Viral Induced Yeast Apoptosis ⁎ Manfred J

Total Page:16

File Type:pdf, Size:1020Kb

Viral Induced Yeast Apoptosis ⁎ Manfred J View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com Biochimica et Biophysica Acta 1783 (2008) 1413–1417 www.elsevier.com/locate/bbamcr Review Viral induced yeast apoptosis ⁎ Manfred J. Schmitt , Jochen Reiter Molecular and Cell Biology, FR 8.3 Biosciences, Building A 1.5, Saarland University, D-66041 Saarbrücken, Germany Received 4 October 2007; received in revised form 17 January 2008; accepted 18 January 2008 Available online 7 February 2008 Abstract In an analogous system to mammals, induction of an apoptotic cell death programme (PCD) in yeast is not only restricted to various exogenous factors and stimuli, but can also be triggered by viral killer toxins and viral pathogens. In yeast, toxin secreting killer strains are frequently infected with double-stranded (ds)RNA viruses that are responsible for killer phenotype expression and toxin secretion in the infected host. In most cases, the viral toxins are either pore-forming proteins (such as K1, K2, and zygocin) that kill non-infected and sensitive yeast cells by disrupting cytoplasmic membrane function, or protein toxins (such as K28) that act in the nucleus by blocking DNA synthesis and subsequently causing a G1/S cell cycle arrest. Interestingly, while all these virus toxins cause necrotic cell death at high concentration, they trigger caspase- and ROS-mediated apoptosis at low-to-moderate concentration, indicating that even low toxin doses are deadly by triggering PCD in enemy cells. Remarkably, viral toxins are not solely responsible for cell death induction in vivo, as killer viruses themselves were shown to trigger apoptosis in non-infected yeast. Thus, as killer virus-infected and toxin secreting yeasts are effectively protected and immune to their own toxin, killer yeasts bear the intrinsic potential to dominate over time in their natural habitat. © 2008 Elsevier B.V. All rights reserved. Keywords: Yeast; Apoptosis; Killer toxin; dsRNA virus 1. Introduction [2,4,24,29]. In the yeast Saccharomyces cerevisiae, three different killer toxins have been identified so far (K1, K2, K28), all of In higher eukaryotes and mammals, virus infections are known which are genetically encoded by cytoplasmic persisting double- to induce a programmed cell death (PCD) pathway as first line of stranded RNA viruses encoding an unprocessed precursor of a defense in preventing virus transmission. Most remarkably, secreted α/β protein toxin [34,40]. Most viral killer toxins, like the unicellular organisms such as yeast likewise respond to viral S. cerevisiae K1 toxin and the Zygosaccharomyces bailii toxin pathogens and virus toxins, indicating that PCD is evolutionarily zygocin, act as ionophores and disrupt cytoplasmic membrane conserved and most likely arose before multicellular organisms function by forming cation-specific plasma membrane pores have developed [15,27]. Interestingly, the onset of yeast apoptosis [25,37,38]. In contrast however, the S. cerevisiae K28 toxin enters was recently shown to also have an effect on the assembly- susceptible cells by receptor-mediated endocytosis, travels the dependent maturation of insect tetraviral procapsids in vivo [35]. secretion pathway in reverse, and finally acts in the nucleus by In yeast, the production of virally encoded, cytotoxic proteins irreversibly blocking DNA synthesis and causing a G1/S cell (so-called killer toxins) is a widespread phenomenon and typically cycle arrest [7,13,31]. associated with the secretion of protein toxins that kill susceptible In higher multicellular organisms it is well known that pore- target (yeast) cells in a two-step receptor-mediated fashion forming toxins like Staphylococcus aureus alpha toxin and/or inhibitors of protein synthesis like diphtheria toxin produced and secreted by Corynebacterium diphtheriae induce apoptosis [39]. The initial finding of cell death with apoptosis-like fea- ⁎ Corresponding author. Molecular and Cell Biology (FR 8.3 Biosciences), Saarland University, PO Box 15 11 50, Campus Building A 1.5, D-66041 tures in unicellular yeast [21] was unexpected and it was Saarbrücken, Germany. Tel.: +49 681 302 4730; fax: +49 681 302 4710. doubted that single-cell organisms would have any advantage in E-mail address: [email protected] (M.J. Schmitt). committing suicide. However, intensive studies of apoptotic 0167-4889/$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.bbamcr.2008.01.017 1414 M.J. Schmitt, J. Reiter / Biochimica et Biophysica Acta 1783 (2008) 1413–1417 phenomena in S. cerevisiae demonstrated that programmed cell 2. Killer yeasts and viral killer toxins death in yeast can be induced by a great number of exogenous and intrinsic stresses such as H2O2, UV-irradiation, acetic dsRNA viruses in yeast were initially discovered as deter- acid, cell aging, high pheromone concentration, defects in pro- minants of the killer phenomenon and are now known to be tein N-glycosylation, antimicrobial peptides, and many more associated with the presence of cytoplasmically inherited my- scenarios [6,12,14,17,20,22,26,32]. In the majority of cases coviruses, which are frequently found in different yeast genera. describing an apoptotic phenotype in yeast it was shown that Among these, killers of S. cerevisiae, Z. bailii, Hanseniaspora debilitated cells die for the benefit of the whole yeast population uvarum and Ustilago maydis – the latter being the cause of corn saving limited nutrients for healthy cells in order to enable smut – have been most intensively studied. Characteristic for survival of the whole population [9,14]. Similar to mammalian all killers is the secretion of a particular protein toxin that is lethal apoptosis, reactive oxygen species (ROS) and mitochondria are to sensitive strains of different species and genera. Cell killing is central to most of these scenarios, and the striking similarity usually achieved in a receptor-mediated process, requiring initial between yeast and mammalian apoptosis was further underlined toxin binding to receptors within the outer yeast cell surface by the finding of yeast orthologues of mammalian pro- and anti- (such as β-1,6-D-glucan, α-1,3-mannoprotein or chitin) and apoptotic factors such as the metacaspase Yca1p [23], the subsequent transfer to a plasma membrane receptor. Depending HtrA2/Omi homologue Nma111p [8], an inhibitor-of-apoptosis on the type of toxin, lethality can either be caused by plasma (IAP) [36], the transkingdom Bax inhibitor-1 protein Bir1p [5] membrane damage, G1/S cell cycle arrest and/or rapid inhibition and two AIF/AMID homologues, the pro-apoptotic serine of DNA synthesis [30] (Fig. 1). protease Aif1p and Ndi1p [19,41]. However, despite all these In S. cerevisiae, Z. bailii and H. uvarum as well as in the maize proteins were shown to function in yeast apoptosis under certain smut fungus U. maydis, the killer phenotype is cytoplasmically conditions, natural pathways in which these proteins are es- inherited and caused by an infection with dsRNA viruses of the sentially involved have not yet been identified, and target(s) of family Totiviridae that are widely distributed among yeasts and yeast metacaspase Yca1p still remain to be elucidated [11]. higher fungi. Since the majority of fungal viruses are non- Fig. 1. Receptor-mediated toxicity of yeast viral killer toxins K28, K1 and zygocin. Killing of a sensitive target (yeast) cell by each virus toxin is envisaged in a two- step process involving initial toxin binding to receptors within the cell wall (R1) and the cytoplasmic membrane (R2). After interaction with the plasma membrane, ionophoric toxins such as K1 and zygocin disrupt plasma membrane integrity, while K28 enters the cell by endocytosis and diffuses into the nucleus to cause non-PCD [note that the cell surface receptors R1 and R2 are different in all three toxins; see also table inset]. At high dose of K28 toxin (N10 pM), sensitive cells arrest in the cell cycle with pre-replicated DNA (1n; left panel), while low concentrations of K28 (b1 pM) activate a programmed cell death pathway exhibiting typical apoptotic markers such as chromosomal DNA fragmentation (TUNEL positive cells), accumulation of reactive oxygen species (ROS) and phosphatidylserine exposure at the external surface of the plasma membrane detected by annexin V staining (mid panel). Host cell proteins involved in toxin-mediated PCD (Kre1p, Tok1p, Yca1p, Dnm1p) or non-PCD (Kre1p) are indicated (the model is based on data from Reiter et al. [27] and Ivanovska and Hardwick [15]). M.J. Schmitt, J. Reiter / Biochimica et Biophysica Acta 1783 (2008) 1413–1417 1415 infectious and symptomless in the corresponding host, they are typically accompanied by DNA fragmentation, chromatin con- often classified as cryptic viruses. All known fungal viruses densation and phosphatidylserine externalization (Fig. 1). This spread vertically by cell-to-cell mating and/or heterokaryon for- process is mediated through yeast caspase Yca1p and the mation. In S. cerevisiae, diploids formed by mating of a killer with generation of ROS [27]. In contrast, high toxin concentrations a sensitive strain are likewise killers, as are all haploid progeny (N10 pM) induce non-apoptotic (necrotic) cell death indepen- of subsequent meiosis. In contrast, non-infected and virus-free dent of Yca1p and ROS. Therefore, killer toxin action can trigger strains are usually sensitive non-killers, while those containing a two modes of cell death: at high concentration, toxin-induced toxin-encoding killer virus and a helper virus (the latter providing apoptosis plays a minor role, while low-to-moderate toxin doses both viruses with Gag and Gag/Pol for viral RNA replication and trigger PCD in susceptible target cells. Since low toxin concen- packaging) survive mating with killers, and cytoplasmic mixing trations resemble the in vivo situation in the natural habitat, of the multiple killer viruses during zygosis accounts for the toxin-induced apoptotic host cell responses seem to be inheritance pattern during meiosis.
Recommended publications
  • Killer Toxin of Saccharomyces Cerevisiae Y500-4L Active Against Fleischmann and Itaiquara Commercial Brands of Yeast
    Revista de Microbiologia (1999) 30:253-257 Killer toxin of S. cerevisiae ISSN 0001-3714 KILLER TOXIN OF SACCHAROMYCES CEREVISIAE Y500-4L ACTIVE AGAINST FLEISCHMANN AND ITAIQUARA COMMERCIAL BRANDS OF YEAST Giselle A.M. Soares*; Hélia H. Sato Departamento de Ciência de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, SP, Brasil Submitted: October 02, 1998; Returned to authors for corrections: March 03, 1999; Approved: May 11, 1999 ABSTRACT The strain Saccharomyces cerevisiae Y500-4L, previously selected from the must of alcohol producing plants and showing high fermentative and killer capacities, was characterized according to the interactions between the yeasts and examined for curing and detection of dsRNA plasmids, which code for the killer character. The killer yeast S. cerevisiae Y500-4L showed considerable killer activity against the Fleischmann and Itaiquara commercial brands of yeast and also against the standard killer yeasts K2 (S. diastaticus NCYC 713), K4 (Candida glabrata NCYC 388) and K11 (Torulopsis glabrata ATCC 15126). However S. cerevisiae Y500-4L showed sensitivity to the killer toxin produced by the standard killer yeasts K8 (Hansenula anomala NCYC 435), K9 (Hansenula mrakii NCYC 500), K10 (Kluyveromyces drosophilarum NCYC 575) and K11 (Torulopsis glabrata ATCC 15126). No M-dsRNA plasmid was detected in the S. cerevisiae Y500-4L strain and these results suggest that the genetic basis for toxin production is encoded by chromosomal DNA. The strain S. cerevisiae Y500-4L was more resistant to the loss of the phenotype killer with cycloheximide and incubation at elevated temperatures (40oC) than the standard killer yeast S. cerevisiae K1.
    [Show full text]
  • (Vles) in the Yeast Debaryomyces Hansenii
    toxins Article New Cytoplasmic Virus-Like Elements (VLEs) in the Yeast Debaryomyces hansenii Xymena Połomska 1,* ,Cécile Neuvéglise 2, Joanna Zyzak 3, Barbara Zarowska˙ 1, Serge Casaregola 4 and Zbigniew Lazar 1 1 Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences (WUELS), 50-375 Wroclaw, Poland; [email protected] (B.Z.);˙ [email protected] (Z.L.) 2 SPO, INRAE, Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France; [email protected] 3 Department of Microbiology, Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; [email protected] 4 INRAE, AgroParisTech, Micalis Institute, CIRM-Levures, Université Paris-Saclay, 78350 Jouy-en-Josas, France; [email protected] * Correspondence: [email protected]; Tel.: +48-71-3207-791 Abstract: Yeasts can have additional genetic information in the form of cytoplasmic linear dsDNA molecules called virus-like elements (VLEs). Some of them encode killer toxins. The aim of this work was to investigate the prevalence of such elements in D. hansenii killer yeast deposited in culture collections as well as in strains freshly isolated from blue cheeses. Possible benefits to the host from harboring such VLEs were analyzed. VLEs occurred frequently among fresh D. hansenii isolates (15/60 strains), as opposed to strains obtained from culture collections (0/75 strains). Eight new different systems were identified: four composed of two elements and four of three elements. Full sequences of three new VLE systems obtained by NGS revealed extremely high conservation Citation: Połomska, X.; Neuvéglise, among the largest molecules in these systems except for one ORF, probably encoding a protein C.; Zyzak, J.; Zarowska,˙ B.; resembling immunity determinant to killer toxins of VLE origin in other yeast species.
    [Show full text]
  • A Nucleic Acid Associated with a Killer Strain of Yeast (Double-Stranded RNA/Cesium Sulfate)
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 4, pp. 1069-1072, April 1973 A Nucleic Acid Associated with a Killer Strain of Yeast (double-stranded RNA/cesium sulfate) MICHAEL H. VODKIN AND GERALD R. FINK Section of Genetics, Development, and Physiology, Cornell University, Ithaca, New York 14850 Communicated by Adrian M. Srb, January 26, 1973 ABSTRACT A crude membrane fraction was isolated 1 mCi of [8-'H]adenine was added, and the culture was in- from both killer M(k) and isogenic nonkiller M(o) strains cubated at 300 for 16-18 hr (24-27 hr for p- strain) in a of yeast labeled with [3H]adenine. Nucleic acids were ex- tracted from this fraction and centrifuged to equilibrium gyrotory shaker. in an ethidium bromide-Cs2SO4 solution. A peak of radio- activity coincident with a single fluorescent band was Nucleic Acid Extraction and EtBr-Cs2SO4 Centrifugation. present in the membrane fraction isolated from cells of By the procedure of Clark-Walker (4), a crude membrane the killer strain but was absent from that isolated from fraction was obtained from 25-40 g of yeast broken in a nonkiller cells. This material has been characterized as Braun homogenizer. EtBr at a concentration of 500 ag/ml double-stranded RNA by treatment with various nucleases The and by chromatography on a cellulose CF-li column. was present in all buffers used during the isolation. pellet Sedimentation in a sucrose gradient indicates an S value was lysed in 2.5 ml of 1% Brij 35. To the lysate was added 0.5 of 8-10.
    [Show full text]
  • Scent of a Killer: How Could Killer Yeast Boost Its Dispersal?
    Received: 9 March 2021 | Accepted: 17 March 2021 DOI: 10.1002/ece3.7534 NATURE NOTES Scent of a killer: How could killer yeast boost its dispersal? Claudia C. Buser1,2 | Jukka Jokela1,2 | Oliver Y. Martin1,3 1Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland Abstract 2Department of Aquatic Ecology, Eawag, Vector- borne parasites often manipulate hosts to attract uninfected vectors. For Dübendorf, Switzerland example, parasites causing malaria alter host odor to attract mosquitoes. Here, we 3Department of Biology, ETH Zürich, Zürich, Switzerland discuss the ecology and evolution of fruit- colonizing yeast in a tripartite symbiosis— the so- called “killer yeast” system. “Killer yeast” consists of Saccharomyces cerevi- Correspondence Claudia C. Buser, Dep. Environmental siae yeast hosting two double- stranded RNA viruses (M satellite dsRNAs, L- A dsRNA Sciences, ETH, Überlandstrasse 133, 8309 helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to Dübendorf, Switzerland. Email: [email protected] lethal toxin-producing “killer yeast” phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses Funding information ETH Research, Grant/Award Number: ETH- have no extracellular stage, they depend on the same insect vectors as yeast for 23 20- 1; Association for the Study of Animal their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to Behavior reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non-killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non- killer yeasts.
    [Show full text]
  • Protease B of the Lysosomelike Vacuole of the Yeast Saccharomyces Cerevisiae Is Homologous to the Subtilisin Family of Serine Proteases CHARLES M
    MOLECULAR AND CELLULAR BIOLOGY, Dec. 1987, p. 4390-4399 Vol. 7, No. 12 0270-7306/87/124390-10$02.00/0 Copyright © 1987, American Society for Microbiology Protease B of the Lysosomelike Vacuole of the Yeast Saccharomyces cerevisiae Is Homologous to the Subtilisin Family of Serine Proteases CHARLES M. MOEHLE,1* RICHARD TIZARD,2 SANDRA K. LEMMON,1 JOHN SMART,2 AND ELIZABETH W. JONES1 Department ofBiological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,1 and Biogen, Cambridge, Massachusetts 021422 Received 22 May 1987/Accepted 2 September 1987 The PRB1 gene of Saccharomyces cerevisiae encodes the vacuolar endoprotease protease B. We have determined the DNA sequence of the PRBI gene and the amino acid sequence of the amino terminus of mature protease B. The deduced amino acid sequence of this serine protease shares extensive homology with those of subtilisin, proteinase K, and related proteases. The open reading frame of PRB1 consists of 635 codons and, therefore, encodes a very large protein (molecular weight, >69,000) relative to the observed size of mature protease B (molecular weight, 33,000). Examination of the gene sequence, the determined amino-terminal sequence, and empirical molecular weight determinations suggests that the preproenzyme must be processed at both amino and carboxy termini and that asparagine-linked glycosylation occurs at an unusual tripeptide acceptor sequence. The lysosomelike vacuole of the yeast Saccharomyces carbohydrate is not Asn linked and may be linked to cerevisiae contains a number of the major hydrolases of the hydroxyl groups (see reference 5 for a review). cell, including protease A, protease B, carboxypeptidase Y, We have recently isolated the structural gene for protease the large aminopeptidase, repressible alkaline phosphatase, B, PRBI, and have described its transcription pattern (47).
    [Show full text]
  • In Killer Strains of Saccharomyces Cerevisiae
    TWO CHROMOSOMAL GENES REQUIRED FOR KILLING EXPRESSION IN KILLER STRAINS OF SACCHAROMYCES CEREVISIAE REED B. WICKNER AND MICHAEL J. LEIBOWITZ’ Laboratory of Biochemical Pharmacology, National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20014 Manuscript received September 15, 1975 ABSTRACT The killer character of yeast is determined by a 1.4 x 106 molecular weight double-stranded RNA plasmid and at least 12 chromosomal genes. Wild-type strains of yeast that carry this plasmid (killers) secrete a toxin which is lethal only to strains not carrying this plasmid (sensitives). -__ We have isolated 28 independent recessive chromosomal mutants of a killer strain that have lost the ability to secrete an active toxin but remain resistant to the effects of the toxin and continue to carry the complete cytoplasmic killer genome. These mutants define two complementation groups, ked and kex2. Kexl is located on chromosome VIZ between ade5 and lys5. Kex2 is located on chromosome XIV, but it does not show meiotic linkage to any gene previously located on this chromosome. __ When the killer plasmid of kexl or kex2 strains is elimi- nated by curing with heat or cycloheximide, the strains become sensitive to killing. The mutant phenotype reappears among the meiotic segregants in a cross with a normal killer. Thus, the kex phenotype does not require an alteration of the killer plasmid. --- Kexl and kex2 strains each contain near-normal levels of the 1.4 x 106 molecular weight double-stranded RNA, whose presence is correlated with the presence of the killer genome. CERTAIN strains of Saccharomyces cereuisiae (called killers) secrete a pro- tein which kills other strains (called sensitives) (MAKOWERand BEVAN 1963; WOODSand BEVAN1968; BUSSEY1972).
    [Show full text]
  • The Species-Specific Acquisition and Diversification of a Novel Family Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.322909; this version posted October 7, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The Species-specific Acquisition and Diversification of a Novel 2 Family of Killer Toxins in Budding Yeasts of the Saccharomycotina. 3 4 Lance R. Fredericks1, Mark D. Lee1, Angela M. Crabtree1, Josephine M. Boyer1, Emily A. Kizer1, Nathan T. 5 Taggart1, Samuel S. Hunter2#, Courtney B. Kennedy1, Cody G. Willmore1, Nova M. Tebbe1, Jade S. Harris1, 6 Sarah N. Brocke1, Paul A. Rowley1* 7 8 1Department of Biological Sciences, University of Idaho, Moscow, ID, USA 9 2iBEST Genomics Core, University of Idaho, Moscow, ID 83843, USA 10 #currently at University of California Davis Genome Center, University of California, Davis, 451 Health Sciences Dr., Davis, CA 11 95616 12 *Correspondence: [email protected] 13 14 Abstract 15 Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, 16 including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been 17 previously identified, their evolutionary origins remain uncertain given that many of the se genes 18 have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the 19 Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity 20 produced by Saccharomyces paradoxus. The expression of this novel killer toxin is associated 21 with the presence of a dsRNA totivirus and a satellite dsRNA.
    [Show full text]
  • Killer Factor in Wine Yeasts and Its Effect on Fermentation H.G
    Killer Factor in Wine Yeasts and its Effect on Fermentation H.G. Tredoux, R.P. Tracey and A. Tromp Viticultural and Oenological Research Institute, Private Bag X5026, 7600, Stellenbosch, Republic of South Africa. Submitted for publication: July 1986 Accepted for publication: September 1986 Keywords: Killer factor, yeast strain, fermentation, wine. The occurrence of killer factor amongst yeast strains in the Viti cultural and Oenological Research Institute (V 0 RI) yeast collection was studied. From a total of 96 strains, 85 were Saccharomyces cerevisiae of which 7 strains were killer, 9 neutral and 69 sensitive. These included some imported strains. On agar, no killer action was detected at wine pH. In fermentation studies using four grape cultivars, it was shown that where the killer yeast population was less than approximately 2,5% fermentation was not affected. At higher levels the killer yeast, in some instances, took over and completed fermentation, but the total fermentation time was never longer than that of the killer strain on its own. It was concluded that the use of a yeast strain should not hinge on its killer character but rather on its oenological characteristics. Killer activity in Saccharomyces cerevisiae was first de­ (1980) and Seki et al. (1985), is that should a fermenta­ scribed by Bevan & Makower (1963). Four phenotypes tion be inoculated with killer yeasts, it is most likely (or groups) have been shown to exist namely killer (K), that the killer yeast will dominate and complete the fer­ sensitive (S), neutral (N) and killer-sensitive (K-S) mentation. strains (Bevan & Makower, 1963; Woods, Ross & Hen­ It should be remembered, that in countries such as dry, 1974).
    [Show full text]
  • Yeast Killer Factors: Biology and Relevance in Food Biotechnology
    Yeast killer factors: Biology and relevance in food biotechnology Maja Starovič Academic internship report Msc Food technology: Food biotechnology and biorefining October 2020 Mentors: Ramón González García, Instituto de Ciencias de la Vid y del Vino prof. dr. Eddy J. Smid, Wageningen University & Research Table of contents 1 Yeast killer toxins ............................................................................................................................. 1 1.1 Saccharomyces cerevisiae killer system .................................................................................. 1 1.1.1 Saccharomyces cerevisiae killer toxins ............................................................................ 1 2 Non- Saccharomyces cerevisiae killer factors.................................................................................. 6 2.1 Non- Saccharomyces cerevisiae killer yeast ............................................................................ 6 2.2 Toxin entry into the target cell and the killing mechanism ..................................................... 7 2.2.1 Killer toxins from Pichia ................................................................................................... 7 1.2.1 Killer toxins from Kluyveromyces lactis ........................................................................... 8 1.2.2 Killer toxins from Candida ............................................................................................... 9 1.2.3 Killer toxins from other non-Saccharomyces yeast ........................................................
    [Show full text]
  • Killer Factor in Wine Yeasts and Its Effect on Fermentation H.G
    Killer Factor in Wine Yeasts and its Effect on Fermentation H.G. Tredoux, R.P. Tracey and A. Tromp Viticultural and Oenological Research Institute, Private Bag X5026, 7600, Stellenbosch, Republic of South Africa. Submitted for publication: July 1986 Accepted for publication: September 1986 Keywords: Killer factor, yeast strain, fermentation, wine. The occurrence of killer factor amongst yeast strains in the Viticultural and Oenological Research Institute (VORI) yeast collection was studied. From a total of 96 strains, 85 were Saccharomyces cerevisiae of which 7 strains were killer, 9 neutral and 69 sensitive. These included some imported strains. On agar, no killer action was detected at wine pH. In fermentation studies using four grape cultivars, it was shown that where the killer yeast population was less than approximately 2,5% fermentation was not affected. At higher levels the killer yeast, in some instances, took over and completed fermentation, but the total fermentation time was never longer than that of the killer strain on its own. It was concluded that the use of a yeast strain should not hinge on its killer character but rather on its oenological characteristics. Killer activity in Saccharomyces cerevisiae was first de- (1980) and Seki et al. (1985), is that should a fermenta- scribed by Bevan & Makower (1963). Four phenotypes tion be inoculated with killer yeasts, it is most likely (or groups) have been shown to exist namely killer (K), that the killer yeast will dominate and complete the fer- sensitive (S), neutral (N) and killer-sensitive (K-S) mentation. strains (Bevan & Makower, 1963; Woods, Ross & Hen- It should be remembered, that in countries such as dry, 1974).
    [Show full text]
  • Saccharomyces Paradoxus K66 Killer System Evidences Expanded Assortment of Helper and Satellite Viruses
    viruses Article Saccharomyces paradoxus K66 Killer System Evidences Expanded Assortment of Helper and Satellite Viruses Igle˙ Vepštaite-Monstaviˇc˙ e˙ 1, Juliana Lukša 1 , Aleksandras Konovalovas 2, Dovile˙ Ežerskyte˙ 1, Ramune˙ Staneviˇciene˙ 1, Živile˙ Strazdaite-Žielien˙ e˙ 1, Saulius Serva 2,3,* and Elena Serviene˙ 1,3,* 1 Laboratory of Genetics, Institute of Botany, Nature Research Centre, LT-08412 Vilnius, Lithuania; [email protected] (I.V.-M.); [email protected] (J.L.); [email protected] (D.E.); [email protected] (R.S.); [email protected] (Ž.S.-Ž.) 2 Department of Biochemistry and Molecular Biology, Institute of Biosciences, Vilnius University, LT-10257 Vilnius, Lithuania; [email protected] 3 Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania * Correspondence: [email protected] (S.S.); [email protected] (E.S.); Tel.: +370-52-72-9363 (S.S.); Tel.: +370-52-39-8244 (E.S.); Fax: +370-52-39-8231 (S.S.); Fax: +370-52-72-9352 (E.S.) Received: 28 August 2018; Accepted: 15 October 2018; Published: 16 October 2018 Abstract: The Saccharomycetaceae yeast family recently became recognized for expanding of the repertoire of different dsRNA-based viruses, highlighting the need for understanding of their cross-dependence. We isolated the Saccharomyces paradoxus AML-15-66 killer strain from spontaneous fermentation of serviceberries and identified helper and satellite viruses of the family Totiviridae, which are responsible for the killing phenotype. The corresponding full dsRNA genomes of viruses have been cloned and sequenced. Sequence analysis of SpV-LA-66 identified it to be most similar to S.
    [Show full text]
  • Why Yeast Cells Can Undergo Apoptosis • Büttner Et Al
    JCB: MINI-REVIEW Why yeast cells can undergo apoptosis: death in times of peace, love, and war Sabrina Büttner,1 Tobias Eisenberg,1 Eva Herker,2 Didac Carmona-Gutierrez,1 Guido Kroemer,3 and Frank Madeo1 1Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria 2Gladstone Institute of Virology and Immunology, San Francisco, CA 94158 3Apoptosis, Cancer, and Immunity Unit, Institut Gustave Roussy, Faculté Paris Sud-Université, Institut National de la Santé et de la Recherche Médicale, Paris XI, France The purpose of apoptosis in multicellular organisms is life span, Longo et al. (1997) connected yeast aging to conserved obvious: single cells die for the benefi t of the whole mammalian apoptotic pathways. Chronologically aged yeast organism (for example, during tissue development or cells have been used as a valuable model to study oxidative dam- age and molecularly conserved aging pathways of postmitotic embryogenesis). Although apoptosis has also been tissues in higher organisms (Bitterman et al., 2003). Recently, shown in various microorganisms, the reason for this cell both replicative and chronological aging of yeast cells have been death program has remained unexplained. Recently pub- demonstrated to culminate in cell death with an apoptotic pheno- lished studies have now described yeast apoptosis during type (Laun et al., 2001; Fabrizio et al., 2004; Herker et al., 2004). aging, mating, or exposure to killer toxins (Fabrizio, P., L. In this paper, we describe physiological scenarios of yeast Battistella, R. Vardavas, C. Gattazzo, L.L. Liou, A. Diaspro, apoptosis (Fig. 2), suggesting a teleological explanation for this (at fi rst glance useless) behavior of unicellular organisms.
    [Show full text]