ant numbers; registered chemicals include bifenthrin, permethrin and chlorpyrifos. Follow the mixing instructions on the pack and spray the mounds, including approximately 100 mL down every hole. These spray products can be purchased from garden centres, hardware stores and agricultural chemical retailers.
    [Show full text]