Magnetic Field Direction and Lunar Swirl Morphology: Insights from Airy And

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Field Direction and Lunar Swirl Morphology: Insights from Airy And JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E10012, doi:10.1029/2012JE004165, 2012 Magnetic field direction and lunar swirl morphology: Insights from Airy and Reiner Gamma Doug Hemingway1 and Ian Garrick-Bethell1,2 Received 21 June 2012; revised 23 August 2012; accepted 30 August 2012; published 30 October 2012. [1] Many of the Moon’s crustal magnetic anomalies are accompanied by high albedo features known as swirls. A leading hypothesis suggests that swirls are formed where crustal magnetic anomalies, acting as mini magnetospheres, shield portions of the surface from the darkening effects of solar wind ion bombardment, thereby leaving patches that appear bright compared with their surroundings. If this hypothesis is correct, then magnetic field direction should influence swirl morphology. Using Lunar Prospector magnetometer data and Clementine reflectance mosaics, we find evidence that bright regions correspond with dominantly horizontal magnetic fields at Reiner Gamma and that vertical magnetic fields are associated with the intraswirl dark lane at Airy. We use a genetic search algorithm to model the distributions of magnetic source material at both anomalies, and we show that source models constrained by the observed albedo pattern (i.e., strongly horizontal surface fields in bright areas, vertical surface fields in dark lanes) produce fields that are consistent with the Lunar Prospector magnetometer measurements. These findings support the solar wind deflection hypothesis and may help to explain not only the general form of swirls, but also the finer aspects of their morphology. Our source models may also be used to make quantitative predictions of the near surface magnetic field, which must ultimately be tested with very low altitude spacecraft measurements. If our predictions are correct, our models could have implications for the structure of the underlying magnetic material and the nature of the magnetizing field. Citation: Hemingway, D., and I. Garrick-Bethell (2012), Magnetic field direction and lunar swirl morphology: Insights from Airy and Reiner Gamma, J. Geophys. Res., 117, E10012, doi:10.1029/2012JE004165. 1. Introduction [Garrick-Bethell et al., 2011], and are depleted in hydroxyl molecules [Kramer et al., 2011]. Swirls appear to overprint 1.1. Background local topography, having no detectable topographic or tex- [2] Although the Moon does not now possess a global tural expression of their own [Neish et al., 2011]. So far not magnetic field [Ness et al., 1967], remanent crustal magne- identified anywhere else in the solar system, swirls are tization has been identified on the surface and several stable unique natural laboratories where space weathering and regional magnetic fields have been detected from orbit [Dyal crustal magnetism intersect. As such, their study could help et al., 1970; Coleman et al., 1972; Lin, 1979; Lin et al., 1998; address important questions in lunar science including the Hood et al., 2001]. Curiously, many, but not all of these Moon’s dynamo history [Garrick-Bethell et al., 2009; Dwyer crustal magnetic anomalies are accompanied by sinuous et al., 2011; Le Bars et al., 2011], the relative influences of patterns of anomalously high surface reflectance known as solar wind and micrometeoroid bombardment on space swirls [Hood et al., 1979; Hood and Williams, 1989; weathering [Hapke, 2001; Vernazza et al., 2009], and the Richmond et al., 2005; Blewett et al., 2011]. production and distribution of water over the lunar surface [3] Compared with their surroundings, swirls are optically [Pieters et al., 2009; Kramer et al., 2011]. immature, exhibit spectrally distinct space weathering trends [4] Electrostatic migration of dust has been proposed as a possible mechanism for swirl formation [Garrick-Bethell et al., 2011], as have meteoroid or comet impacts [Schultz 1Earth and Planetary Sciences, University of California, Santa Cruz, and Srnka, 1980; Pinet et al., 2000; Starukhina and California, USA. Shkuratov, 2004]. Another model suggests that crustal mag- 2School of Space Research, Kyung Hee University, Yongin, South netic fields act as mini magnetospheres, deflecting the solar Korea. wind and protecting portions of the surface from the optical Corresponding author: D. Hemingway, Earth and Planetary Sciences, maturation and darkening effects of proton bombardment University of California, 1156 High St., Santa Cruz, CA 95064, USA. [Hood and Schubert, 1980; Hood and Williams, 1989]. This ([email protected]) paper aims to make and test predictions based on this solar ©2012. American Geophysical Union. All Rights Reserved. wind deflection model for swirl formation. 0148-0227/12/2012JE004165 E10012 1of19 E10012 HEMINGWAY AND GARRICK-BETHELL: MAGNETIC FIELD DIRECTION AT LUNAR SWIRLS E10012 Figure 1. Magnetic field lines due to a single dipole located at the origin and oriented either (a) vertically or (b) horizontally in the plane of the page. (c and d) Profiles of the horizontal component of the magnetic field shown at the various altitudes represented by dashed lines in Figures 1a and 1b. In both cases, the dipo- lar source has a magnetic moment of 1012 Am2. 1.2. Predicted Influence of Magnetic Field Direction the bright swirls should be dominantly horizontal and that [5] The solar wind deflection model suggests that solar away from swirls and in the intraswirl dark lanes, the fields wind ions are magnetically deflected due to the Lorentz may be either closer to vertical or too weak to offer the sur- force. Neglecting the induced electric field, the cross product face any protection from solar wind darkening. of particle velocity and magnetic field in the Lorentz Law [6] Because magnetic field strength decreases rapidly with means the magnetic deflection force is maximized when distance from the source, swirl morphology should depend particle velocity is perpendicular to the magnetic field and mainly on the very low altitude structure of the magnetic zero when it is parallel. Hence, if the high albedo of swirls is field. The structure of the field at higher altitudes, where field the result of inhibited space weathering due to magnetic strength is weaker, has less influence on solar wind deflec- deflection of solar wind ions, magnetic field direction should tion. Unfortunately, spacecraft observations are typically influence swirl morphology. While the solar wind incidence limited to higher altitudes and therefore do not directly cap- angle varies, the ion flux at the surface and thus any dark- ture the structure of the near-surface magnetic field. It is ening effects will be greatest when the ion trajectories are therefore important to understand the way in which the field vertical. We therefore predict that portions of the crust that patterns change with observation altitude, including the role are shielded by dominantly horizontal magnetic fields should that is played by the direction of magnetization. Figure 1 receive maximum protection from the solar wind while por- illustrates the magnetic field due to a single dipole that is tions of the crust associated with vertically oriented magnetic either vertically oriented (Figures 1a and 1c) or horizontally fields should experience protection only at low solar wind oriented (Figures 1b and 1d). Figures 1a and 1b illustrate incidence angles, when darkening effects would be minimal magnetic field lines as seen in vertical cross section while anyway. This suggests that the magnetic fields directly over Figures 1c and 1d show profiles of the horizontal component of the magnetic field as observed along the dashed lines 2of19 E10012 HEMINGWAY AND GARRICK-BETHELL: MAGNETIC FIELD DIRECTION AT LUNAR SWIRLS E10012 shown in Figures 1a and 1b (in both cases, the model dipole the minimally processed magnetometer measurements rather is placed at the origin and arbitrarily assigned a magnetic than to a derived field model. While we focus here on direct moment of 1012 Am2). Directly over the vertically oriented mapping, we did compare our maps against maps we derived dipole, field lines are vertical at any altitude (Figure 1a). from the Purucker and Nicholas [2010] model coefficients. Peaks in the horizontal field strength appear to either side and We found that in the latter, crustal anomaly fields appear are separated by a distance equal to the observation altitude morphologically similar to the same features in our maps, but (Figure 1c). Directly over the horizontally oriented dipole, are typically broader in horizontal extent and exhibit lower field lines are horizontal at any altitude (Figure 1b). As the field strength. observer moves along an axis parallel to the dipole direction, [9] Each of our maps incorporates data from a sequence of horizontal field strength decreases, reaching zero (i.e., verti- consecutive orbits that cross the anomaly of interest. The cal field lines) at a horizontal distance of 1/√2 times the polar orbiting spacecraft obtained global coverage twice each observation altitude, before temporarily increasing again lunation, with consecutive orbits spaced 1 degree in lon- slightly (Figure 1d). Appendix A gives a quantitative treat- gitude (30 km at the equator) and with along-track mea- ment of the way in which magnetic fields vary with position surements recorded at 5-s intervals, corresponding to 8km relative to the source. spacing in latitude. In order to capture the undisturbed signal [7] Our study uses Lunar Prospector magnetometer data of the crustal magnetic anomalies, avoiding times when the collected at altitudes of 18 km and higher. While we cannot field is distorted by the impinging solar wind [Kurata et al., measure the magnetic field structure below these altitudes, 2005; Purucker, 2008], we use only those magnetometer we can distinguish between vertically and horizontally ori- measurements collected when the Moon was protected from ented magnetizations (we assume that strong crustal mag- solar wind while passing through the Earth’s magnetotail netic anomalies are approximately dipolar). This means we (excluding times when the field was disturbed by the plasma can select anomalies exhibiting orientations that allow us to sheet) or when the Moon was in the solar wind but the test our predictions.
Recommended publications
  • THE AVALANCHE DEPOSITS in LUNAR CRATER REINER. V.V.Shevchenko1,2, P.C.Pinet1, S.Chevrel1, Y.Daydou1, T.P.Skobeleva2, O.I.Kvaratskhelia3, C.Rosemberg1
    Lunar and Planetary Science XXXVIII (2007) 1066.pdf THE AVALANCHE DEPOSITS IN LUNAR CRATER REINER. V.V.Shevchenko1,2, P.C.Pinet1, S.Chevrel1, Y.Daydou1, T.P.Skobeleva2, O.I.Kvaratskhelia3, C.Rosemberg1. 1UMR 5562 “Dynamique Terrestre et Planet- aire”/CNRS/UPS, Observatoire Midi-Pyrenees, Toulouse, 31400 France; 2Sternberg Astronomical Institute, Mos- cow University, Moscow, 119992, Russia, 3Abastumany Astrophysical Observatory, Georgian Academy of Sci- ences, Georgia. [email protected] Introduction: Space weathering processes on the Fig. 3 represents the Clementine image of the cra- Moon affect the optical properties of an exposed lunar ter Reiner. soil. The main spectral/optical effects of space weath- ering are a reduction of reflectance, attenuation of the 1-μm ferrous absorption band, and a red-sloped con- tinuum creation [1]. Lucey et al. [2 - 4] proposed to estimate the maturity of lunar soils from Clementine UVVIS data using a method which decorrelates the effects of variations in Fe2+ concentration from the effects of soil maturity. The method calculates optical maturity defined as parameter OMAT [5]. Pinet et al. [6] used the method to analyse the ‘Reiner-γ – Reiner’ region on the basis of Clementine spectral image data. Crater Reiner: Crater Reiner is located in western Oceanus Procellarum. Diameter of the crater is 30 km, its depth is 2.4 km and its central peak height is about 700 m (Fig. 1). Fig.3 Evidence of avalanching and of other downslope movement of material is clearly visible on the inner walls of the crater. In general, freshly exposed lunar material is brighter than undisturbed materials nearby.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) ^i e I !emote sousing sad eeolegio Studies of the llaistary Crusts Bernard Ray Hawke Prince-1 Investigator a EL r Z^ .99 University of Hawaii Hawaii Institute of Geophysics Planetary Geosciences Division Honolulu, Hawaii 96822 ^y 1i i W. December 1983 (NASA —CR-173215) REMOTE SENSING AND N84-17092 GEOLOGIC STUDIES OF THE PLANETARY CRUSTS Final Report ( Hawaii Inst. of Geophysics) 14 p HC A02/MF 101 CSCL 03B Unclas G3/91 11715 Gy -2- ©R1GNAL OF POOR QUALITY Table of Contents Page I. Remote Sensing and Geologic Studies cf Volcanic Deposits . • . 3 A. Spectral reflectance studies of dark-haloed craters. • . 3 B. Remote s^:sing studies of regions which were sites of ancient volcanisa . 3 C. [REEP basalt deposits in the Imbrium Region.
    [Show full text]
  • Regolith Compaction and Its Implications for the Formation Mechanism of Lunar Swirls
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1608-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Regolith Compaction and its Implications for the Formation Mechanism of Lunar Swirls Christian Wöhler (1), Megha Bhatt (2), Arne Grumpe (1), Marcel Hess (1), Alexey A. Berezhnoy (3), Vladislav V. Shevchenko (3) and Anil Bhardwaj (2) (1) Image Analysis Group, TU Dortmund University, Otto-Hahn-Str. 4, 44227 Dortmund, Germany, (2) Physical Research Laboratory, Ahmedabad, 380009, India, (3) Sternberg Astronomical Institute, Universitetskij pr., 13, Moscow State University, 119234 Moscow, Russia ([email protected]) Abstract The brightening of the regolith at Reiner Gamma could be a result of reduced space-weathering due to In this study we have examined spectral trends of magnetic shielding [3] and/or due to soil compaction Reiner Gamma (7.5°N, 59°W) using the Moon [5]. According to the model of [9], the spectral Mineralogy Mapper (M3) [1] observations. We variation due to soil compaction is a change in albedo derived maps of solar wind induced OH/H2O and a with negligible effect on spectral slope and compaction index map of the Reiner Gamma swirl. absorption band depths. To quantify soil compaction Our results suggest that the combination of soil at Reiner Gamma, we empirically defined the compaction and magnetic shielding can explain the compaction index c as a positive real number given observed spectral trends. These new findings support by c = M / RSE, where M is the reflectance the hypothesis of swirl formation by interaction modulation at 1.579 µm between a bright on-swirl between a comet and the uppermost regolith layer.
    [Show full text]
  • Intrusives and Lava Tubes: Potential Lunar Swirl Source Bodies? S
    49th Lunar and Planetary Science Conference 2018 (LPI Contrib. No. 2083) 2587.pdf INTRUSIVES AND LAVA TUBES: POTENTIAL LUNAR SWIRL SOURCE BODIES? S. M. Tikoo1 and D. J. Hemingway2, 1Department of Earth and Planetary Sciences, Rutgers University, Piscataway Township, NJ ([email protected]), 2Department of Earth and Planetary Science, University of California, Berkeley, CA. Introduction: Lunar swirls are enigmatic albedo ferromagnetic grains or create new ones. This process features that appear in several regions across the lunar is exemplified by heating experiments on lunar sam- surface (e.g., ref. [1]) and consist of bright and dark ples or their analogs in a controlled oxygen fugacity markings alternating over length scales of typically 1– environment. Heating synthetic mare basalts in a re- 5 km. Most swirls are not readily associated with con- ducing atmosphere ~1 log unit below the iron-wustite spicuous geological features, such as impact craters buffer (i.e., IW-1; the oxygen fugacity conditions in- (e.g., the archetypal swirl at Reiner Gamma lies atop a ferred for a majority of lunar rocks studied thus far) to relatively smooth mare plain) but instead appear to be temperatures in excess of 600°C has produced subsoli- surficial in nature. Swirls are most plausibly the result dus reduction of ilmenite and the associated growth of metal (Fig. 1) [6]. of electrostatically or magnetically-driven sorting of regolith fines [2,3] or solar wind interactions with lo- calized remanent crustal magnetism (e.g., ref. [4]). In either scenario, the complex geometry of the albedo pattern must be a function of the structure of the near surface magnetic field.
    [Show full text]
  • Apollo 12 Photography Index
    %uem%xed_ uo!:q.oe_ s1:s._l"e,d_e_em'I flxos'p_zedns O_q _/ " uo,re_ "O X_ pea-eden{ Z 0 (D I I 696L R_K_D._(I _ m,_ -4 0", _z 0', l',,o ._ rT1 0 X mm9t _ m_o& ]G[GNI XHdV_OOZOHd Z L 0T'I0_V 0 0 11_IdVdONI_OM T_OINHDZZ L6L_-6 GYM J_OV}KJ_IO0VSVN 0 C O_i_lOd-VJD_IfO1_d 0 _ •'_ i wO _U -4 -_" _ 0 _4 _O-69-gM& "oN GSVH/O_q / .-, Z9946T-_D-VSVN FOREWORD This working paper presents the screening results of Apollo 12, 70mmand 16mmphotography. Photographic frame descriptions, along with ground coverage footprints of the Apollo 12 Mission are inaluded within, by Appendix. This report was prepared by Lockheed Electronics Company,Houston Aerospace Systems Division, under Contract NAS9-5191 in response to Job Order 62-094 Action Document094.24-10, "Apollo 12 Screening IndeX', issued by the Mapping Sciences Laboratory, MannedSpacecraft Center, Houston, Texas. Acknowledgement is made to those membersof the Mapping Sciences Department, Image Analysis Section, who contributed to the results of this documentation. Messrs. H. Almond, G. Baron, F. Beatty, W. Daley, J. Disler, C. Dole, I. Duggan, D. Hixon, T. Johnson, A. Kryszewski, R. Pinter, F. Solomon, and S. Topiwalla. Acknowledgementis also made to R. Kassey and E. Mager of Raytheon Antometric Company ! I ii TABLE OF CONTENTS Section Forward ii I. Introduction I II. Procedures 1 III. Discussion 2 IV. Conclusions 3 V. Recommendations 3 VI. Appendix - Magazine Summary and Index 70mm Magazine Q II II R ii It S II II T II I! U II t! V tl It .X ,, ,, y II tl Z I! If EE S0-158 Experiment AA, BB, CC, & DD 16mm Magazines A through P VII.
    [Show full text]
  • Landed Science at a Lunar Crustal Magnetic Anomaly
    Landed Science at a Lunar Crustal Magnetic Anomaly David T. Blewett, Dana M. Hurley, Brett W. Denevi, Joshua T.S. Cahill, Rachel L. Klima, Jeffrey B. Plescia, Christopher P. Paranicas, Benjamin T. Greenhagen, Lauren Jozwiak, Brian A. Anderson, Haje Korth, George C. Ho, Jorge I. Núñez, Michael I. Zimmerman, Pontus C. Brandt, Sabine Stanley, Joseph H. Westlake, Antonio Diaz-Calderon, R. Ter ik Daly, and Jeffrey R. Johnson Space Science Branch, Johns Hopkins University Applied Physics Lab, USA Lunar Science for Landed Missions Workshop – January, 2018 1 Lunar Magnetic Anomalies • The lunar crust contains magnetized areas, a few tens to several hundred kilometers across, known as "magnetic anomalies". • The crustal fields are appreciable: Strongest anomalies are ~10-20 nT at 30 km altitude, perhaps a few hundred to 1000 nT at the surface. Lunar Prospector magnetometer Btot map (Richmond & Hood 2008 JGR) over LROC WAC 689-nm mosaic 2 Lunar Magnetic Anomalies: Formation Hypotheses • Magnetized basin ejecta: ambient fields amplified by compression as impact-generated plasma converged on the basin antipode (Hood and co-workers) Lunar Prospector magnetometer Btot (Richmond & Hood 2008 JGR) over LROC WAC 689- nm mosaic 3 Lunar Magnetic Anomalies: Formation Hypotheses • Magnetized basin ejecta: ambient fields amplified by compression as impact-generated plasma converged on the basin antipode (Hood and co-workers) • Magnetic field impressed on the surface by plasma interactions when a cometary coma struck the Moon (Schultz) Lunar Prospector magnetometer Btot (Richmond & Hood 2008 JGR) over LROC WAC 689- nm mosaic 4 Lunar Magnetic Anomalies: Formation Hypotheses • Magnetized basin ejecta: ambient fields amplified by compression as impact-generated plasma converged on the basin antipode (Hood and co-workers) • Magnetic field impressed on the surface by plasma interactions when a cometary coma struck the Moon (Schultz) • Magmatic intrusion or impact melt magnetized in an early lunar dynamo field (e.g., Purucker et al.
    [Show full text]
  • Glossary of Lunar Terminology
    Glossary of Lunar Terminology albedo A measure of the reflectivity of the Moon's gabbro A coarse crystalline rock, often found in the visible surface. The Moon's albedo averages 0.07, which lunar highlands, containing plagioclase and pyroxene. means that its surface reflects, on average, 7% of the Anorthositic gabbros contain 65-78% calcium feldspar. light falling on it. gardening The process by which the Moon's surface is anorthosite A coarse-grained rock, largely composed of mixed with deeper layers, mainly as a result of meteor­ calcium feldspar, common on the Moon. itic bombardment. basalt A type of fine-grained volcanic rock containing ghost crater (ruined crater) The faint outline that remains the minerals pyroxene and plagioclase (calcium of a lunar crater that has been largely erased by some feldspar). Mare basalts are rich in iron and titanium, later action, usually lava flooding. while highland basalts are high in aluminum. glacis A gently sloping bank; an old term for the outer breccia A rock composed of a matrix oflarger, angular slope of a crater's walls. stony fragments and a finer, binding component. graben A sunken area between faults. caldera A type of volcanic crater formed primarily by a highlands The Moon's lighter-colored regions, which sinking of its floor rather than by the ejection of lava. are higher than their surroundings and thus not central peak A mountainous landform at or near the covered by dark lavas. Most highland features are the center of certain lunar craters, possibly formed by an rims or central peaks of impact sites.
    [Show full text]
  • The Choice of the Location of the Lunar Base N93-17431
    155 PRECEDING PhGE ,,=,_,,c,;_''_'" t¢OT F|Lf_D THE CHOICE OF THE LOCATION OF THE LUNAR BASE N93-17431 V. V. Y__hevchenko P.. K _ AsO_nomtca/In./lute Moscow U_ Moscow 119899 USSR The development of modern methods of remote sensing of the lunar suuface and data from lunar studies by space vehicles make it possgale to assess scientifically the e:qOediowy of the locationof the lunar base in a definite region on the Moon. The prefimlnary choice of the site is important for tackling a range of problems assocfated with ensuring the activity of a manned lunar base and with fulfilh'ng the research program. Based on astronomical dat_ we suggest the Moon's western _, specifically the western part of Oceanus Proceliarurtg where natural scientifically interesting objects have been identifle_ as have surface rocks with enlaanced contents of ilmenite, a poss_le source of oxygen. A comprehensive et_tluation of the region shows timt, as far as natural features are concernetg it is a key one for solving the main problems of the Moon's orlgln and evolution. INTRODUCTION final period of shaping the lunar crust's upper horizons (this period coincided with the final equalization of the Moon's periods The main criteria for choosing a site for the first section of a of orbital revolution and axial rotation), the impact of terrestrial manned lunar base are (1)the most favorable conditions for gravitation on the internal structure of the Moon increased. transport operations, (2)the presence of natural objects of Between 4 and 3 b.y.
    [Show full text]
  • VV D C-A- R 78-03 National Space Science Data Center/ World Data Center a for Rockets and Satellites
    VV D C-A- R 78-03 National Space Science Data Center/ World Data Center A For Rockets and Satellites {NASA-TM-79399) LHNAS TRANSI]_INT PHENOMENA N78-301 _7 CATAI_CG (NASA) 109 p HC AO6/MF A01 CSCl 22_ Unc.las G3 5 29842 NSSDC/WDC-A-R&S 78-03 Lunar Transient Phenomena Catalog Winifred Sawtell Cameron July 1978 National Space Science Data Center (NSSDC)/ World Data Center A for Rockets and Satellites (WDC-A-R&S) National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt) Maryland 20771 CONTENTS Page INTRODUCTION ................................................... 1 SOURCES AND REFERENCES ......................................... 7 APPENDIX REFERENCES ............................................ 9 LUNAR TRANSIENT PHENOMENA .. .................................... 21 iii INTRODUCTION This catalog, which has been in preparation for publishing for many years is being offered as a preliminary one. It was intended to be automated and printed out but this form was going to be delayed for a year or more so the catalog part has been typed instead. Lunar transient phenomena have been observed for almost 1 1/2 millenia, both by the naked eye and telescopic aid. The author has been collecting these reports from the literature and personal communications for the past 17 years. It has resulted in a listing of 1468 reports representing only slight searching of the literature and probably only a fraction of the number of anomalies actually seen. The phenomena are unusual instances of temporary changes seen by observers that they reported in journals, books, and other literature. Therefore, although it seems we may be able to suggest possible aberrations as the causes of some or many of the phenomena it is presumptuous of us to think that these observers, long time students of the moon, were not aware of most of them.
    [Show full text]
  • Science Concept 7: the Moon Is a Natural Laboratory for Regolith Processes and Weathering on Anhydrous Airless Bodies
    Science Concept 7: The Moon is a Natural Laboratory for Regolith Processes and Weathering on Anhydrous Airless Bodies Science Concept 7: The Moon is a natural laboratory for regolith processes and weathering on anhydrous airless bodies Science Goals: a. Search for and characterize ancient regolith. b. Determine the physical properties of the regolith at diverse locations of expected human activity. c. Understand regolith modification processes (including space weathering), particularly deposition of volatile materials. d. Separate and study rare materials in the lunar regolith. INTRODUCTION The Moon is unmodified by processes that have changed other terrestrial planets, including Mars, and thus offers a pristine history of evolution of the terrestrial planets. Though Mars demonstrates the evolution of a warm, wet planet, water is an erosive substance that can erase a planet‘s geological history. The Moon, on the other hand, is anhydrous. It has never had liquid water on its surface. The Moon is also airless, as opposed to the Venus, the Earth, and Mars. An atmosphere, too, is a weathering component that can distort a planet‘s geologic history. Thus, the Moon offers a pristine history of the evolution of terrestrial planets that can increase our understanding of the formation of all rocky bodies, including the Earth. Additionally, the Moon offers many resources that can be exploited, from metals like iron and titanium to implanted volatiles like hydrogen and helium. There is evidence for water at the poles in permanently shadowed regions (PSRs) (Nozette et al., 1996). Such volatiles could not only support human exploration and habitation on the Moon, but they could also be the constituents for fuel or fuel cells to propel explorers to farther reaches of the Solar System (NRC, 2007).
    [Show full text]